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Abstract: We analyze information diffusion using empirical data that tracks online 

communication around two instances of mass political mobilization that took place in 

Spain in 2011 and 2012. We also analyze protest-related communications during the year 

that elapsed between those protests. We compare the global properties of the topological 

and dynamic networks through which communication took place, as well as local changes 

in network composition. We show that changes in network structure underlie aggregated 

differences on how information diffused: an increase in network hierarchy is accompanied 

by a reduction in the average size of cascades. The increasing hierarchy affects not only the 

underlying communication topology but also the more dynamic structure of information 

exchange; the increase is especially noticeable amongst certain categories of nodes (or users). 

Our findings suggest that the relationship between the structure of networks and their 
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function in diffusing information is not as straightforward as some theoretical models of 

diffusion in networks imply. 

Keywords: information cascades; political communication; online networks;  

collective behavior 

 

1. Introduction 

Networks offer mathematical representations of the interdependence that links decisions and 

behavior [1–4]. Identifying the structural properties of networks can shed light into how they shape 

dynamic processes like the diffusion of information or cascading behavior. These dynamics underlie 

relevant social phenomena, for instance, political mobilizations. Recent events suggest that online 

networks facilitate the large-scale diffusion of protest information in relatively short time-spans [5–9]. 

However, networks are not stable structures: people discontinue their contribution to communication 

flows or decide to join anew. On a local level, the composition of networks changes constantly, but it 

remains an empirical matter to determine whether these changes generate structural shifts that impact 

the way in which dynamic processes unfold. This article considers that question using data on how 

information diffused around the political protests that emerged in Spain in May of 2011, and again in 

May of 2012 to celebrate the first anniversary of the movement. We also consider communication 

dynamics in the year that separates these two events. Our aim is to shed light into the temporal 

dimension of diffusion through networks that also change in time. 

We analyze the structural properties of the networks that emerged to exchange messages about the 

protests, networks that helped diffuse relevant information before and after the mobilization days. We 

compare the size of information cascades and how the composition of the network changed during the 

year that separates the two mass mobilizations, paying special attention to how actors migrate across 

different regions of the network. We show that local changes in network structure underlie aggregated 

differences in how information diffused: an increase in network hierarchy goes hand in hand with a 

reduction in the average side of cascades. Although we can’t disentangle the effects that exogenous 

factors (like political fatigue) have on the online patterns we observe, we believe that our findings 

qualify models of information diffusion and add important nuances to the discussion of how the 

structure of networks relates to their function. 

2. Models of Information Diffusion 

Prior to the eruption of digital data, simulation and analytical models were the main tools used to 

analyze diffusion dynamics and study the effects of different individual-level mechanisms. The most 

prominent amongst these are threshold models [10–13], epidemic models [14], and models based on 

rumor dynamics [15]. With the increasing availability of data, these models were refined and 

improved, sometimes still within (but often beyond) analytical tractability. Although a thorough 

review of this bourgeoning area of work is beyond the scope of this paper (see [16] for a more 
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comprehensive list of references), some common assumptions are worth highlighting for the purposes 

of the analyses that follow. 

These models of information diffusion, for instance, reveal that some network structures are more 

prone to generating cascades, although not always for the same reasons. The empirical prevalence of 

scale-free networks, where a small minority of nodes concentrates a disproportionate number of 

connections, inspired much research on the structural and dynamic properties that derive from  

long-tailed degree distributions [17]. This research suggests that the existence of a small minority of 

highly connected nodes, or hubs, make the networks more efficient (i.e., faster when transmitting 

information) and also more robust, at least to random or accidental failure [18]; but it also qualifies the 

role that hubs play in information diffusion: there is now consistent evidence that hubs create 

bottlenecks in networks, effectively acting as firewalls to global cascades [12,19,20]. Contrary to what 

one would expect in highly concentrated networks where most of the connectivity relies on a few 

nodes, a global diffusion of information becomes less likely in the presence of hubs. The reason is that 

hubs end up jamming the flow of information to parts of the network that are crucial for chain 

reactions to unfold. What this research suggests, in other words, is that the structure of networks does 

shape the dynamics of information diffusion but not necessarily for the most intuitive reasons, given 

the statistical properties observed. 

These theoretical models, on the other hand, often assume that the existence of a tie is enough  

for information to flow; in many empirical settings, however, the presence of connections does not 

automatically lead to activation: they are a necessary but not a sufficient condition for diffusion to 

happen, as has been shown in a number of online settings (for instance, [21]). This is particularly the 

case in social networks where, in addition to capacity issues associated to structural properties (i.e.,  

the existence of hubs creating bottlenecks in the network), nodes can decide whether to pass on 

information. In many empirical settings networks unfold in multiple communication layers, each 

referring to a different information domain; activation in each of these layers responds to different 

timing and purpose, often revealing the specialization of nodes as experts or authorities in different 

domains [22,23]. What this means is that there are interaction effects between the structure of static 

networks (i.e., the communication channels formed by ties that are relatively stable) and the structure 

of dynamic networks (i.e., the more fluid layers of actual communication that emerges from tie 

activation). As recent research suggests, the interrelation between these parallel processes has important 

consequences for spreading dynamics [24]. Nodes can have different positions in the domain-specific 

structures compared to the more stable network of underlying contacts; and those positions might have 

different levels of volatility. This is important because all these sources of change have an impact on 

how information flows—this paper considers how through the lens of empirical data focused on 

political communication. 

3. Data: Diffusion Events, Communication Networks, and Information Cascades 

The data we analyze track online communication through Twitter during the protests that emerged 

in Spain in May 2011 [5,25] and again in May 2012 [26,27]. Media accounts of the events were quick 

to attribute to Twitter an instrumental role in the spread of calls for action and the coordination of 

demonstrations; this role has subsequently been spelled out by ethnographic work and interviews with 
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protesters [28,29]. For both events, messages using relevant protest hashtags were collected for the 

period of one month, spanning days preceding and following the main demonstration days (15 May 2011 

and 13 May 2012, respectively); we also collected activity during the intervening year. Table 1 summarizes 

the three data sets. 

Table 1. Summary of data collected. 

 Protests 2011 Protests 2012 Intervening Period

Date range 25 April to 25 May 30 April to 30 May 1 June to 31 March 
Total number of messages 581,749 1,026,292 555,521 

Total number of unique users 85,933 127,930 115,992 

In both years the data were collected using the streaming API, which returns a maximum of 1% of 

all messages published in the Twitter public timeline. The actual percentage of messages returned, 

however, varies depending on the filters applied and the size of the underlying population of messages of 

interest. The same hashtags that were used to collect messages in 2011 were again used in 2012, but the 

lack of control on how APIs return the sample of messages—which is susceptible to bias [30]—means 

that the difference in sample sizes might only partly result from greater awareness about the protests in 

2012. Although we have good reasons to believe that in 2012 the protest movement was better known 

by a wider public (it was no longer unexpected, as in 2011), and that this surely translated into higher 

levels of online activity (the movement had more time to build up a base during the passing year), the 

analyses that follow might overestimate the actual amount of change from year to year if the sampling 

method is introducing artificial variation; however, the aggregated patterns we identify still reveal 

dynamics that are intrinsic to the diffusion of protest information through this online network. 

Using the sampled messages, we reconstructed the communication networks for both events and the 

intervening year using the mentions and re-tweets (RTs) to infer links between users: if user i mentions 

or RTs user j, an arc is created from i to j; this resulted in three weighted, directed networks, one for 

each observation period. We also reconstructed the following/follower structure of the users sending 

protest messages, which resulted in unweighted, directed networks: again, if user i follows user j, an 

arc is formed from i to j. The following/follower structure was filtered so that only users active in 

protest communication (according to our samples) are retained. Information about followers was 

obtained at the end of each observation period in 2011 and 2012, once the sample of relevant messages 

had been collected. These networks capture the topological and dynamic structures underlying 

communication around the protests: we take the follower structure as a proxy to the relative size of the 

audience that each user has (relative to other users, and to the number of people they follow); and we 

take the mentions structure as a proxy to their visibility in this specific stream of protest-related 

information. These networks are summarized in Table 2. 

The diffusion curves for each event are shown in Figure 1, panel (a). The vertical axis tracks the 

normalized cumulative proportion of users that had sent at least one message in time t, as tracked by 

the horizontal axis, centered on the protest day. The figure shows that the acceleration rate was higher, 

but happened later, in 2011, in line with the sudden (and unexpected) explosion of the movement as 

protests unfolded; in 2012 the momentum started to build earlier, prior to the long-planned mass 

demonstrations, but at a slower pace. The degree (sum of in-degree and out-degree) and k-core 

distributions for the dynamic networks of mentions are shown in panels (b) and (c), respectively. 
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Degree centrality measures the number of adjacent nodes [31]; k-cores, in turn, partition the network 

into groups that correspond to the maximal sub-graph to which nodes belong in which each node is 

connected to at least k other nodes in the same sub-graph [32]. Panels 1(b) and 1(c) show that the 2012 

network is slightly more asymmetrical, with more extreme outliers in the degree distribution; it also 

has cores with higher degree, which means that there are more actors with high degree connected to 

each other than the year before. Although these differences need to be interpreted cautiously given that 

networks differ in size, they suggest that during the passing year communication dynamics around the 

political movement grew more cohesive at its core, with clearer gravity centers attracting most of the 

activity; this core is formed by an elite of users that grew more prominent in the exchange of information. 

Table 2. Summary of topological and communication networks of the different periods: N 

and M stand for the number of nodes and links respectively; <k> stands for the average 

degree of the undirected network, i.e., kin + kout, and max(kin); max(kout) for the maximum 

in-degree and out-degree respectively. The clustering coefficient (C) measures the degree 

to which nodes in the graph tend to cluster together; the average path length (l) measures 

the average distance in terms of links between two different nodes; the diameter (D) 

measures the longest shortest path, and the assortativity (r) gives the Pearson coefficient of 

degree between pairs of linked nodes. The number of strongly connected components, the 

size of the giant strongly connected component, and the size of the second largest 

connected component are also shown. 

Table 2. Summary of networks. 

 2011 2011–2012 2012 

 
following/er 

(topological) 
@s (dynamic) 

following/er 

(topological) 
@s (dynamic) 

following/er 

(topological) 

@s 

(dynamic) 

N (# nodes) 85,712 50,369 113,677 35,815 127,400 127,068 

M (# arcs) 6,030,459 135,637 10,191,085 98,709 7,459,518 522,430 

<k> (avg degree) 7.36 2.69 89.65 2.76 58.55 4.11 

max(kin) (max indegree) 5,773 10,781 8,262 3,118 12,552 12,269 

max(kout) (max outdegree) 31,798 245 37,810 651 34,892 658 

C (clustering) 0.022 0.002 0.028 0.015 0.026 0.013 

l (path length) 2.45 3.97 2.52 4.18 2.71 4.00 

D (diameter) 6 15 7 16 8 15 

r (assortativity) −0.13 −0.07 −0.11 −0.09 −0.13 −0.08 

# strong components 3,392 23,445 10,871 20,309 12,151 59,792 

N giant component 82,253 26,881 102,750 15,572 115,105 67,331 

N 2nd component 4 2 3 2 4 2 

We used the size of information cascades to characterize the communication dynamics taking place 

in the underlying network of followers (what we call the topological, more stable structure). Following 

previous work [9,33], we operationalize cascades assuming that activity that follows within short time 

periods is part of the same chain reaction. When a user sends a message at time t, all their followers are 

exposed to the information; if a little while after that, at time t + ∆t, some of these followers decide to 

post a message as well, they are counted as part of the same cascade; so do the followers of the 
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followers that post at t + 2∆t, and so on. The parameter ∆ regulates the width of the time window used 

to count messages that are part of the same cascade. The final size of a cascade can then be measured 

as the sum of all users that send a message (we call these users “active spreaders”), or as the total 

number of users that are exposed to the messages, whether or not they send a message themselves  

(we call these users “listeners”). This operationalization is based on the notion that time-constrained 

activity (i.e., activity that takes place within short time windows) is correlated and indicative of a chain 

reaction triggered by the same stimuli. The key notion is not that the same bit of information is being 

diffused, but rather that information about the same topic flows through the network; in our case, the 

topic are the political protests. 

Figure 1. (a) Diffusion curve of protest activity for both events showing the normalized 

cumulative fraction of users sending at least one message at a given day.  

(b) Complementary cumulated (CCP) degree distribution for the dynamic network 

constructed using mentions and re-tweets between users. (c) Complementary cumulated k-

core distribution for the dynamic network. 

 

Figure 2 shows the distribution of cascade sizes both for active spreaders (panel a) and listeners 

(panel b), with the parameter ∆ set for 1 h (for the protest months) and for 1 day (for the intervening 

period). The figures show that information cascades were, for the most part, larger in 2011, although 

the few cases that grew extremely large reached a higher number of people in 2012 (not surprisingly, 

since the network is also larger). 

Panels (c) and (d) show the association of average cascade size with the centrality of users that 

started them, as measured by degree and k-core, respectively. In both cases, there is a clear association 

between network centrality and reach: more central users trigger, on average, cascades that activate a 

larger number of people; for users with similar centrality, however, cascades were larger in 2011 than 

in 2012—at this level of aggregation, activity in 2012 resembles more the dormant, intermediate 

period separating the two protests. 
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Figure 2. (a) Complementary cumulative probability distribution of cascade sizes for 

spreaders. (b) Complementary cumulative probability distribution of cascade sizes for listeners. 

(c) Correlation between degree centrality of the initial seed triggering the cascade and its 

final size comprising all nodes reached, rescaled by the network size (topological network). 

(d) Correlation between k-core of the seed node and the final cascade size rescaled by the 

network size (topological network). 

 

4. Changes in Network Composition and Visibility in Information Flow 

The analyses above suggest that, compared to 2011, the network in 2012 was significantly larger 

and with a higher number of highly connected users at its core, but not necessarily as successful in 

terms of triggering large chains of information diffusion. During the year that separates the two 

observations, the network changed its composition significantly: many users that were active in 2011 

disappear from the 2012 sample; even more users joined the communication exchange in 2012; and of 

those staying in the network, some changed their structural position. Figure 3 summarizes these 

differences. About 7% of the users we capture in our sample discontinued their engagement from 2011 

to 2012, and about 41% joined anew in 2012; only about 8% of all users captured by the samples 

appear in the three observation periods. As panel (b) suggests, the network position of these users 

changes substantially from year to year, especially in the network of explicit protest communication. 

Following previous work [8], we distinguish four types of users on the basis of their position in the 

networks. Our goal with this classification is to identify users who might not be very central in  

the underlying topology of the Twitter network but who have high visibility in the more dynamic, 

protest-specific stream of information. This is similar to the aims of related work (for instance, [34]); 

the difference is that our classification emphasizes the relative position of users as they distribute along 

two axes: inverse audience size (as measured by the follower network, in particular, the ratio of users 

being followed over the number of followers; this helps identify the outliers in the long tail of the 

indegree distribution who also have asymmetrical networks, that is, a low number of reciprocated 

connections); and visibility in the flow of protest-related information (as measured by the dynamic 
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network of mentions and RTs, that is, the ratio of mentions or RTs received over the number of 

mentions or RTs sent). This later measure is about how visibility is allocated; the former is about the 

broadcasting potential of users. 

Figure 3. (a) Changes in the composition of the communication network, showing the 

percentages of users in different categories according to their presence in the different 

periods under consideration. (b) Correlation of centrality measures (degree) of users 

present in 2011 and 2012 for the topological network (top) and the dynamic network 

(bottom). Hexagons bin data points, with darker colour indicating more users in that area 

of the scatterplot. 

 

Users located in quadrant 2 of the upper plots of Figure 4, for instance, are not outstanding in terms 

of relative audience size and how they compare to the vast majority of users; but they are outstanding 

in terms of visibility. We label these users “hidden influential” to distinguish them from users who are 

very visible in this stream of information but also very central in the overall Twitter network—these 

are the users in quadrant 1, labeled “influential” because of their relatively larger audiences. Users in 

quadrants 3 and 4 are labeled “broadcasters” and “common users”, respectively: they share a relatively 

lower visibility in protest communication, but those in the former category have a larger number of 

followers, relative to the users the follow back. What the plots reveal is that the association between 

relative audience size and visibility is stronger in 2012 than in 2011, with more outliers that accumulate 

most of the mentions and the largest audiences. This falls in line with the increasing centrality in the 

degree distribution discussed above. 

The networks in the lower panels of Figure 4 capture the dynamic aspect of the distribution of users 

in the four categories. These networks highlight the allocation of visibility across groups, that is, they 

identify which users are more likely to direct attention at other users with their mentions and RTs. 

Node sizes are proportional to the number of users classified in each group (over the total for each 

period), and the width of links is proportional to the number of messages coming out of each category 

directed to users in the other three categories (again, percentages are calculated over the total number 

of messages for each period). Compared to 2011, there is a visible increase in the allocation of 

visibility towards “influential” users (quadrant 1) and a reduction towards “hidden influential” (quadrant 2). 
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In the intermediate period, there is a slight decentralization in how visibility is distributed, although a 

minority of users is still at the center of this flow of targeted messages. 

Figure 4. Upper panels: Distribution of users in the three observation periods according to 

the relation between their inverse audience size, measured by the ratio of users being 

followed over the number of followers, and their protest visibility, defined as the ratio of mentions 

or RTs received over the number of mentions or RTs sent. Bottom panels: allocation of 

visibility across the four categories in the different periods. Nodes sizes are proportional to 

the number of users in the corresponding group, and the width of the links between them is 

proportional to the number of mentions and RTs across groups. 

 

Of all the users that remain active in both years, 34% migrate across categories. Figure 5 panel (a) 

shows that a quarter of all these migrating users go from category 4 (“common users”) to category 2 

(“hidden influentials”); approximately the same amount of users are downgraded in the opposite 

direction. The second largest stream of migrating users bridges categories 4 and 3: 16% go from being 

“common” in 2011 to becoming “broadcasters” in 2012; not many users go in the other direction  

(only 4%). Overall, these patterns suggest that the dynamic network of communication is more volatile 

than the underlying topological structure, and that path dependence is less consequential for its 

evolution: gaining visibility in the flow of protest related information is no guarantee that this visibility 

will remain constant over time; however, gaining followers, and enlarging audiences, translates into a 

more durable shift in the network. 
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Figure 5. (a) Migration of users across categories from 2011 to 2012, indicated by a 

directed link between groups. (b) Standardized residuals resulting from the comparison of 

observed frequencies and expected frequencies, which can be interpreted as z-scores 

measuring the distance from no difference; the values correspond to movement from rows 

to columns (that is, movements from the classification in 2011 to the classification in 2012). 

 

A comparison of observed and expected frequencies for all users present in both years reveals  

that differences across categories are statistically significant (p < 0.001, according to a resampling 

method [35]). Figure 5 panel (b) shows the standardized residuals that result from comparing observed 

frequencies and those expected under the null hypothesis of no difference; these residuals can be 

interpreted as z-scores that help identify the number of standard deviations above or below the 

expected counts. The colored cells indicate that more users remain in the same category from one year 

to the next than a random distribution of frequencies would allow. The other cells suggest that the 

categories that depart the most from expected counts are categories 1 and 4, followed by categories  

3 and 4: migration across these groups is comparatively smaller than across other groups. The table 

also reveals that a higher number of users than expected move vertically in the network, at least across 

groups 1 and 3 (mobility across groups 2 and 4 does not depart significantly from what would be 

expected by random chance, although it does from 4 to 2). This reinforces the conclusion that volatility 

is higher in the network of protest-related communication than in the underlying channels allowing 

that communication to happen. It is easier to rise and fall in the visibility around a particular topic  

(in this case, political protest) than in the centrality of a network that channels communication in many 

different domains (with politics being just one of the many). The minority of influential users in 

category 1 arises as the exception to this volatility: they constitute the more stable part of the network, 

both in terms of topological position and visibility. 

These changes in the flow of information and network composition relate to global diffusion 

dynamics. As suggested above, the acceleration rate of the diffusion curve is slower in 2012, and the 

average size of cascades is smaller; compared to the previous year, the overall network structure in 

2012 was also more hierarchical and centralized. Figure 6 tries to identify the origin of this shift 

towards increased centralization; it displays the Gini coefficient for each category of users as a 

measure of inequality in the distribution of messages sent and received, for the protests in 2011 and 

2012, and for the intervening period. Again, “messages sent” refers here to the number of mentions 

and RTs that users employ (that is, how prolific they are in assigning visibility to other users); and 

“messages received” refers to the how visible users are according to other users (measured as the 

number of mentions and RTs they get); the assumption is that both RTs and mentions are equally 
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important as “votes” that count towards greater visibility. The diagonal line acts as the benchmark of 

perfect equality, and a lower coefficient indicates a more equal distribution. 

What Figure 6 shows is that the allocation and distribution of visibility grew more concentrated for 

all categories of users over time, but especially so for those classified as “hidden influential”. After the 

burst of activity that accompanied the emergence of the protests in 2011, activity entered a dormant 

phase where a small minority of users arise as the active senders and recipients of protest information; 

but when activity built up again to celebrate the first anniversary in 2012, the distribution of activity 

remained closer to the dormant period than to the original protests. Only visibility amongst “common 

users” gets closer to the 2011 levels, although it is still substantially more unequal. This means that the 

bottlenecks that already existed in 2011 become narrower in 2012, which could partially explain why 

cascades grew less, on average. 

Figure 6. Concentration of mentions and RTs received and sent by category of user. The 

inequality in the distribution of visibility (i.e., in how it is received and allocated) is 

measured by the Gini coefficient; the diagonal line is shown as a benchmark of perfect equality. 

 

The bottlenecks, in fact, narrow down in several parts of the network. “Influentials” and “broadcasters” 

(who are not as visible but also have relatively large audiences and, as a consequence, are in a position 

to trigger more chain reactions) are less prone to allocate visibility in 2012—that is, fewer of them help 

direct attention to other active users. To the extent that they are the target of most messages in the 

network, the ratio of visibility received/redistributed becomes inevitably larger, which translates into 

lost information because these users do not continue the chain reaction as often as they could, as 

measured by the number of inputs they receive; this exacerbates a phenomenon already identified in 

the 2011 protests [5]. Figure 6 reveals that in 2012 there were more bottlenecks both at the source and 

at the destination of visibility allocation. This increasing concentration in the dynamics of visibility 

might be consistent with a preferential attachment mechanism [36], but the migration patterns 
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identified in Figure 5 suggest that some additional mechanism, related to the volatility in the network, 

might also drive changes in communication patterns. 

5. Discussion 

The two examples of information diffusion analyzed in this paper relate to successful instances of 

mass political mobilization: we track communication activity that run in parallel to the build-up and 

explosion of massive protests. However, the mobilizations in 2012 were, by most accounts, less 

successful than in 2011, if only because they couldn’t capitalize on the surprise factor and the passions 

that characterize the emergence of a political movement [28,29]. Although it would be naïve—and a 

stretch of facts—to imply that the different development of these two protests can be attributed to 

different uses of social media and online communication, they still offer a good case study to analyze 

how networks behave when diffusion follows less successful paths. Less people might have been 

interested in the protests in 2012, and consequently created less demand for information; and this 

might explain the lower activity levels amongst online broadcasters. But these dynamics still leave an 

imprint on networks and the way in which they mediate information diffusion. We have offered some 

evidence illustrating how these dynamics are manifested. 

Our analyses reveal that a decrease in cascades sizes is associated with increased network centrality, 

both in the underlying network of connections and the more dynamic network of communication. 

Changes take place in the degree distributions but also in the composition of the networks: less than 

10% of the users captured in 2011 re-appear in 2012, and amongst those who reappear, many change 

their structural position; volatility is particularly consequential in the communication network where 

visibility is distributed: users who were very visible in the stream of protest-related information cease 

being so one year later; the number of users sending the bulk of messages and therefore assigning 

visibility becomes also smaller, and activity more concentrated. 

These changes are necessarily related to agency, that is, to the fact that nodes in this network  

are people who decide whether to keep on being active in the exchange of communication  

(political activity is, in this respect, particularly eroding). But they are also related to the interaction 

effects that arise from the co-evolution of networks that change at different speeds; in this case, the 

relatively stable structure of communication channels (the following/follower network), and the more 

fluid network of actual communication exchange (based on mentions and RTs). The increasing 

centrality in both networks creates more bottlenecks that generate capacity overload; this could explain 

why cascades are smaller and the diffusion curve slower in 2012 compared to 2011. These empirical 

observations are consistent with previous theoretical models that highlight the detrimental role of hubs 

when it comes to facilitating diffusion. The changes in composition we identify, however, make 

networks evolve in ways that are not predicted by traditional mechanisms like preferential attachment: 

many nodes disappear, and many downgrade from central to peripheral positions. Networks in the  

real world change composition with different speed and at different rates, and this impacts their 

performance in ways that we are only beginning to understand. 

In spite of these local changes, on the aggregate level there is a clear tendency towards increased 

centralization. As indicated above, we cannot be certain that these changes are reflecting a genuine 

trend towards more hierarchical structures or are instead a partial artefact of the sampling procedure, 
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over which we do not have full control. However, even if we restrict the analysis to the users that 

appear in both observations (disregarding those who leave the network and the new additions), we still 

observe increasing levels of concentration; we also observe uneven migrating patterns: all users tend to 

focus their attention on a narrower set of other users, but not all of them are as likely to move from one 

part of the network to another. These patterns of change are intriguing and not likely to result from the 

sampling process; they reveal local changes in how the network of communication allocates visibility 

that run in parallel, but not necessarily in the same direction, as changes in the underlying structure of 

more stable connections. 

6. Conclusions  

Communication networks have been at the centre of diffusion studies for decades [37,38]; but there 

are still many gaps in our understanding of network effects because they mediate diffusion in complex 

and counter-intuitive ways—especially now that technology allows networks to grow to unprecedented 

scale and reach [1]. Theoretical models help understand the mechanisms that shape dynamics and 

delimit the possibility space within which large cascades emerge; but empirical observations are still 

necessary to get a sense of how these dynamics operate in the real world, and how empirical instances 

of diffusion fit within that theoretical space. We have provided one such empirical approach, 

comparing the networks and dynamics associated to the diffusion of information over the period of one 

year, resulting in two large-scale political mobilizations. We hope more empirical studies will follow 

to determine if the patterns we identify also characterize diffusion in other contexts. 
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Appendix 

Table A1. List of 70 hashtags used in the API queries ranked by frequency of use. 

Rank Hashtag Rank Hashtag 

1 # acampadasol 36 # globalrevolution 
2 # spanishrevolution 37 # acampadazaragoza 
3 # nolesvotes 38 # acampadaparis 
4 # 15 m  39 # takethesquare 
5 # nonosvamos  40 # periodismoeticoya 
6 # democraciarealya 41 # hastalasgenerales 
7 # notenemosmiedo 42 # irishrevolution 
8 # yeswecamp 43 # democraziarealeora 
9 # 15mani 44 # democraciaparticipativa 

10 # acampadasevilla 45 # 15mpamplona 
11 # globalcamp 46 # barcelonarealya 
12 # acampadavalencia 47 # dry_jaen 
13 # acampadagranada 48 # usarevolution 
14 # acampadamalaga 49 # dry_caceres 
15 # acampadazgz 50 # dryasturies 
16 # consensodeminimos 51 # democraziareale 
17 # italianrevolution 52 # democratiereelle 
18 # estonosepara 53 # dry_cadiz 
19 # acampadaalicante 54 # dry_toledo 
20 # tomalacalle 55 # acampadasvlla 
21 # europeanrevolution 56 # drybizkaia 
22 # acampadapamplona 57 # dry_santander 
23 # worldrevolution 58 # 15mayovalencia 
24 # acampadapalma 59 # dry_pisa 
25 # tomalaplaza 60 # dryginebra 
26 # acampadas 61 # DRY_Algeciras 
27 # 15mpasalo 62 # demorealyaib 
28 # cabemostodas 63 # DRYGipuzkoa 
29 # nonosmovemos 64 # DryValladolid 
30 # 3puntosbasicos 65 # ItalRevolution 
31 # frenchrevolution 66 # BolognaDRY 
32 # estonoseacaba 67 # DRY_Pavia 
33 # acampadatoledo 68 # DRY_Almeria 
34 # nonosrepresentan 69 # 15mayoCordoba 
35 # acampadalondres 70 # ciudades-dry 
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