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Abstract: Permutation entropy, introduced by Bandt and Pompe, is a conceptually simple
and well-interpretable measure of time series complexity. In this paper, we propose efficient
methods for computing it and related ordinal-patterns-based characteristics. The methods
are based on precomputing values of successive ordinal patterns of order d, considering
the fact that they are “overlapped” in d points, and on precomputing successive values of
the permutation entropy related to “overlapping” successive time-windows. The proposed
methods allow for measurement of the complexity of very large datasets in real-time.
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1. Introduction

1.1. Motivation

Measuring the complexity of a system by observed time series is an important problem in different
fields of research. One faces the problem, for instance, of distinguishing between different brain states
on the base of EEG data. The complexity of a dynamical system can be measured by the well-motivated
Kolmogorov-Sinai (KS) entropy [1], by the Lyapunov exponent, or by the correlation dimension [2],
but it is often not easy to estimate these and similar quantities from finite real-world data.
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In order to quantify complexity on the base of real-world data, Bandt and Pompe have introduced
permutation entropy [3]. It is based on the distributions of ordinal patterns, which describe order relations
between the values of a time series. On the one hand, permutation entropy is strongly related to KS
entropy. It coincides with KS entropy for piecewise strictly monotone interval maps [4] and is not
less than KS entropy for many dynamical systems [5–7] (see also [8,9] for some new results in this
direction and [10] for the discussion of two approaches to the permutation entropy with respect to KS
entropy). On the other hand, permutation entropy is estimated by empirical permutation entropy, which
is conceptually simple and algorithmically fast [3,11]. Empirical permutation entropy also provides
robustness with respect to noise [3,12]. An important practical aspect of empirical permutation entropy
is that one can compare by it complexities of different time series of a fixed length in a well-interpretable,
standardized and simple way.

Justified theoretically and simple conceptually, empirical permutation entropy and different ordinal-
patterns-based characteristics have been applied in various fields for analyzing real-world data: for
detecting and visualizing EEG changes related to epileptic seizures (e.g., [13–16]), for distinguishing
brain states related to anesthesia [17,18], for discriminating sleep stages in EEG data [19], for analyzing
and classifying heart rate variability data [20–23], and for financial, physical and statistical time series
analysis (see [10,12] for a review of applications).

Motivated by the good properties and many applications of empirical permutation entropy,
we propose in this paper an efficient method of computing it and ordinal patterns faster than in [11],
which allows for processing very large data sets in real-time. An efficient computation of ordinal patterns
provides a fast calculation of not only empirical permutation entropy, but of many ordinal-patterns-based
characteristics, such as, for example, the ordinal distributions itself [24] and derived measures [25], or
transcripts, introduced in [26]. The concept behind an efficient method is to use precomputed tables of
successive values instead of computing ordinal patterns and the empirical permutation entropy in each
time point. It is possible to precompute such successive values, because ordinal patterns “overlap” and,
in fact, have some common information. Since successive values of the empirical permutation entropy
are computed for successive overlapping time-windows, the possible “successive” entropies can also
be precomputed.

Figure 1. The empirical permutation entropy reflects changes of the epileptic EEG data.
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To motivate the method, let us give an example of processing epileptic EEG data by the empirical
permutation entropy (data from The European Epilepsy Database [27]). Figure 1 illustrates how the
empirical permutation entropy (bottom plot) reflects the epileptic seizure (marked in red and with a
“head”) in one-channel EEG data (upper plot). The processing of the depicted 20 min of EEG data,
recorded at a sampling rate of 256 Hz, takes about 1 second in MATLAB R2012b.

In Section 2 we recall some notions from ordinal patterns analysis and consider how to compute
ordinal patterns (by the method introduced in [11]) and how to compute the empirical permutation
entropy from the distributions of ordinal patterns. More efficient methods for computing ordinal patterns
and the empirical permutation entropy are introduced in Sections 3 and 4, correspondingly. In Section 5
we adapt the method to time series with a high frequency of occurrence of equal values. It is reasonable
to take into account these equalities for data digitized with a low resolution, for example, for heart rate
variability data as they are considered in [23]. Finally, we present the comparison between two known
methods of computing the empirical permutation entropy and the proposed method in Section 6.

2. Computing Ordinal Patterns and the Empirical Permutation Entropy

In this section we recall how to compute ordinal patterns by the method introduced in [11] and how
to compute the empirical permutation entropy from the obtained distributions of ordinal patterns.

2.1. Ordinal Patterns

Let us start from an example of computing ordinal patterns (see Figure 2). We consider a part of a
time series, consisting of 10 points, we fix a delay τ = 2, which indicates a distance between points in
ordinal patterns, and an order d = 2, meaning ordinal patterns contain (d+ 1) = 3 points.

Figure 2. The ordinal patterns of order d = 2.

One can see that the blue ordinal patterns (in dashed line) “overlap” the previous black ordinal patterns
in d = 2 points, and then the black ordinal patterns “overlap” the previous blue ordinal patterns in d = 2

points. This “overlapping” allows to use all information about order relations between points that can
be obtained from a time series. By the same reason the ordinal patterns are computed starting from the
point x1 (the first, the third and the fifth ones) and then with a shift 1, starting from the point x2 (the
second, the fourth and the sixth ones). In the general case, ordinal patterns are computed starting from
all initial times 1, . . . , τ .



Entropy 2013, 15 4395

2.1.1. Number Representation

In order to obtain the distribution of ordinal patterns, we assign numbers to each type of ordinal
patterns. We consider here the enumeration of ordinal patterns introduced in [11], because it allows to
compute them relatively fast. Originally, ordinal patterns of order d were defined as permutations of the
set {0, 1, . . . , d} (see [3,11]). However, we define them here in the following way since that provides a
simple enumeration of them (we refer for details to [11]).

Definition 1. The delay vector (xt, xt−τ , . . . , xt−dτ ) is said to have the ordinal pattern
(iτ1(t), iτ2(t), . . . , iτd(t)) of order d and delay τ if iτl (t) for l = 1, 2, . . . , d is given by

iτl (t) = #{r ∈ {0, 1, . . . , l − 1} | xt−lτ ≥ xt−rτ} (1)

Simply speaking, each iτl (t) codes how many points from (xt, xt−τ , . . . , xt−(l−1)τ ) are not larger than
xt−lτ . Note that we assume here occurrence of equal values in a time series quite rare. Indeed, the
relation “equal to” is combined with the relation “greater than” in Definition 1. Regarding the time
series with a high frequency of occurrence of equal values, we discuss modified ordinal patterns with
considering equality in Section 5.

There are (d + 1)! ordinal patterns of order d, and one assigns to each of them a number from
{0, 1, . . . , (d+ 1)!− 1} in a one-to-one way by

nτd(t) = nτd((i
τ
1(t), iτ2(t), . . . , iτd(t))) =

d∑
l=1

iτl (t)
(d+ 1)!

(l + 1)!
(2)

For example, all ordinal patterns of order d = 2 in their number representation are given in Table 1. Note
that the ordinal patterns with the numbers (d + 1)(k − 1), . . . , (d + 1)k − 1 for each k = 1, 2, . . . , d!

have the same relations between the last d points, because they have the same (i1, i2, . . . , id−1) but a
different id. For instance, the ordinal patterns 0, 1, 2 (as well as the ordinal patterns 3, 4, 5) have the same
relation between the last d = 2 points since they have the same i1 and a different i2 (see Table 1). We
will use this property in Subsection 3.3.

Table 1. The ordinal patterns of order d = 2.

2.1.2. Successive Ordinal Patterns

Due to the “overlapping” between ordinal patterns one easily obtains the successive ordinal pattern
(iτ1(t+ τ), iτ2(t+ τ), . . . , iτd(t+ τ)) from the previous one (iτ1(t), iτ2(t), . . . , iτd(t)) by

iτl+1(t+ τ) =

iτl (t) if xt−lτ < xt+τ

iτl (t) + 1 otherwise
(3)
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(iτ1(t+ τ) is determined by Equation (1)). According to Equation (3) one needs only d comparisons and
at most d incrementation operations to obtain the successive ordinal pattern when the current ordinal
pattern is given [11]. When counting ordinal patterns in their number representation (2), which is clearly
more convenient than in the representation provided by Equation (1), one needs d multiplications more.

2.2. The Empirical Permutation Entropy

In order to reflect complexity changes in a time series in the course of time, the empirical permutation
entropy is usually computed in sliding time-windows of a fixed size.

Definition 2. By the empirical permutation entropy of order d and of delay τ of a time-window
(xt, xt−1, . . . , xt−M−dτ+1) at time t one understands the quantity

hτd(t) = −
(d+1)!−1∑
j=0

qj
M

ln
qj
M

= lnM − 1

M

(d+1)!−1∑
j=0

qj ln qj, where (4)

qj = #{k ∈ {t, t− 1, . . . , t−M + 1} | (xk, xk−τ , . . . , xk−dτ ) has the ordinal pattern j}

(with 0 ln 0 := 0).

Note that the window size M is defined as the number of ordinal patterns in the window. Let us give
an example of computing the empirical permutation entropy in the two sliding windows (x1, x2, . . . , x9)

and (x2, x3, . . . , x10), containing M = 5 ordinal patterns of order d = 2 with a delay τ = 2

(see Figure 3).

Figure 3. Computing the empirical permutation entropy in a sliding window.

The windows overlap in 8 points and in 4 ordinal patterns. There are q0 = 0, q1 = 1, q2 = 1,

q3 = 1, q4 = 2, q5 = 0 and q0 = 1, q1 = 1, q2 = 1, q3 = 1, q4 = 1, q5 = 0 ordinal patterns
in Window 1 and in Window 2, correspondingly (see Table 1 for determining their types). Then the
empirical permutation entropy at time t = 9 and t = 10 is computed by Equation (4) as

h22(9) = ln 5− 1

5
(1 ln 1 + 1 ln 1 + 1 ln 1 + 2 ln 2) = 1.3322

h22(10) = ln 5− 1

5
(1 ln 1 + 1 ln 1 + 1 ln 1 + 1 ln 1 + 1 ln 1) = 1.6094
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3. Efficiently Computing Ordinal Patterns

In this section, we precompute successive ordinal patterns for each ordinal pattern. Using these values
allows to compute ordinal patterns as numbers about two times faster than by Equations (2) and (3). This
is important for the fast calculation of ordinal-patterns-based characteristics, in particular, the empirical
permutation entropy.

For simplicity, we use here the number representation of ordinal patterns provided by Equation (2),
but, in fact, the type of number representation is not substantial for the method, as we discuss
in Subsection 3.3.

3.1. Precomputed Successive Ordinal Patterns

Given the ordinal pattern nτd(t) there are (d + 1) possible successive ordinal patterns nτd(t + τ) since
there are (d+ 1) positions of the point xt+τ relative to the points from (xt, xt−τ , . . . , xt−(d−1)τ ). Ordinal
patterns of order d = 2 and their successive ones are presented in Table 2. For example, for the ordinal
pattern 0 there are three possible positions l = 0, 1, 2 of the next point and three possible successive
ordinal patterns 0, 3, 4, respectively.

Table 2. The successive ordinal patterns nτ2(t+ τ) given nτ2(t).

Let us denote the function determining successive ordinal patterns from a given one and from the
position of the next value by φd:

nτd(t+ τ) = φd(n
τ
d(t), l) (5)

where l indicates how many points from (xt, xt−τ , . . . , xt−(d−1)τ ) are greater than or equal to xt+τ , i.e.,

l = #{r ∈ {0, 1, . . . , d− 1} | xt−rτ ≥ xt+τ} (6)

For example, the values of the function φ2, determining the successive ordinal pattern nτ2(t+ τ) from
the given ordinal pattern nτ2(t), are presented in Table 3. One could determine the position l also as how
many points from (xt, xt−τ , . . . , xt−(d−1)τ ) are less than or equal to xt+τ . The way of determining l is
not substantial since it changes only the representation of the precomputed table.
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Table 3. The successive ordinal patterns nτ2(t+ τ) = φd(n
τ
2(t), l).

nτ2(t)

position l 0 1 2 3 4 5

0 0 1

1 3 2

2 4 5

3.2. How can the Precomputed Table be Obtained?

One obtains the entries of the table by determining for each ordinal pattern of order d all
possible successive ordinal patterns in dependence on the position l = 0, 1, . . . , d of the next point.
When using the number representation (2), one obtains the successive ordinal patterns (iτ1(t + τ),

iτ2(t + τ), . . . , iτd(t + τ)) from the given ordinal pattern (iτ1(t), iτ2(t), . . . , iτd(t)) for all l = 0, 1, . . . , d

by Equation (3). Then the entries of the table are obtained by Equation (2). The precomputed
tables of successive ordinal patterns of the orders d = 1, 2, . . . , 8 are given in the supplementary files
“table1.mat”,. . . ,“table8.mat”.

3.3. Size of the Precomputed Table

In order to efficiently compute ordinal patterns by Equation (5), one has to store (d + 1) values
φd(n

τ
d, l) for each of the (d+1)! ordinal patterns nτd, i.e., (d+1)!(d+1) values in total. This is usually not

a very large size since in many situations the orders d = 3, . . . , 7 are recommended for applications [3].
When using the enumeration (2) one can reduce the size of the table. Indeed, the ordinal patterns

with the numbers (d + 1)(k − 1), . . . , (d + 1)k − 1 for each k = 1, 2, . . . , d! have the same successive
ordinal patterns, because they describe the same relation between the last d points (Subsection 2.1).
For example, the ordinal patterns 0, 1, 2 as well as the ordinal patterns 3, 4, 5 have the same successive
ordinal patterns: φd(0, l) = φd(1, l) = φd(2, l) and φd(3, l) = φd(4, l) = φd(5, l) (see Table 2).

Note that one can use enumerations of ordinal patterns different from (2) since only the
correct correspondence between successive ordinal patterns is needed to efficiently compute them
by Equation (5).

3.4. Efficiency of the Method

When efficiently determining the number nτd(t + τ) from nτd(t) by Equation (5), one calculates only
l by Equation (6). This is almost twice faster than calculating nτd(t + τ) by Equation (2), involving
calculation (3) (see Table 4).
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Table 4. Efficiency of computing the ordinal pattern nτd(t+ τ) from nτd(t).

Computation of nτd(t+ τ ) + Incrementation ∗ <> The total number of operations

by Equation (2), involving Equation (3) d ≤d d− 1 d ≤4d− 1

by Equation (5) 0 ≤d 0 d ≤2d

4. Efficiently Computing the Empirical Permutation Entropy

In this section, we consider the empirical permutation entropy, computed in sliding windows of a size
M with maximal overlapping, i.e., the first point of the successive window is the second point of the
previous one. The case with non-maximal overlapping is discussed in Subsection 4.3.

4.1. Precomputed Values

The successive windows (xt−1, xt−2, . . . , xt−M−dτ ) and (xt, xt−1 . . . , xt−M−dτ+1) differ in the points
xt and xt−M−dτ , therefore the ordinal distributions in the windows differ in the frequencies of occurrence
of the ordinal patterns nτd(t) and nτd(t−M). In order to obtain the ordinal distribution of the successive
window given the current one, one needs to substitute the frequency of the “outcoming” ordinal pattern
qnτd(t) by (qnτd(t) − 1) and the frequency of the “incoming” ordinal pattern qnτd(t) by (qnτd(t) + 1):

qnτd(t−M) ln qnτd(t−M) −→ (qnτd(t−M) − 1) ln(qnτd(t−M) − 1)

qnτd(t) ln qnτd(t) −→ (qnτd(t) + 1) ln(qnτd(t) + 1)

Then the empirical permutation entropy hτd(t) given hτd(t− 1) is computed by

hτd(t) = hτd(t− 1) + g(qnτd(t) + 1)− g(qnτd(t−M)), where (7)

g(j) =
1

M
(j ln j − (j − 1) ln(j − 1)) for j = 1, 2, . . . ,M (8)

qnτd(t) = #{k ∈ {t, t− 1, . . . , t−M + 1} | (xk, xk−τ , . . . , xk−dτ ) has the ordinal pattern nτd(t)}.

If the “incoming” ordinal pattern coincides with the “outcoming” ordinal pattern, the ordinal distributions
and the values of the empirical permutation entropy are the same for successive windows.

4.2. How can the Precomputed Table be Obtained: Size of the Precomputed Table

The precomputed table is obtained by computing (8) for all j = 1, 2, . . . ,M , where M is the size
of a sliding window. We have used a window size of two seconds in the example in the Introduction,
which implies the size M = 2 · 256 = 512 of the precomputed table for a sampling rate of 256 Hz
(see Figure 1).

4.3. Efficiency of the Method

Assuming that the distribution of ordinal patterns for the window (xt−1, xt−2, . . . , xt−M−dτ ) and
hτd(t − 1) are known, we compare the computation of hτd(t) by Equation (4) and by Equation (7)
(see Table 5).
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Table 5. Efficiency of computing the empirical permutation entropy hτd(t).

Calculation + ∗ ln The total number of operations

by Equation (4) ≤(d+ 1)!− 1 (d+ 1)! (d+ 1)! ≤3(d+ 1)!− 2

by Equation (7) 2 0 0 2

However, when using Equation (7) the empirical permutation entropy hτd(t) for the first window is
computed by Equation (4) since there is no precomputed value hτd(t−1). There are also no precomputed
numbers of ordinal patterns for the first τ ordinal patterns. Computing their numbers by Equation (2)
takes at most (4d− 1)τ operations (see Figure 5 for the scheme of the method).

In the case of non-maximal overlapping between windows, one can also compute the empirical
permutation entropy by Equation (7), omitting “unnecessary” intermediate values hτd(t). This is
reasonable when the distance between the windows is not very large, and computing the empirical
permutation entropy by Equation (4) implies more operations than by Equation (7). Roughly speaking,
for a distance D < 3(d+1)!−2

2
between successive windows computing the empirical permutation entropy

for the whole time series with use of sliding windows by Equation (7) is faster than by Equation (4).

4.4. Round-off Error

Successively calculating the empirical permutation entropy by Equation (7) provides an accumulation
of round-off errors resulting from finite computer precision. One performs two operations in Equation (7)
at each of W time points, which bounds the error by 2Wψ, where ψ is the machine precision and
W is the length of a time series. For a relatively long time series one can recalculate the empirical
permutation entropy by Equation (4) after some time, depending on the computer precision again, in
order to avoid big accumulating errors and then continue calculations by Equation (7). For example,
if ε is the maximal allowable error in computing the empirical permutation entropy, then one should
recalculate the empirical permutation entropy by Equation (4) every ε

2ψ
points.

For illustration purposes we present the round-off error of the empirical permutation entropy obtained
for the example shown in the Introduction in Figure 4. One can see that the error is very small in relation
to the values of the empirical permutation entropy (compare with Figure 1).

Figure 4. Round-off error of the empirical permutation entropy computed in dependence
on time.
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4.5. Method Summary

We summarize the proposed method of the efficient computation of the empirical permutation entropy
in the following scheme (see Figure 5). As above, the size of a sliding window is denoted by M ,
the order of ordinal patterns by d, the delay by τ and the length of a time series by W . The MATLAB
code for computing the empirical permutation entropy is given in Appendix B.1.

Figure 5. Computational scheme of the method.

start

compute the first τ ordinal patterns by Equation (2)

compute the next (M − τ) ordinal patterns by Equation (5)

compute hτd(M + dτ) by Equation (4)

t = M + dτ + 1

compute the ordinal pattern nτd(t) by Equation (5)

compute hτd(t) by Equation (7) (or by Equation (4) if needed)

t < W

t = t + 1

end

yes

no

Note that according to the scheme the efficiency of the proposed method after computing hτd(M+dτ)

by Equation (4) depends only on a length of a time series W and does not depend neither on the order d,
the window size M nor on the delay τ .

5. Efficiently Computing Modified Ordinal Patterns

This section is devoted to the efficient computation of modified ordinal patterns, which are adapted
to the case of a time series with a high frequency of occurrence of equal values. In order to give an
impression, we present all modified ordinal patterns of order d = 2 in Figure 6. Modified ordinal patterns
are efficiently computed by using the idea of precomputed successive values similarly as it is done in
Section 3. In Subsubsection 5.1.2. we propose a possible variant of their enumeration, which is natural
from the computational point of view and provides a “short” precomputed table (as in Subsection 3.3).
However, the way of enumerating modified ordinal patterns is also not substantial for computing
them efficiently.
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Figure 6. The modified ordinal patterns of order d = 2.

5.1. Modified Ordinal Patterns

There are many ways to code modified ordinal patterns. We code them naturally by determining for
the vector (xt, xt−τ , . . . , xt−dτ ) the position of each point xt−lτ in relation to the points from the same
vector. There are now three possibilities of the relation between two points: one point can be greater
(less) than another one or equal to another one.

Let us indicate by bτl (t), whether the point xt−lτ is equal to any point from (xt, xt−τ , . . . , xt−(l−1)τ ):

bτl (t) =

1 if xt−lτ = xt−jτ for some j ∈ {0, 1, . . . , l − 1}

0 otherwise
(9)

Then the position Iτl (t) of the point xt−lτ in relation to the points from (xt, xt−τ , . . . , xt−(l−1)τ ) is
calculated as

Iτl (t) = bτl (t) + 2#{r ∈ {0, 1, . . . , l − 1} | xt−lτ > xt−rτ , b
τ
r(t) = 0} (10)

In words, in order to determine the position of the point xt−lτ in relation to the points (xt, xt−τ , . . . , xt−dτ )

one counts how many values among the points in (xt, xt−τ , . . . , xt−dτ ) are less than xt−lτ and indicates
whether the point xt−lτ is equal to any other point from (xt, xt−τ , . . . , xt−dτ ).

Definition 3. A delay vector (xt, xt−τ , . . . , xt−dτ ) is said to have the modified ordinal pattern
(Iτ1 (t), Iτ2 (t), . . . , Iτd (t)) of order d and delay τ if Iτl (t) for l = 1, 2, . . . , d is given by Equation (10).

Also note that the proposed coding of modified ordinal patterns is very concise because one stores
all information about the relations between the points in one vector (Iτ1 (t), Iτ2 (t), . . . , Iτd (t)). Let us give
an example of calculating the modified ordinal pattern of order d = 5 and delay τ = 1 (see Figure 7).
For instance, the point x1 is equal to the points x4 and x6, i.e., b15(6) = 1, and it is greater than the two
values x2 = x5 and x3, i.e., I15 (6) = 2 · 2 + 1 = 5. One can easily check the position of the point x1
when counting positions from the bottom up.

Figure 7. The modified ordinal pattern (I11 (6), I12 (6), I13 (6), I14 (6), I15 (6)) = (0, 3, 0, 3, 5).
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5.1.1. Successive Modified Ordinal Patterns

The proposed coding of modified ordinal patterns allows to compute the successive modified ordinal
patterns in a simple way like in Subsubsection 2.1.2. . One obtains the successive modified ordinal
pattern (Iτ1 (t+ τ), Iτ2 (t+ τ), . . . , Iτd (t+ τ)) from the given one (Iτ1 (t), Iτ2 (t), . . . , Iτd (t)) by

Iτl+1(t+ τ) =


Iτl (t) if xt−lτ < xt+τ or bl(t) = 1

Iτl (t) + 1 if xt−lτ = xt+τ , bl(t) = 0

Iτl (t) + 2 if xt−lτ > xt+τ , bl(t) = 0

(11)

[compare with Equation (3)]. One needs 3d comparisons and, at most, d additions to obtain the
successive modified ordinal pattern when the current one is given. This property is useful for a relatively
fast computing of modified ordinal patterns, when one cannot use the precomputed table by some reason.

5.1.2. Number Representation

We assign to each modified ordinal pattern a number from {0, 1, . . . , (2d+1)!!−1} (see Appendix A.1
for the proof and the details of enumeration):

N τ
d (t) = N τ

d ((Iτ1 (t), Iτ2 (t), . . . , Iτd (t))) =
d∑
l=1

Iτl (t)(2l − 1)!! (12)

where !! stands for the odd factorial (2l − 1)!! =
∏l

j=1(2j − 1).
The modified ordinal patterns of order d = 2 in their number representation are given in Table 6.

Note that there are “gaps” in the enumeration. For example, there are no modified ordinal patterns
corresponding to the numbers 10 and 13 (see Appendix A.1 for details).

Table 6. The modified ordinal patterns of order d = 2.

5.2. Precomputed Successive Modified Ordinal Patterns

Similar to the definition of the function φd in Equation (5), we introduce here a function Φd for
determining the successive modified ordinal pattern N τ

d (t + τ) from the given one N τ
d (t) and from the

position L of the next point:
N τ
d (t+ τ) = Φd(N

τ
d (t), L) (13)

The position L of the next point xt+τ is defined in a similar way as the entries Il for modified ordinal
patterns, but it is calculated now in relation to the previous points (xt, xt−τ , . . . , xt−(d−1)τ ), not to the
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following points as in Definition 3. We have the term B coding whether the point xt+τ is equal to any
point from (xt, xt−τ , . . . , xt−(d−1)τ ):

B =

1 if xt+τ = xt−jτ for some j ∈ {0, 1, . . . , d− 1}

0 otherwise
(14)

Then the position L is calculated as

L = B + 2#{r ∈ {0, 1, . . . , d− 1} | xt−rτ > xt+τ , b
τ
r(t) = 0} (15)

For example, there are (2d+ 1) = 5 possible positions of the next point xt+τ among the previous d = 2

points (see Figure 8).

Figure 8. There are 2 · 2 + 1 = 5 possible positions of the next point xt+τ .

The successive modified ordinal patterns of order d = 2 are given in Table 7.

Table 7. The successive modified ordinal patterns N τ
2 (t+ τ) = Φd(N

τ
2 (t), L).

N τ
2 (t)

position L 0 3 6 9 12 1 4 7 2 5 8 11 14

0 0 3 6

1 1 4 9

2 2 11 12

3 5 − 7

4 8 − 14

5.3. How can the Precomputed Table be Obtained?

One obtains the entries of the table by determining for each modified ordinal pattern of order d all
possible successive modified ordinal patterns in dependence on the position L = 0, 1, . . . , 2d of the
next point.

For example, when using the number representation (12), one obtains the successive modified
ordinal patterns (Iτ1 (t + τ), Iτ2 (t + τ), . . . , Iτd (t + τ)) from the given modified ordinal pattern
(Iτ1 (t), Iτ2 (t), . . . , Iτd (t)) for all L = 0, 1, . . . , 2d by Equation (11). Then the entries of the table are
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obtained by Equation (12). The precomputed tables of successive modified ordinal patterns of the
orders d = 1, 2, . . . , 6 are given in the supplementary files “table1Eq.mat”,. . . ,“table6Eq.mat”. The
MATLAB code for computing the empirical permutation entropy for modified ordinal patterns is given
in Appendix B.3.

5.4. Size of the Precomputed Table

In order to use Equation (13) for the efficient computation of modified ordinal patterns one has
to store (2d + 1)(2d + 1)!! values in the precomputed table, which are (2d + 1) values for each of
position L = 0, 1, . . . , 2d for each of (2d+ 1)!! numbers (although there are some empty entries, see for
details Appendix A.1).

The enumeration (12) also allows to reduce the table size, because one can group modified ordinal
patterns of order d according to the same relations between the last d points (see Table 7 for example).

5.5. Efficiency of the Method

Computing the number N τ
d (t + τ) from N τ

d (t) by Equation (13) takes less than 3d comparisons and
less than (d+1) additions since it involves only the determination of the position L of the next point (see
Table 8). One needs d multiplications and (d− 2) additions more, when computing successive modified
ordinal patterns by Equation (11) without using the precomputed tables.

Table 8. Efficiency of computing the modified ordinal pattern N τ
d (t+ τ) from N τ

d (t).

Computation ofN τ
d (t+ τ ) + ∗ <> The total number of operations

By Equation (11) 2d− 1 d ≤3d ≤6d− 1

By Equation (13) d+ 1 0 ≤3d ≤4d+ 1

6. Results

In this section, we compare by an example the efficiency of the proposed method of computing the
empirical permutation entropy (see “PE.m” in Appendix B.1 for a realization in MATLAB) with the
method introduced in [11] (see “oldPE.m” in Appendix B.2) and with one of the standard methods
available in the Internet (see “pec.m” from [28]). We also present the time of computing the empirical
permutation entropy for modified ordinal patterns (see “PEeq.m” in Appendix B.3). For estimating
the execution time of MATLAB scripts we use the MATLAB function “cputime”. The execution time
of the methods are presented for illustration purposes, therefore we consider only one dataset. Note
that for other datasets similar results are obtained. For a more reliable justification of the method see
Tables 4, 5 and 8.

The methods are compared for a one-channel EEG dataset recorded at a sampling rate of 256 Hz.
We consider the orders d = 3, 6, 7, the delay τ = 4 and different lengths of a time series. First, by
the methods we compute the empirical permutation entropy of only one window (see Table 9) since the
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script realized by G. Ouyang is not adapted for sliding windows. The execution time is averaged over
several runs.

Table 9. Computing the empirical permutation entropy of one window by different
methods (seconds).

Length of a window 1000 sec. 2000 sec. 4000 sec.

Order d 3 6 7 3 6 7 3 6 7

cputime of “pec.m” 8.02 933.45 7430.4 15.99 1868.9 14, 917 32.02 3733.1 29, 820

cputime of “oldPE.m” 1.24 1.26 1.35 2.47 2.52 2.62 4.94 4.95 5.25

cputime of “PE.m” 0.08 0.08 0.11 0.13 0.17 0.18 0.24 0.29 0.36

cputime of “PEeq.m” 0.65 0.69 1.30 1.33 1.38 1.99 2.52 2.64 3.31

We compare now the methods of computing the empirical permutation entropy for a sliding window
of 512 samples (2 seconds) for the same EEG dataset in dependence on the orders d = 3, 6, 7 and on
the length of a time series (see Table 10). A maximal overlapping between the sliding windows and the
delay τ = 4 are used. The execution time is averaged over several runs.

Table 10. Computing the empirical permutation entropy of a time series in sliding windows
by different methods (seconds).

Length of a time series 15 min. 30 min. 60 min.

Order d 3 6 7 3 6 7 3 6 7

cputime of “oldPE.m” 5.49 32.43 201.53 10.95 64.82 410.72 21.6 130.73 797.93

cputime of “PE.m” 0.13 0.13 0.13 0.20 0.23 0.26 0.36 0.41 0.46

cputime of “PEeq.m” 0.64 0.90 1.28 1.24 1.33 1.93 2.45 2.62 3.30

7. Conclusions

In this paper, we proposed an efficient method for computing ordinal patterns and computing the
empirical permutation entropy. As one can see from Tables 9, 10, the proposed method is much faster
than the known methods. This allows to measure the complexity of very large datasets by the empirical
permutation entropy in real-time. The proposed method of efficient computing ordinal patterns can
be applied not only to fast computing the empirical permutation entropy, but to fast computing other
ordinal-patterns-based characteristics as well. The development of ordinal time series analysis is far
from finished. Recently, new ideas, e.g., concepts for quantifying coupling of time series and the
systems behind, are considered [26], partially with a higher computational effort than for the permutation
entropy. Here, the presented method, with necessary adaptions, could be applied in order to minimize
computational costs.
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A. Supplementary Materials

A.1. Number Representation of Modified Ordinal Patterns

Let us discuss first why the enumeration of modified ordinal patterns (12) has “gaps”. Consider the
modified ordinal pattern (Iτ1 (t), Iτ2 (t), . . . , Iτd (t)) of some vector (xt, xt−τ , . . . , xt−dτ ), where the vector
(bτ0(t), bτ1(t), . . . , bτd(t)) indicates equalities between the points of the vector as given by Definition 3.
Note that the more r < l with bτr(t) = 1 are, the less is the range of Iτl (t):

Iτl (t) ≤ 2(l −
l−1∑
r=1

bτr(t)) (16)

That is the more points in (xt, xt−τ , . . . , xt−dτ ) are equal to any point, the less distinct values are in
the vector. When enumerating modified ordinal patterns by Equation (12), we consider all possible
combinations of Il ∈ {0, 1, . . . , 2l} for l = 1, 2, . . . , d, and, according to Equation (16), some of these
combinations do not correspond to any modified ordinal pattern. That is why the enumeration has “gaps”.

We show now that different modified ordinal patterns of order d have different numbers computed by
Equation (12). Let us define a set Id of all vectors (I1, I2, . . . , Id) as

Id = {(I1, I2, . . . , Id) | Il ∈ {0, 1, . . . , 2l} for l = 1, 2, . . . , d}

Proposition 1. For each d ∈ N, the assignment

(I1, I2, . . . , Id) 7→ Nd((I1, I2, . . . , Id)),

where Nd((I1, I2, . . . , Id)) is computed by Equation (12), defines a bijection from the set Id onto
{0, 1, . . . , (2d+ 1)!!− 1}.

Proof. Note that N(I1) = I1. Then by Equation (12) for all d ≥ 2 one has the recursion

Nd((Il)
d
l=1) = Nd−1((Il)

d−1
l=1 ) + (2d− 1)!!Id

which by induction on d provides different Nd((Il)
d
l=1) for different (I1, I2, . . . , Id).

Note again that not all vectors from the set Id are modified ordinal patterns according to Equation (16),
but all modified ordinal pattern of order d have different numbers computed by Equation (12).

A.2. The Amount of Modified Ordinal Patterns

One can see from Equation (16) that there are less than (2d + 1)!! modified ordinal patterns due to
“gaps” in the enumeration. In order to find the actual amount of modified ordinal patterns observe that
modified ordinal patterns of order d can be represented as Cayley permutations of a set {0, 1, . . . , d} (see
for details [29]).

Definition 4. A Cayley permutation of length d is a permutation p of d elements with possible repetitions
from a set {x1, x2, . . . , xd} of d elements with an order relation, subject to the condition that if an element
xi appears in p, then all elements aj < ai also appear in p.
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The number of Cayley permutations is counted by the known ordered Bell numbers [29]. Therefore
the amount of modified ordinal patterns of order d is computed by the (d + 1)-th ordered Bell number
B(d+ 1) in the following way:

B(d+ 1) =
d+1∑
k=0

k∑
j=0

(−1)k−j
k!

j!(k − j)!
jd+1 (17)

We present in Table A1 the amounts of modified ordinal patterns of orders d = 1, 2, . . . , 7, which are
computed by Equation (17).

Table A1. The amount of modified ordinal patterns.

Order d 1 2 3 4 5 6 7

The amount of modified ordinal patterns 3 13 75 541 4683 47, 293 545, 835

B. MATLAB Scripts

B.1. Computing the Empirical Permutation Entropy by the New Method

. PE.m
% x − t ime s e r i e s , Tau − d e l a y τ , d − o r d e r o f o r d i n a l p a t t e r n s d ,
% WS − s i z e M of a s l i d i n g window
% ePE − v a l u e s o f t h e e m p i r i c a l p e r m u t a t i o n e n t r o p y
f u n c t i o n ePE = PE ( x , Tau , d , WS)
load ( [ ’ t a b l e ’ num2str ( d ) ’ . mat ’ ] ) ;% t h e precomputed t a b l e
pTbl = e v a l ( [ ’ t a b l e ’ num2str ( d ) ] ) ;
Length = numel ( x ) ; % l e n g t h o f t h e t ime s e r i e s
d1 = d +1;
dTau = d∗Tau ;
nPa t = f a c t o r i a l ( d1 ) ; % amount o f o r d i n a l p a t t e r n s o f o r d e r d
opd = z e r o s ( 1 , nPa t ) ; % d i s t r i b u t i o n o f o r d i n a l p a t t e r n s
ePE = z e r o s ( 1 , Length ) ; % e m p i r i c a l p e r m u t a t i o n e n t r o p y
op = z e r o s ( 1 , d ) ; % o r d i n a l p a t t e r n (i1, i2, ..., id)

prevOP = z e r o s ( 1 , Tau ) ; % p r e v i o u s o r d i n a l p a t t e r n s f o r 1 : τ

opW = z e r o s ( 1 , WS) ; % o r d i n a l p a t t e r n s i n t h e window
ancNum = nPa t . / f a c t o r i a l ( 2 : d1 ) ; % a n c i l l a r y numbers
peTbl ( 1 :WS) = −(1:WS) .∗ l o g ( 1 :WS) ; % t a b l e o f v a l u e s g(j)

peTbl ( 2 :WS) = ( peTbl ( 2 :WS)−peTbl ( 1 :WS−1) ) . /WS;
f o r iTau = 1 : Tau

c n t = iTau ;
op ( 1 ) = ( x ( dTau+iTau−Tau ) >= x ( dTau+ iTau ) ) ;
f o r j = 2 : d

op ( j ) = sum ( x ( ( d−j ) ∗Tau+ iTau ) >= x ( ( d1−j ) ∗Tau+ iTau : Tau : dTau+ iTau ) ) ;
end
opW( c n t ) = sum ( op . ∗ ancNum ) ; % t h e f i r s t o r d i n a l p a t t e r n
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opd (opW( c n t ) +1) = opd (opW( c n t ) +1) +1;
f o r j = dTau+Tau+ iTau : Tau :WS+dTau % loop f o r t h e f i r s t window

c n t = c n t +Tau ;
posL = 1 ; % t h e p o s i t i o n l of t h e n e x t p o i n t
f o r i = j−dTau : Tau : j−Tau

i f ( x ( i ) >= x ( j ) )
posL = posL +1;

end
end
opW( c n t ) = pTbl (opW( cn t−Tau ) ∗d1+posL ) ;
opd (opW( c n t ) +1) = opd (opW( c n t ) +1) +1;

end
prevOP ( iTau ) = opW( c n t ) ;

end
ordDis tNorm = opd /WS;
ePE (WS+Tau∗d ) = −nansum ( ordDis tNorm ( 1 : nPa t ) . ∗ l o g ( ordDis tNorm ( 1 : nPa t ) ) ) ;

iTau = 1 ; % c u r r e n t s h i f t 1 : τ

i P a t = 1 ; % p o s i t i o n o f t h e c u r r e n t p a t t e r n i n t h e window
f o r t = WS+Tau∗d +1: Length % loop ove r a l l p o i n t s

posL = 1 ; % t h e p o s i t i o n l of t h e n e x t p o i n t
f o r j = t−dTau : Tau : t−Tau

i f ( x ( j ) >= x ( t ) )
posL = posL +1;

end
end
nNew = pTbl ( prevOP ( iTau ) ∗d1+posL ) ; % ” incoming ” o r d i n a l p a t t e r n
nOut = opW( i P a t ) ; % ” outcoming ” o r d i n a l p a t t e r n
prevOP ( iTau ) = nNew ;
opW( i P a t ) = nNew ;
nNew = nNew+1;
nOut = nOut +1;
i f nNew ˜= nOut % u p d a t e t h e d i s t r i b u t i o n o f o r d i n a l p a t t e r n s

opd ( nNew ) = opd ( nNew ) +1; % ” incoming ” o r d i n a l p a t t e r n
opd ( nOut ) = opd ( nOut )−1; % ” outcoming ” o r d i n a l p a t t e r n
ePE ( t ) = ePE ( t −1) +( peTbl ( opd ( nNew ) )−peTbl ( opd ( nOut ) +1) ) ;

e l s e
ePE ( t ) = ePE ( t −1) ;

end
iTau = iTau +1;
i P a t = i P a t +1 ;
i f ( iTau > Tau ) iTau = 1 ; end
i f ( i P a t > WS) i P a t = 1 ; end

end
ePE = ePE (WS+Tau∗d : end ) ;
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B.2. Computing the Empirical Permutation Entropy by the Old Method

. oldPE.m
% x − t ime s e r i e s , Tau − d e l a y τ , d − o r d e r o f o r d i n a l p a t t e r n s d ,
% WS − s i z e M of a s l i d i n g window ,
% ePE − v a l u e s o f t h e e m p i r i c a l p e r m u t a t i o n e n t r o p y

% f u n c t i o n i s r e a l i z e d by t h e method p r o p o s e d i n K e l l e r , K . ; Emonds , J . ; Sinn , M.
% Time s e r i e s from t h e o r d i n a l v i e w p o i n t . S toch . Dynam . 2007 , 2 , 247−272.
f u n c t i o n ePE = oldPE ( x , Tau , d , WS)
Length = numel ( x ) ; % l e n g t h o f t h e t ime s e r i e s
d1 = d +1;
dTau = d∗Tau ;
nPa t = f a c t o r i a l ( d1 ) ; % amount o f o r d i n a l p a t t e r n s o f o r d e r d
opd = z e r o s ( 1 , nPa t ) ; % d i s t r i b u t i o n o f o r d i n a l p a t t e r n s
ePE = z e r o s ( 1 , Length ) ; % e m p i r i c a l p e r m u t a t i o n e n t r o p y
op = z e r o s ( Tau , d ) ; % o r d i n a l p a t t e r n (i1, i2, ..., id)

opW = z e r o s ( 1 , WS) ; % o r d i n a l p a t t e r n s i n t h e window
ancNum = nPa t . / f a c t o r i a l ( 2 : d1 ) ; % a n c i l l a r y numbers
f o r iTau = 1 : Tau % loop f o r t h e f i r s t window

c n t = iTau ;
op ( iTau , 1 ) = ( x ( dTau+iTau−Tau ) >= x ( dTau+ iTau ) ) ;
f o r k = 2 : d

op ( iTau , k ) = sum ( x ( ( d−k ) ∗Tau+ iTau ) >= x ( ( d1−k ) ∗Tau+ iTau : Tau : dTau+ iTau ) ) ;
end
opW( c n t ) = sum ( op ( iTau , : ) .∗ ancNum ) +1; % t h e f i r s t o r d i n a l p a t t e r n
opd (opW( c n t ) ) = opd (opW( c n t ) ) +1 ;
f o r t = dTau+Tau+ iTau : Tau :WS+dTau % loop f o r t h e n e x t o rd . p a t t e r n s

op ( iTau , 2 : d ) = op ( iTau , 1 : d−1) ;
op ( iTau , 1 ) = ( x ( t−Tau ) >= x ( t ) ) ;
f o r j = 2 : d

i f ( x ( t−j ∗Tau ) >= x ( t ) )
op ( iTau , j ) = op ( iTau , j ) +1 ;

end
end
opNumber = sum ( op ( iTau , : ) .∗ ancNum ) +1;
opd ( opNumber ) = opd ( opNumber ) +1 ;
c n t = c n t +Tau ;
opW( c n t ) = opNumber ; % t h e n e x t o r d i n a l p a t t e r n

end
end
ordDis tNorm = opd /WS;
ePE (WS+Tau∗d ) = −nansum ( ordDis tNorm ( 1 : nPa t ) . ∗ l o g ( ordDis tNorm ( 1 : nPa t ) ) ) ;

iTau = 1 ; % c u r r e n t s h i f t 1 : τ

i P a t = 1 ; % c u r r e n t p a t t e r n i n t h e window
f o r t = WS+dTau +1: Length % loop f o r a l l t ime−s e r i e s

op ( iTau , 2 : d ) = op ( iTau , 1 : d−1) ;
op ( iTau , 1 ) = ( x ( t−Tau ) >= x ( t ) ) ;
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f o r j = 2 : d
i f ( x ( t−j ∗Tau ) >= x ( t ) )

op ( iTau , j ) = op ( iTau , j ) +1 ;
end

end
nNew = sum ( op ( iTau , : ) .∗ ancNum ) +1; % ” incoming ” o r d i n a l p a t t e r n n
nOut = opW( i P a t ) ; % ” outcoming ” o r d i n a l p a t t e r n
opW( i P a t ) = nNew ;
i f nNew ˜= nOut % u p d a t e t h e d i s t r i b u t i o n

opd ( nNew ) = opd ( nNew ) +1; % ” incoming ” o r d i n a l p a t t e r n
opd ( nOut ) = opd ( nOut )−1; % ” outcoming ” o r d i n a l p a t t e r n
ordDis tNorm = opd /WS;

ePE ( t ) = −nansum ( ordDis tNorm ( 1 : nPa t ) . ∗ l o g ( ordDis tNorm ( 1 : nPa t ) ) ) ;
e l s e

ePE ( t ) = ePE ( t −1) ;
end
iTau = iTau +1;
i P a t = i P a t +1 ;
i f ( iTau > Tau ) iTau = 1 ; end
i f ( i P a t > WS) i P a t = 1 ; end

end
ePE = ePE (WS+Tau∗d : end ) ;

B.3. Computing the Empirical Permutation Entropy for Modified Ordinal Patterns

. PEeq.m

f u n c t i o n ePE = PEeq ( x , Tau , d , WS)
load ( [ ’ t a b l e E q ’ num2str ( d ) ’ . mat ’ ] ) ; % t h e precomputed t a b l e
opTbl = e v a l ( [ ’ t a b l e E q ’ num2str ( d ) ] ) ;% of s u c c e s s i v e o r d i n a l p a t t e r n s
L = numel ( x ) ; % l e n g t h o f t ime s e r i e s
dTau = d∗Tau ;
nPa t = 1 ;
f o r i = 3 : 2 : 2∗ d+1

nPa t = nPa t ∗ i ;
end
opd = z e r o s ( 1 , nPa t ) ; % d i s t r i b u t i o n o f t h e m o d i f i e d o r d i n a l p a t t e r n s
ePE = z e r o s ( 1 , L ) ; % e m p i r i c a l p e r m u t a t i o n e n t r o p y
b = z e r o s ( Tau , d ) ; % i n d i c a t o r o f e q u a l i t y (b1, b2, . . . , bd)

prevOP = z e r o s ( 1 , Tau ) ; % p r e v i o u s m o d i f i e d o r d i n a l p a t t e r n s f o r 1 : τ

opW = z e r o s ( 1 , WS) ; % m o d i f i e d o r d i n a l p a t t e r n s i n t h e window
ancNum = ones ( 1 , d ) ; % a n c i l l a r y numbers
f o r j = 2 : d

ancNum ( j ) = ancNum ( j −1) ∗ (2∗ j −1) ;
end
peTbl ( 1 :WS) = −(1:WS) .∗ l o g ( 1 :WS) ; % t a b l e o f v a l u e s g(j)

peTbl ( 2 :WS) = ( peTbl ( 2 :WS)−peTbl ( 1 :WS−1) ) . /WS;
f o r iTau = 1 : Tau % a l l s h i f t s
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c n t = iTau ;
mOP = z e r o s ( 1 , d ) ;
t = dTau+ iTau ; % c u r r e n t t ime t of t h e l a s t p o i n t i n mOP
f o r j = 1 : d % d e t e r m i n i n g m o d i f i e d o r d i n a l p a t t e r n s

f o r i = j −1:−1:0
i f ( i == 0 | | b ( iTau , i ) == 0)

i f ( x ( t−j ∗Tau ) > x ( t−i ∗Tau ) )
mOP( j ) = mOP( j ) +2 ;

e l s e i f ( x ( t−j ∗Tau ) == x ( t−i ∗Tau ) )
b ( iTau , j ) = 1 ;

end
end

end
end
mOP( 1 : d ) = mOP( 1 : d ) +b ( iTau , 1 : d ) ; % add e q u a l i t y i n d i c a t o r
opW( c n t ) = sum (mOP. ∗ ancNum ) ;
opd (opW( c n t ) +1) = opd (opW( c n t ) +1) +1;
c n t = c n t +Tau ;
f o r t = iTau +Tau ∗ ( d +1) : Tau :WS+Tau∗d % loop f o r t h e f i r s t window

b ( iTau , 2 : d ) = b ( iTau , 1 : d−1) ; % renew (b1, b2, . . . , bd)

b ( iTau , 1 ) = 0 ;
posL = 1 ; % p o s i t i o n L of t h e n e x t p o i n t
eq F l ag = 0 ; % i n d i c a t o r o f e q u a l i t y B

f o r i = 1 : d ; % d e t e r m i n i n g t h e p o s i t i o n L

i f ( b ( iTau , i ) == 0)
i f ( x ( t−i ∗Tau ) > x ( t ) )

posL = posL +2;
e l s e i f ( x ( t ) == x ( t−i ∗Tau ) )

eq F l ag = 1 ;
b ( iTau , i ) = 1 ;

end
end

end
posL = posL+ eqF la g ; % p o s i t i o n L of t h e n e x t p o i n t
opW( c n t ) = opTbl (opW( cn t−Tau ) ∗ (2∗ d +1)+posL ) ;
opd (opW( c n t ) +1) = opd (opW( c n t ) +1) +1;
c n t = c n t +Tau ;

end
prevOP ( iTau ) = opW( t−dTau ) ;

end
OPDnorm = opd /WS; % n o r m a l i z a t i o n o f t h e o r d i n a l d i s t r i b u t i o n
ePE (WS+Tau∗d ) = −nansum ( OPDnorm ( 1 : nPa t ) . ∗ l o g ( OPDnorm ( 1 : nPa t ) ) ) ;

iTau = 1 ; % c u r r e n t s h i f t 1 : τ

iOP = 1 ; % p o s i t i o n o f t h e c u r r e n t p a t t e r n i n t h e window
f o r t = WS+Tau∗d +1:L % loop f o r a l l p o i n t s i n a t ime s e r i e s

b ( iTau , 2 : d ) = b ( iTau , 1 : d−1) ;
b ( iTau , 1 ) = 0 ;
posL = 1 ;
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eq F l ag = 0 ; % x ( j ) ==x ( i ) ?
f o r i = 1 : d ; % d e t e r m i n i n g t h e p o s i t i o n L

i f ( b ( iTau , i ) == 0)
i f ( x ( t−i ∗Tau ) > x ( t ) )

posL = posL +2;
e l s e i f ( x ( t ) == x ( t−i ∗Tau ) )

eq F l ag = 1 ;
b ( iTau , i ) = 1 ;

end
end

end
posL = posL+ e qF la g ; % p o s i t i o n L of t h e n e x t p o i n t
nNew = opTbl ( prevOP ( iTau ) ∗ (2∗ d +1)+posL ) ; % ” incoming ” o r d i n a l p a t t e r n
nOut = opW( iOP ) ; % ” outcoming ” o r d i n a l p a t t e r n
prevOP ( iTau ) = nNew ;
opW( iOP ) = nNew ;
nNew = nNew+1;
nOut = nOut +1;
i f nNew ˜= nOut % i f nNew == nOut , ePE does n o t change

opd ( nNew ) = opd ( nNew ) +1; % ” incoming ” o r d i n a l p a t t e r n
opd ( nOut ) = opd ( nOut )−1; % ” outcoming ” o r d i n a l p a t t e r n
ePE ( t ) = ePE ( t −1)+ peTbl ( opd ( nNew ) )−peTbl ( opd ( nOut ) +1) ;

e l s e
ePE ( t ) = ePE ( t −1) ;

end
iTau = iTau +1;
iOP = iOP +1;
i f ( iTau > Tau ) iTau = 1 ; end
i f ( iOP > WS) iOP = 1 ; end

end
ePE = ePE (WS+Tau∗d : end ) ;
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