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Abstract: In the literature, Markowitz’s mean-variance model and its variants have been 

shown to yield portfolios that put excessive weights on only a few assets. Many diversity 

constraints were proposed and added to these models to avoid such overly concentrated 

portfolios. However, since these diversity constraints are formulated differently, it becomes 

difficult to compare them and study their relationships. This paper proposes a canonical 

form for the commonly used diversity constraints in the literature, and shows how to 

transform these diversity constraints into this canonical form. Furthermore, this paper 

compares these diversity constraints (in the canonical form with the same upper bound) on 

their ability to shrink the feasible region of the portfolio optimization problem. The results 

show a subset relation among their feasible regions. 
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1. Introduction 

Portfolio optimization deals with the problem of allocating one’s wealth across a number of assets to 

maximize return and control risk. This problem was first studied in the seminal paper of Markowitz [1], 

who proposed a mathematical formulation of the problem, and derived a mean-variance model to yield 

portfolios that either maximize the portfolio expected return for a given level of risk, or minimize the 

portfolio risk for a given expected return. Since then, this problem continues to receive much 

consideration and attention from both academics and practitioners in the financial industry, and many 

variants of the mean-variance model (e.g., minimum-variance model, mean-variance-skewness model, etc.) 

have been proposed. Please refer to [2–4] for the variants of the mean-variance model. 
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Markowitz’s mean-variance model uses the expected return of each asset and the covariance 

between the returns of any two assets as input. In practice, these input values are hard to estimate with 

high accuracy, and the estimations based on historical data might not be appropriate for future data. 

Furthermore, the portfolios derived from the mean-variance model are very sensitive to these input 

values [5,6]. Consequently, mean-variance optimized portfolios often put excessive weights on assets 

with large expected returns [6,7], regardless of possible estimation errors in these input values. Such 

overly concentrated portfolios, which also occur in the variants of the mean-variance model [3],  

go against the idea of diversification. DeMiguel et al. compared several variants of the mean-variance 

model on several datasets, and showed that none of these models consistently beat the naïve  

equally-weighted portfolio, out of sample [4]. 

To reduce the impact of estimation error and avoid overly concentrated portfolios, several diversity 

constraints have been introduced in the literature. The weight upper/lower bound constraint [8] simply 

imposes an upper/lower bound on assets’ weights in a portfolio. The Lp-norm constraint [9] and the 

entropy constraint [10] impose an upper bound on the Lp-norm and a lower bound on the entropy, of 

the assets’ weights in a portfolio, respectively. Empirical studies [8,9,11] show the weight upper bound 

constraint or the Lp-norm constraint improves portfolio efficiency out of sample. Using the entropy of 

the assets’ weights as one of the objective functions in a multi-objective setting also improves portfolio 

efficiency out of sample [2]. 

Even though these diversity constraints improve the out-of-sample performance of the portfolio 

optimization problem, their relation remains unclear. To the best of our knowledge, no work compares 

these diversity constraints on their abilities to shrink the feasible region of the portfolio optimization 

problem. One reason hindering such a comparison is due to the differences among these diversity 

constraints. Notably, some diversity constraints are in the form of an upper bound, but others are in the 

form of a lower bound. Furthermore, the ranges of their respective bounds are also different. 

Consequently, it is difficult to compare them systematically. 

The objective of this study is to provide a systematic way to compare the performance of these 

diversity constraints. To achieve this goal, we first propose a canonical form for these diversity 

constraints, and show how to transform these diversity constraints into the canonical form. With the 

canonical form, all of these diversity constraints are in the form of an upper-bound constraint, and their 

respective bounds all fall into the same range. On the lowest end of the range of the bounds, these 

diversity constraints all restrict the feasible region of the portfolio optimization problem to exactly one 

point corresponding to the equally-weighted portfolio. On the highest end of the range of the bounds, 

these diversity constraints all become redundant. By using the same value for the upper bound of these 

diversity constraints in the canonical form, a systematical comparison among them can be achieved. 

Although these diversity constraints diminish the feasible region of the portfolio optimization problem 

differently, a subset relation among their feasible regions can be derived for these diversity constraints 

in the canonical form under the same upper-bound value. 

The rest of this paper is organized as follows: Section 2 reviews the commonly used diversity 

constraints in the literature, including the weight upper/lower bound constraint, the Lp-norm constraint 

and the entropy constraint. Section 3 proposes the canonical form for these diversity constraints and 

shows how to transform them into the canonical form. Section 4 discusses the subset relation among 
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these diversity constraints. Section 5 studies how the feasible region of the portfolio optimization 

problem shrinks as these diversity constraints are applied. Section 6 concludes this paper. 

2. Review of Diversity Constraints 

Diversifying a portfolio avoids putting too much weight on only a few assets. This has the potential 

of reducing risk of the portfolio. Adding an upper-bound constraint on assets’ weights is probably the 

most common and simplest way to control the diversity of a portfolio. In practice, institutional 

investors are often restricted by law to enforce such a weight upper-bound constraint [12]. Diversifying 

a portfolio can also be achieved by imposing a lower-bound constraint on assets’ weights or by 

restricting the Lp-norm or the entropy of the assets’ weights of a portfolio. This section reviews these 

commonly used diversity constraints in the literature. 

For ease of exposition, this study considers the following base form of the portfolio optimization 

problem where short selling is prohibited. 

Problem 1. Given the expected returns of n risky assets , , … ,  and their  
variance-covariance matrix   , find a portfolio , , … ,  such that the objective 

function  is maximized, subject to the following two constraints: 

0 1, for i = 1 to n (1) 

1 (2)

The constraint in Equation (1) prohibits short selling by restricting to non-negative weights. Notably, 

a non-negative weight is required for calculating the entropy of , to be defined shortly in Section 2.4. 

The constraint in Equation (2) enforces that all wealth is invested. The objective function  often 

involves maximizing the portfolio’s return and/or minimizing the portfolio’s risk. For example, 

Markowitz’s mean-variance model uses  and   to measure the expected return and the risk of 

a portfolio , respectively [1], and therefore,  can be defined as 


 or   for 

finding a comprise between return and risk. 

2.1. Weight Upper-Bound Constraint  

The weight upper-bound constraint directly avoids the overly concentrated portfolios by adding an 

upper bound U  on the weight of each asset in a portfolio. It is expressed as follows: 

max U  (3) 

Notably, max  returns the maximum component of . With the weight upper-bound constraint, 

smaller U  restricts the feasible region of Problem 1 only to the more diverse portfolios. On one 

extreme, if U 	 	 , then the feasible region of Problem 1 contains only one portfolio, i.e., the  

equally-weighted portfolio. On the other extreme, if U  = 1, constraint in Equation (3) becomes 

redundant due to constraint in Equation (1). Therefore, the range of U  is , 1 . 
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2.2. Weight Lower-Bound Constraint 

Imposing a lower bound on the assets’ weights can also avoid overly concentrated portfolios. The 

weight lower-bound constraint is expressed as follows: 

min L  (4) 

Notably, min  returns the minimum component of . With the weight lower-bound constraint, 

larger L  restricts the feasible region of Problem 1 only to more diverse portfolios. On one extreme, if 

L , then the feasible region of Problem 1 contains only one portfolio, i.e., the equally-weighted 

portfolio. On the other extreme, if L =0, constraint in Equation (4) becomes redundant due to 

constraint in Equation (1). Therefore, the range of L  is 0, . 

Lemma 1. Consider Problem 1. Given L ∈ 0, , if min L , then max 1 1 L . 

Proof. Since min 	 L , the upper bound of the weights occurs when n-1 components of  all 

equal L  and the remaining component of  equals 1 1 L L . Thus, 	
max 1 1 L .                    □ 

Lemma 1 shows that enforcing a weight lower-bound constraint also imposes a weight upper-bound 

constraint, which in turn avoids the overly concentrated portfolios. It can be used to check for 

redundant weight upper-bound constraint when both upper bound and lower bound on assets’ weights 

are applied. For example, consider Problem 1 subject to both constraints in Equations (3) and (4) with 

L 0.01, U 0.91 and 11. By Lemma 1, min 0.01 implies max 0.9, and thus 

max 0.91 is redundant. 

2.3. Lp-norm Constraint 

Given 1, the Lp-norm constraint adds an upper bound U  on the Lp-norm N  of a portfolio , 

as defined below: 

N | | U  (5) 

In the least diverse scenario wherein only one component of  is 1 and the rest of the components 

of  are 0, N  reaches its maximum 1. In the most diverse scenario that  for all i, N  

reaches its minimum . Therefore, the range of U  is , 1 . With the Lp-norm 

constraint, smaller U  restricts the feasible region of Problem 1 to more diverse portfolios. 

Lemma 2 shows that enforcing an Lp-norm constraint also imposes a weight upper-bound constraint. 

Therefore, similar to Lemma 1, Lemma 2 can be used to check for redundant weight upper-bound 

constraint when both the weight upper-bound constraint and the Lp-norm constraint are applied. 

Lemma 2. Consider Problem 1. Given U ∈ , 1  and 1 , if N U , then  

max U . 

Proof. Prove by contradiction. Assume that  has a component U . Then, 1  yields 
	 U . Since 0  for all i, ∑ 0 . Then, N ∑ 	 	U , which 

contradicts to N U .                   □ 
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DeMiguel et al. proposed the A-norm constraint as , where ∈ ℝ ∗  is a positive 

definite matrix [9]. Even though the A-norm constraint lets the investors incorporate their preference 

about the assets into the matrix , the matrix  can be hard to decide. Therefore, the identity matrix is 

often used for the matrix , and the A-norm becomes the Lp-norm with 2. 

2.4. Entropy Constraint 

The entropy constraint adds a lower bound L  on the entropy E  of a portfolio , as defined 

below [10]: 

E ln L  (6) 

In the least diverse scenario that only one component of w is 1 and the rest of the components of w 

are 0, E  reaches its minimum −1	ln1=0. In the most diverse scenario that  for all i, E  

reaches its maximum ln ln . Thus, the range of L  is 0, ln . Since a larger E  

indicates better diversity, the entropy constraint uses a lower bound L  within the interval 0, ln  to 

control the diversity of w from being too low.  

Lemma 3. Consider Problem 1. Given U ∈ , 1 , if max U , then E 	 ln U . 

Proof. The minimum of E  occurs at the least diverse portfolio. Since U ∈ , 1 , in the least 

diverse portfolio,  assets each has the maximum weight U , one asset has the remaining weight  

1 − U , and the rest of the assets have weight zero. Then, 0 1 U U 1  

yields ln 1 U lnU ln 1 0. Consequently, the lower bound of E  can be derived 

as follows: 

E
1
U

U lnU 1
1
U

U ln 1
1
U

U

1
U

U lnU 1
1
U

U ln U ln U  

□ 

Lemma 3 shows that using a weight upper-bound constraint can impose an entropy constraint. 

Notably, the converse of Lemma 3 does not hold. That is, E 	 ln U  for some U ∈ , 1  

does not imply U  for all i. For example, if , , ,  and U , then 	

E ln 12 ln U  but w1 = U . 

3. Canonical Form of Diversity Constraints 

Tightening the bounds for the four diversity constraints described in Section 2 all shrink the feasible 

region of Problem 1 gradually to the equally-weighted portfolio. However, the four diversity 

constraints shrink the feasible region differently, and the relation among them remains unclear. 

Furthermore, determining the bound for the weight upper/lower bound constraint may be intuitive for 

the investors, but this is not the case for the Lp-norm constraint and the entropy constraint. To facilitate 



Entropy 2013, 15 4612 

 

 

the comparison among the four diversity constraints, this section proposes the canonical form of a 

diversity constraint as follows: 

 (7) 

where  is a scalar function of  for the diversity constraint, and the upper bound  is confined to 

the interval , 1 . 

In the canonical form, all of these diversity constraints are in the form of an upper-bound constraint, 

and the ranges of their respective bounds are all , 1 . Consequently, these diversity constraints can be 

compared under the same upper bound. Obviously, the weight upper-bound constraint is already in the 

canonical form by simply letting max  and U . The rest of this section shows how to 

transform the remaining three diversity constraints into this canonical form.  

3.1. Transforming Weight Lower-Bound Constraint 

The weight lower-bound constraint, defined in Equation (4), can be transformed into the following 

upper-bound constraint: 

L 1 1 min U  (8) 

Lemma 4 shows that constraint in Equation (8) with U 1 1 L  is equivalent to the 

weight lower-bound constraint in Equation (4). 

Lemma 4. Consider Problem 1. Given L ∈ 0, , L U 1 1 L  iff min 	 L . 

Proof. Since 1 0, min 	 L 0 iff L 1 1 min 	 1 1 L U . 

□ 

Since the range for the lower bound L  in Equation (4) is 0, , the range for the upper bound U  

in Equation (8) is , 1 . Transforming the weight lower-bound constraint in Equation (4) into the 

canonical form can be done by setting L  and U 1 1 L . 

3.2. Transforming Lp-norm Constraint 

The range for the upper bound U  in the Lp-norm Equation (5) is the interval , 1 , which varies 

with the value of p. The Lp-norm constraint can be transformed into Equation (9) such that the range of 

the upper bound becomes independent of the value of p: 

N N | | U  (9) 

Since the range of U  in Equation (5) is the interval , 1  and N  is the (p−1)-root of N , 

the range of U  in Equation (9) is , 1 . Furthermore, Equation (9) with U  U  is equivalent 

to Equation (5). Transforming the Lp-norm constraint in Equation (5) into the canonical form can be 

done by setting N  and U U . 

Similar to Lemma 2, Lemma 5 shows that using constraint in Equation (9) also imposes a weight 

upper-bound constraint. 
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Lemma 5. Consider Problem 1. Given U ∈ , 1  and 1 , if N U , then  

max U . 

Proof. Proof by contradiction. Assume that  has a component U . Then, 1 yields 

	 U . Since 0  for all i, ∑ 0 . Then, N ∑ 	

	 U 	 	U , which contradicts to N U .               □ 

By Lemma 5, Equation (9) with U 1 is redundant since it only restricts all weights to less than 

or equal to 1. Lemma 6 considers the case of U 1. 

Lemma 6. Consider Problem 1. Given U ∈ , 1  and 1 , if N U , then 	

max U . 

Proof. Proof by contradiction. Assume that  has a component U . Then, 1  and 

U ∈ , 1  yield 	 U  and U 1 . Since U 1  and ∑ 1 , 

there exists some  such that 0 . Consequently, ∑ 0	 . Then,  

N ∑ U , which contradicts to N U .            □ 

Conversely, like Lemma 3, enforcing a weight upper-bound constraint can also impose an upper 

bound on the Lp-norm of , as shown in Lemma 7. 

Lemma 7. Consider Problem 1. Given U ∈ , 1 , if max U , then N U . 

Proof. The proof is similar to that of Lemma 3. The maximum of N  occurs at the least diverse 

portfolio. Since U ∈ , 1  and max U , in the least diverse portfolio,  assets each has the 

maximum weight U , one asset has the remaining weight 1 − U , and the rest of the assets have 

weight zero. Obviously, 0 1 U . Finally, the upper bound of N  can be calculated 

as follows: 

N
1
U

U 1
1
U

U
1
U

U 1
1
U

U U  

U U   

□ 

3.3. Transforming Entropy Constraint 

The entropy constraint, defined in Equation (6), can be transformed into an upper-bound constraint 

as follows: 

F U  (10) 

According to Equation (6), 0 E ln . Consequently, 0 E ln  and then 

1 F  hold. Thus, the range of the upper bound U  is the interval 

, 1 . Lemma 8 shows that Equation (10) with U  is equivalent to Equation (6). Therefore, 
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transforming the entropy constraint in Equation (6) into the canonical form can be done by setting 

F  and U . 

Lemma 8. Consider Problem 1. Given U ∈ , 1 , F U  iff E 	 L . 

Proof. F U  
⇔ ln E ln L  

⇔ E 	L                 □ 

4. Subset Relation among Feasible Regions  

This section studies the subset relation among the feasible region of Problem 1 subject to a diversity 

constraint in the canonical form. Specifically, the feasible regions of the following problems are studied: 

• Problem 2: Problem 1 subject to L 1 1 min . 
• Problem 3: Problem 1 subject to max . 

• Problem 4: Problem 1 subject to N ∑ | | 	  and 1. 

• Problem 5: Problem 1 subject to F . 

Since these diversity constraints in the canonical form all have an upper bound within the  

interval , 1 , we can compare their feasible regions under the same upper bound. Corollary 1 shows 

the subset relation between the feasible regions of Problems 2 and 3, and Corollary 2 shows the subset 

relation between the feasible regions of Problems 3 and 4. 

Corollary 1. Given ∈ , 1 , the feasible region of Problem 2 is a subset of the feasible region of 

Problem 3. 

Proof. See the Appendix.                    □ 

Corollary 2. Given ∈ , 1 , the feasible region of Problem 3 is a subset of the feasible region of 

Problem 4. 

Proof. See the Appendix.                    □ 

For the Lp-norm constraint, the cases of 2 and 3 are commonly used. Thus, we consider the 

following two special cases of Problem 4, and show the subset relation between their feasible regions 

using Corollary 3. 

• Problem 4a: Problem 1 subject to N ∑ | | 	 . 

• Problem 4b: Problem 1 subject to N ∑ | | 	 . 

Corollary 3. Given ∈ , 1 , the feasible region of Problem 4a is a subset of the feasible region of 

Problem 4b. 

Proof. See the Appendix.                    □ 

Finally, Corollary 4 shows the subset relation between the feasible regions of Problems 3 and 5. 

Corollary 4. Given ∈ , 1 , the feasible region of Problem 3 is a subset of the feasible region of 

Problem 5. 

Proof. See the Appendix.                    □ 
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To sum up, under the same upper bound, the weight lower-bound constraint in Equation (8) and the 

weight upper-bound constraint in Equation (3) are the strictest and the second strictest at shrinking the 

feasible region of Problem 1, respectively. The Lp-norm constraint in Equation (9) is stricter for larger . 

Notably, as  approaches its minimum 1, the Lp-norm constraint in Equation (9) is close to the entropy 

constraint in Equation (10), according to the experimental results in Section 5. The entropy constraint 

in Equation (10) is also less strict at shrinking the feasible region. 

5. Shrinkage of Feasible Regions 

5.1. Measurement 

This section studies how a diversity constraint (in the canonical form) shrinks the feasible region of 

Problem 1 as its upper bound changes. We use the feasible ratio instead of the size of the feasible 

region as our measurement to make the measurement unit less, as defined below.  

Given a diversity constraint, the feasible ratio of the diversity constraint is defined as the size of the 

feasible region of Problem 1 subject to the diversity constraint divided by the size of the feasible 

region of Problem 1 without the diversity constraint. Thus, the range of feasible ratio is between 0 and 1, 

and a diversity constraint with a larger feasible ratio is less strict at shrinking the feasible region. 

5.2. Estimation Approach 

For Problem 1 involving only two assets (i.e., n = 2) subject to a diversity constraint, the size of the 

feasible region usually can be calculated directly. However, as n gets larger, the size of the feasible 

region becomes hard to derive. Here, we adopt a uniform sampling approach to generate a sample set 

of points in the feasible region of Problem 1, and then use the sample set to estimate the feasible ratio 

of a diversity constraint, as described below. 

This approach first generates an equally spaced hyper-grid in the (n−1)-dimensional subspace 

0,1 . Let the grid spacing be  for some integer m>2, and consequently there are 1  

crossover points in the hyper-grid. For each crossover point ( , , … , ) in the (n−1)-dimensional 

subspace, if ⋯ 1, then the point ( , , … , , ) is included in the sample 

set where 1 ⋯ . The total number of points in the sample set is used as an 

estimate of the size of the feasible region of Problem 1 without any diversity constraint. 

In this experiment, m = 100 is used to generate the equally spaced hyper-grid in the  

(n−1)-dimensional subspace 0,1  for n = 2 to 5. For each n, there are 101  crossover points in 

the hyper-grid. Table 1 shows the number of the crossover points that can be extended to the  

n-dimensional space and included into the sample set.  

Table 1. Number of points in the sample set for various n 

n 2 3 4 5 

# of points in the sample 101 5,151 176,845 4,596,100 

Then, functions max , L , N , N , N . , N . , N .  and F  are 

calculated for every point  in the sample set. Notably, for the Lp-norm constraint, we consider p = 3 
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and 2, since N  and N  are commonly used. We also calculate N . , N .  and 
N .  to study the behavior of N  as  approaches its limit 1. 

The number of points satisfying max U in the sample set is used as an estimate for the size of 

the feasible region of Problem 1 subject to the weight upper-bound constraint in Equation (3). 

Consequently, the feasible ratio of the diversity constraint max U can be calculated by dividing 

this number by the total number of points in the sample set. Similarly, this can be done for 

L , N , N , N . , N . , N .  and F  for their respective diversity constraints. 

In this experiment, we vary the upper bound  from 0 to 1 in step of 0.01. 

5.3. Experimental Results 

Figure 1 shows that the feasible ratio increases with the upper bound of a diversity constraint in the 

canonical form. For the weight lower-bound constraint in Equation (8), Figure 1a shows that, given the 

same upper bound, larger n could have a smaller feasible ratio. Also, as the upper bound gradually 

decreases from 1 to , the feasible ratio reduces quickly at first but slowly afterward (with the 

exception at n = 2, where the feasible ratio reduces at a constant rate). In contrast, for the rest of the 

diversity constraints, Figure 1b–f shows that, given the same upper bound, the feasible ratio is always 

larger for larger n. Also, as the upper bound gradually decreases from 1 to , the feasible ratio reduces 

slowly at first and quickly afterward (with the exception of the weight upper-bound constraint in 

Equation (3) at n = 2, where the feasible ratio reduces at a constant rate).  

Figure 2 compares how these diversity constraints affect the feasible ratio, where the horizontal axis 

is the upper bound in these diversity constraints, and the vertical axis is the feasible ratio. Given the 

same upper bound, the ordering of the feasible ratio is: entropy constraint in Equation (10) ≥ L1.1-norm 

constraint in Equation (9) ≥ L2-norm constraint in Equation (9) ≥ L3-norm constraint in Equation (9) ≥ 

weight upper-bound constraint in Equation (3) ≥ weight lower-bound constraint in Equation (8). When 

the upper bound is 1, the feasible ratio is 1 for all of these diversity constraints. When the upper bound 

is , , the feasible ratio approaches 0 for all of these diversity constraints since all of these diversity 

constraints shrink the feasible region to only one solution, i.e., the equally-weighted portfolio. Notably, 

when n = 2, the weight upper-bound constraint in Equation (3) is equivalent to the weight lower-bound 

constraint in Equation (8), as shown in Figure 2a. Also note that in Figure 2, the curve for the Lp-norm 

constraint gradually approaches the curve for the entropy constraint as p decreases from 3 to 1.1. The 

curves for L1.01-norm and L1.001-norm constraints are omitted in Figure 2 because they closely overlap 

with the curve for the entropy constraint. 
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Figure 1. Feasible ratio vs. upper bound for n = 2 to 5. 

 

Figure 2. Comparison of feasible ratio for various diversity constraints. 
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Figure 3. Distribution of the values of max , L , N , N , N .  and F  

in the feasible region of Problem 1 with n = 3. 

 

Figure 3 illustrates how these diversity constraints change the shape of the feasible region of 

Problem 1 with n = 3. The original feasible region of Problem 1 with n = 3 is the region enclosed by 

the largest triangle in each subfigure of Figure 3. Figure 3 shows how the values of 

max , L , N , N , N .  and F  vary within this feasible region, where different 

colors are used to indicate the values of these functions. Colors blue, green, red, cyan, magenta, yellow 

and black represent the intervals (0.3, 0.4], (0.4, 0.5], (0.5, 0.6], (0.6, 0.7], (0.7, 0.8], (0.8, 0.9] and 

(0.9, 1.0], respectively. 

Figure 3a shows that the weigh lower-bound constraint in Equation (8) results in a feasible region 

similar to the original feasible region, both in terms of shape and orientation. This property has the 

potential of gradually excluding the solutions along the border of the feasible region as the upper 

bound of the constraint decreases.  

Figure 3b shows that the weigh upper-bound constraint in Equation (3) results in a feasible region 

similar to the original feasible region in shape but in the opposite orientation. The property has the 

potential of gradually excluding the solutions near the corners of the feasible region as the upper bound 

of the constraint decreases.  

Figure 3c–e, respectively, shows that the L3-norm constraint, the L2-norm constraint and the  

L1.1-norm constraint result in a feasible region similar to those in Figure 3b, except that the shape of the 

feasible region becomes a squeezed circle for the L3-norm constraint, a circle for the L2-norm 

constraint, and a bloated circle for the L1.1-norm constraint, instead of a triangle in the weight  

upper-bound constraint. Thus, they all have the potential of gradually excluding the solutions near the 

corners of the feasible region as the upper bound of the constraint decreases. Given the same upper 
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bound, they all result in a smaller feasible region than the weight upper-bound constraint does. 

Furthermore, the feasible region of the L3-norm constraint is smaller than that of the L2-norm 

constraint, which in turn is smaller than that of the L1.1-norm constraint. 

Figure 3f shows that the entropy constraint in Equation (10) results in a feasible region similar to 

the original feasible region in orientation but different in shape. Similar to Figure 3a, constraint in 

Equation (10) has the potential of gradually excluding the solutions along the border of the feasible 

region as the upper bound of the constraint decreases. Given the same upper bound, constraint in 

Equation (10) results in a feasible region larger than any of the previous five constraints does. Notably, 

the feasible region of the L1.1-norm constraint is similar to that of constraint in Equation (10). 

6. Conclusions  

Diversity constraints are often used in the portfolio optimization problem to avoid overly 

concentrated portfolios. Previous work has shown that diversity constraints improve the performance 

of the portfolio optimization problem. However, no comparison among the diversity constraints for the 

portfolio optimization problem has been conducted. In this paper, we review the commonly-used 

diversity constraints in the literature, and show that their differences on both their forms (i.e., upper or 

lower bound) and the ranges of their bounds make it difficult to compare them systematically.  

A canonical form of the diversity constraints is proposed to resolve this problem. Using the canonical 

form, we can compare these diversity constraints at the same upper bound. Our analytical results show 

that the weight lower-bound constraint in Equation (8) is the strictest at enforcing diversity, and 

consequently results in the smallest feasible region. The weight upper-bound constraint in Equation (3) 

comes second. The Lp-norm constraint in Equation (9) offers different level of diversity control by 

using different values for p. Although the entropy constraint in Equation (10) appears to be the loosest 

at enforcing diversity among the diversity constraints analyzed in Section 5, the Lp-norm constraint 

with p approaching 1 shows similar results to that of the entropy constraint in Equation (10).  

By transforming these diversity constraints into the canonical form, we show that, these diversity 

constraints at the same upper bound exhibit a subset relation among their feasible regions. 

In addition to allowing systematic comparison among these diversity constraints, the canonical form 

also eases the task of choosing the upper-bound value for a diversity constraint. In practice, the 

meaning of the bound for the weight upper/lower bound constraint is easy to understand by the 

investors. However, without the canonical form, setting a threshold on either the entropy or the  

Lp-norm of the weighted vector w of a portfolio, as did in Equations (5) and (6), is less intuitive than 

setting a bound on the weights. With the canonical form, the upper bound of a diversity constraint is 

always restricted to the interval , 1 , which is the same as the range of the upper bound for the 

weight upper-bound constraint in Equation (3). Therefore, the investors can choose the value for the 

upper bound from the same range, regardless which diversity constraint is used. 
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Appendix. Proofs of Corollaries and Auxiliary Lemmas 

Lemma 9. If w w ,w ,… ,w  is a feasible solution of Problem 1, then max	 w L w . 

Proof. Without loss of generality, let max	 w w  and min	 w w . The constraint in Equation (8) 

yields max w L w w 1 n 1 w . Since min	 w w , we have n 1 w ∑ w  

and consequently w 1 n 1 w 1 ∑ w 0  by the constraint in Equation (2). 

Therefore, max	 w L w  holds.                   □ 

Proof of Corollary 1. Let w be a feasible solution of Problem 2, then L w U. Lemma 9 yields 

max	 w L w , and max	 w U. Thus, w must be a feasible solution of Problem 3.           □ 
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Lemma 10. If w w ,w ,… ,w  is a feasible solution of Problem 1, then N w max	 w  for 

any p 1. 

Proof. Without loss of generality, let max	 w w . Equations (9) and (2) yield 

N w max w  

w w  

	 w w w  

w w w  

By max	 w w , p 1  and constraint (1), w w  holds for all i . Consequently, 

N w max w 0 . Finally, max	 w 0 , N w 0  and p 1  yield N w

max	 w .                       □ 

Proof of Corollary 2. Let w be a feasible solution of Problem 3, then max w U. Lemma 10 yields 
N w max	 w  and consequently N w U for any p 1. Thus, w must be a feasible solution 

of Problem 4.                      □ 

Lemma 11. If w w ,w ,… ,w  is a feasible solution of Problem 1, then N w N w . 

Proof. Equations (9) and (2) yield 

N w ∑ w ∑ w ∑ ∑ w w , and 

N w ∑ w = ∑ w ∑ w ∑ w ∑ ∑ w w . 

Thus, N w N w ∑ ∑ w w w w  

∑ 2 w w w w w w ∑ w w 2w w w w

∑ w w w w 0 . Therefore, N w N w  holds. Since N w 0  and 

N w 0, N w N w  must hold.                  □ 

Proof of Corollary 3. Let w be a feasible solution of Problem 4a, then N w U. Lemma 11 yields 

N w N w , and consequently N w U. Thus, w must be a feasible solution of Problem 4b.  □ 

Lemma 12. If w w ,w ,… ,w  is a feasible solution of Problem 1, then F w max	 w . 
Proof. Without loss of generality, let max	 w w . Constraint (2) yields ln max	 w
∑ w ln w . Then, max	 w w yields ln w ln w  for all i . Thus, ln max	 w
∑ w ln w ln F w , and consequently, max	 w 	F w .              □ 

Proof of Corollary 4. Let w be a feasible solution of Problem 3, then max w U. Lemma 12 yields 

F w max	 w , and consequently F w U. Thus, w must be a feasible solution of Problem 5.     □ 
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