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Abstract: In a previous paper (C. Cafaro et al., 2012), we compared an uncorrelated
3D Gaussian statistical model to an uncorrelated 2D Gaussian statistical model obtained
from the former model by introducing a constraint that resembles the quantum mechanical
canonical minimum uncertainty relation. Analysis was completed by way of the information
geometry and the entropic dynamics of each system. This analysis revealed that the
chaoticity of the 2D Gaussian statistical model, quantified by means of the Information
Geometric Entropy (IGE), is softened or weakened with respect to the chaoticity of the 3D

Gaussian statistical model, due to the accessibility of more information. In this companion
work, we further constrain the system in the context of a correlation constraint among the
system’s micro-variables and show that the chaoticity is further weakened, but only locally.
Finally, the physicality of the constraints is briefly discussed, particularly in the context of
quantum entanglement.
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1. Introduction

In the paper by L. A. Caron et al. [1], classical chaos is compared with quantum chaos, and the
authors discuss why the former is weaker than the latter. It was suggested that the weakness of quantum
chaos may arise from quantum fluctuations that give rise to Heisenberg’s uncertainty relation. It is
also known that a quantum description of chaos is qualitatively different from a classical description
and that the latter cannot simply be considered an approximation of the former. In fact, the only
aspect of quantum theory that may be retained by a corresponding classical description is the canonical
Heisenberg’s uncertainty relation, specifically, a minimum spread of order ~n in the 2n-dimensional
phase space [2] (where ~ def

= h
2π

and h is Planck’s constant).
In a previous paper [3], we studied the information geometry and the information-constrained

dynamics of a 3D uncorrelated Gaussian statistical model and compared it with that of a 2D uncorrelated
Gaussian statistical model, which was obtained from the higher-dimensional model via introduction of
an additional information constraint that resembled the Heisenberg uncertainty relation. We showed that
the chaoticity (temporal complexity) of the 2D uncorrelated Gaussian statistical model (quantum-like
model), quantified by means of the Information Geometric Entropy (IGE) [4] and the Jacobi vector
field intensity, was softened relative to the chaoticity of the 3D uncorrelated Gaussian statistical model
(classical-like model). By softened, we mean any attenuation in the asymptotic temporal growth of the
indicators of chaoticity. It is worth noting that the statistical models in question were limited to the extent
that we assumed that the correlation between the micro-variables of the system was unknown.

In this paper, we will again discuss the manner in which the degree of complexity changes for
a statistical model (the probabilistic description of a physical system) in the presence of incomplete
knowledge when the information-constrained dynamics, the so-called entropic dynamics [5], on the
underlying curved statistical manifolds becomes even more constrained. Furthermore, we will reduce
the probabilistic description of the dynamical systems in the presence of partial knowledge to information
geometry (Riemannian geometry applied to probability theory, see [6]) and inductive inference [7–10].
We employ the same theoretical framework developed for this, termed the Information Geometric
Approach to Chaos (IGAC) [11,12], where information geometric techniques are combined with
maximum relative entropy methods [7–10] to study the complexity of informational geodesic flows
on curved statistical manifolds (statistical models) underlying the probabilistic description of physical
systems in the presence of incomplete information. We expand our previous findings by further
constraining the quantum-like 2D uncorrelated model, herein denoted as 2Du, with knowledge of the
correlation between the microscopic degrees of freedom of the system by way of a covariance term, σxy.
Our analysis not only provides evidence that the degree of chaoticity of statistical models is related
to the existence of uncertainty relation-like information constraints, as was seen before, it also
demonstrates that the chaoticity is also dependent upon the covariance term parameterized in terms of a
correlation coefficient.
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This constraint, specifically the correlation coefficient, may well have a physical interpretation. It is
known, for example, that a realistic approach to generate entangled quantum systems is via dynamical
interaction, of which local scattering events (collisions) are a natural, ubiquitous type [13]. Indeed, we
have shown in a recent work [14] how the IGAC can be used to examine the quantum entanglement
of two spinless, structureless, non-relativistic particles, where the entanglement is produced by two
Gaussian wave-packets interacting via a scattering process. In that work, it was shown how the
correlation coefficient can be related to two-particle squeezing parameters [15] for the case of continuous
variable quantum systems with Gaussian continuous degrees of freedom [16].

The layout of this article is as follows. In Section 2, we present the basic differential geometric
properties of the quantum-like two-dimensional uncorrelated statistical model, 2Du, and the further
constrained version, namely, the two-dimensional correlated statistical model, herein denoted as 2Dc.
In Section 3, we describe the geodesic paths on the curved statistical manifolds underlying the entropic
dynamics of the two statistical models. In Sections 4 and 5, we study the chaotic properties of the
information-constrained dynamics on the underlying curved statistical manifolds by means of the IGE.
Our final remarks appear in Section 6.

2. The Information Geometry of Statistical Models

The statistical models studied in [3] were a 3D uncorrelated Gaussian statistical model and a 2D

uncorrelated Gaussian statistical model obtained from the higher-dimensional model via the introduction
of an additional information constraint that resembles the canonical minimum uncertainty relation
in quantum theory. For a brief and recent overview on the IGAC, we refer to [4]. Note that the
dimensionality (2D and 3D) pertains to the macroscopic variables. Specifically, the dimensionality of a
curved statistical manifold equals the cardinality of the set of time-varying statistical macro-variables
necessary to parametrize points on the manifold itself. Below, we examine the geometry of the
two-dimensional uncorrelated case, 2Du, and then examine a new model, namely, the 2Dcmodel, where
the microscopic variables are further constrained by a covariance term.

2.1. The 2D Uncorrelated Model

This section follows our previous work [3], where we studied the information geometry and
the entropic dynamics of a 3D Gaussian statistical model. We compared our analysis to that of
a 2D Gaussian statistical model obtained from the higher-dimensional model via the introduction
of an additional information constraint that resembled the quantum mechanical canonical minimum
uncertainty relation. We showed that the chaoticity of the 2D Gaussian statistical model, quantified
by means of the Information Geometric Entropy and the Jacobi vector field intensity, is softened with
respect to the chaoticity of the 3D Gaussian statistical model. In view of the similarity between the
information constraint on the variances and the phase-space coarse-graining imposed by the Heisenberg
uncertainty relations, we suggested that this provides a possible way of explaining the phenomenon of the
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suppression of classical chaos operated by quantization. The constraints on the microscopic variables, x
and y, are: ∫

p(x, y)ydxdy = 0∫
p(x, y)xdxdy = µx

(1)∫
p(x, y) (x− µx)2 dxdy = σ2

x∫
p(x, y)y2dxdy = σ2

y

When these constraints are applied to the system, we use the method of maximum (relative)
entropy [7] to obtain a family of probability distributions that characterize the 3D uncorrelated Gaussian
statistical model:

p (x, y|µx, σx, σy) =
1

2πσxσy
exp

[
− 1

2σ2
x

(x− µx)2 −
1

2σ2
y

y2
]

(2)

with σx and σy in R+
0 and µx in R. The Gaussian here is two-dimensional in its microscopic space

(x, y), but three-dimensional in its macroscopic (contextual or conditionally, given parameters) space
(µx, σx, σy). For the 2D uncorrelated case, the probability distributions, p (x, y|µx, σ), that characterize
the model are given by:

p (x, y|µx, σ)
def
=

1

2πΣ2
exp

[
− 1

2σ2
(x− µx)2 −

σ2

2Σ4
y2
]

(3)

with σ in R+
0 and µx in R. The probability distributions Equation (3) may be obtained from Equation (2)

with the addition of the following macroscopic constraint:

σxσy = Σ2 (4)

where Σ2 is a constant belonging to R+
0 and σx ≡ σ. The macroscopic constraint Equation (4) was

chosen originally, because it resembles the quantum mechanical canonical minimum uncertainty relation
where x denotes the position of a particle and y, its conjugate momentum. Indeed, in view of the
similarity between the constraint on the variances Equation (4) and the phase-space coarse-graining
imposed by the Heisenberg uncertainty relations [2], we seek a possible way of explaining the
phenomenon of the suppression of classical chaos when operated by quantization within an information
geometric framework.

We then relaxed the conditionality on the microscopic space to explore the space of Gaussians
described by µx and σ. The infinitesimal Fisher-Rao line element, ds22Du, for this model reads:

ds22Du = g
(2Du)
lm (θ) dθldθm =

1

σ2
dµ2

x +
4

σ2
dσ2 (5)

where the Fisher-Rao information metric, g(2Du)lm (θ), is defined as [6]:

g
(2Du)
lm (θ)

def
=

∫
dxdyp (x, y|µx, σ)

∂ log p (x, y|µx, σ)

∂θl
∂ log p (x, y|µx, σ)

∂θm
(6)
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with θ ≡ (θ1, θ2) def
= (µx, σ). Using Equation (5), it follows that the non-vanishing connection

coefficients, Γkij , are given by:

Γ1
12 = Γ1

21 = − 1

σ
, Γ2

11 =
1

4σ
, Γ2

22 = − 1

σ
(7)

The scalar curvature,R(2Du), of the probability distributions in Equation (3) is given by:

R(2Du) = g11 (θ)R11 + g22 (θ)R22 = −1

2
(8)

with glmgmk = δlk and where the only non-vanishing Ricci curvature tensor components, Rij , are:

R11 = − 1

4σ2
, R22 = − 1

σ2
(9)

The sectional curvature [17] is independent of the tangent plane chosen on any point of the manifold and
is therefore constant, with value:

K(2Du) = −1

4
(10)

As shown in [3], the scalar curvature for the uncorrelated 3D case was R(3Du) = −1. This implies
that the 3D uncorrelated statistical model is globally more negatively curved than the 2D uncorrelated
statistical model. This suggests that the 3D model might exhibit more chaotic features than the
2D model.

2.2. The 2D Correlated Model

In addition to the original 3D uncorrelated Gaussian statistical model constraints in Equation (2), we
now add the following covariance constraint to the model:∫

p (x, y)xydxdy = σxy (11)

The probability distributions that characterize the 3D correlated Gaussian statistical model
Equation (2) now read:

p (x, y|µx, σx, σy, σxy) =

1

2π
√
σ2
xσ

2
y − σ2

xy

exp

{
−1

2
(
σ2
xσ

2
y − σ2

xy

) [(x− µx)2 σ2
y + y2σ2

x − 2 (x− µx) yσxy
]}

(12)

Making a change of variable with regard to the covariance, σxy = rσxσy, we obtain the standard
bivariate normal distribution, where the parameter, r, is the correlation coefficient between x and y and
assumes values within the ranges −1 ≤ r ≤ 1. Applying the macroscopic constraint Equation (4) to the
covariance constraint yields σxy = rΣ2, where Σ2 = σxσy is a constant belonging to R+

0 and σx ≡ σ.
The 3D correlated model Equation (12) now becomes:

p (x, y|µx, σ, r) def
=

1

2πΣ2
√

1− r2
exp

{
−1

2 (1− r2)

[
(x− µx)2

σ2
+
y2σ2

Σ4
− 2r (x− µx) y

Σ2

]}
(13)
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Assuming that the correlation between x and y is constant, we then relax the conditionality on the
microscopic space to explore the space of Gaussians described by µx and σ only. Thus, the infinitesimal
Fisher-Rao line element, ds22Dc, reads:

ds22Dc = g
(2Dc)
lm (θ) dθldθm =

1

σ2 (1− r2)
dµ2

x +
4

σ2 (1− r2)
dσ2 (14)

where θ ≡ (θ1, θ2) def
= (µx, σ). Observe that line element Equation (14) is only valid provided

(1− r2) > 0. Using Equation (14), it follows that the non-vanishing connection coefficients, Γkij , are
given by:

Γ1
12 = − 1

σ
, Γ2

11 =
1

4σ
, Γ1

21 = − 1

σ
, Γ2

22 = − 1

σ
(15)

The Ricci scalar curvature,R(2Dc), of the probability distributions in Equation (13) is given by:

R(2Dc) = g11 (θ)R11 + g22 (θ)R22 = −1

2
+
r2

2
(16)

with glmgmk = δlk. The only non-vanishing Ricci curvature tensor components, Rij , are:

R11 = − 1

4σ2
and, R22 = − 1

σ2
(17)

As in the previous case, the sectional curvature is independent of the tangent plane chosen on any
point of the manifold and is therefore constant, with value:

K(2Dc) = −1

4

(
1− r2

)
(18)

Notice that the Ricci scalar of the correlated 2D model, R(2Dc) in Equation (16), is r-dependent,
with R(2Dc) approaching zero as r2 tends to unity, while in the limit, r → 0, we recover the scalar
curvature of the 2D uncorrelated Gaussian model Equation (8). By including the macroscopic constraint
Equation (4) with the correlation constraint in Equation (11), we limit what Σ2 can be; σxy/r = Σ2 and
since r2 < 1,

σ2
xy/Σ

4 < 1 , and, therefore, σxy < Σ2 (19)

Moreover, observe that the sectional curvature is correlation-dependent, while the covariant Ricci
tensor components are identical in both 2D cases.

3. Geodesic Motion on Curved Statistical Manifolds

In this section, we present the geodesic paths on the curved statistical manifolds underlying the
entropic dynamics of both the two-dimensional correlated and uncorrelated Gaussian statistical models.
Such paths are obtained by integrating the geodesic equations given by [18]:

d2θk

dτ 2
+ Γklm (θ)

dθl

dτ

dθm

dτ
= 0 (20)

where Γklm (θ) are the connection coefficients.



Entropy 2013, 15 4628

Substituting Equation (15) into Equation (20), the set of nonlinear and coupled ordinary differential
equations in Equation (20) reads:

0 =
d2µx
dτ 2

− 2

σ

dµx
dτ

dσ

dτ
(21)

0 =
d2σ

dτ 2
+
σ2 + 1

4σ

(
dµx
dτ

)2

− 1

σ

(
dσ

dτ

)2

A suitable family of geodesic paths fulfilling the geodesic equations above is given by:

µx (τ) =
(µ0 + 2σ0) [1 + exp (2σ0λ+τ)]− 4σ0

1 + exp (2σ0λ+τ)
(22)

and:

σ (τ) =
2σ0 exp (σ0λ+τ)

1 + exp (2σ0λ+τ)
(23)

where µ0
def
= µx (0), σ0

def
= σ (0) and λ+ belongs to R+ [3].

4. Information Geometric Entropy

In this section, the chaotic properties of the information-constrained (entropic) dynamics on the
underlying curved statistical manifolds are quantified by means of the IGE. We point out that a suitable
indicator of temporal complexity (chaoticity) within the IGAC framework is provided by the IGE, which,
in the general case, reads [19]:

SMs (τ)
def
= log

[
lim
τ→∞

1

τ

∫ τ

0

∫
D(geodesic)
θ (τ ′)

ρ(Ms, g)
(
θ1,..., θn

)
dnθdτ ′

]
(24)

where ρ(Ms, g) (θ1,..., θn) is the so-called Fisher density and equals the square root of the determinant of
the metric tensor, glm (θ):

ρ(Ms, g)
(
θ1,..., θn

) def
=
√
g ((θ1,..., θn)) (25)

The subscript, Ms, in Equation (24) denotes the curved statistical manifold underlying the entropic
dynamics. The integration space, D(geodesic)

θ (τ ′), in Equation (24) is defined as follows:

D(geodesic)
θ (τ ′)

def
=
{
θ ≡

(
θ1,..., θn

)
: θk (0) ≤ θk ≤ θk (τ ′)

}
(26)

where k = 1,.., n and θk ≡ θk (s), with 0 ≤ s ≤ τ ′, such that θk (s) satisfies Equation (20). The
integration space,D(geodesic)

θ (τ ′), in Equation (26) is an n-dimensional subspace of the whole (permitted)
parameter space, D(tot)

θ . The elements of D(geodesic)
θ (τ ′) are the n-dimensional macro-variables, {θ},

whose components, θk, are bounded by the specified limits of integration θk (0) and θk (τ ′) with
k = 1,..., n. The limits of integration are obtained via integration of the n-dimensional set of coupled
nonlinear second order ordinary differential equations characterizing the geodesic equations. Formally,
the IGE is defined in terms of an averaged parametric (n+ 1)-fold integral (τ is the parameter) over the
multi-dimensional geodesic paths connecting θ (0) to θ (τ).
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In the cases being investigated, using Equations (22)–(24), it follows that the asymptotic expressions
of the IGE for the uncorrelated model, S(2Du)

Ms
, and for the correlated model, S(2Dc)

Ms
, become:

S(2Du)
Ms

(τ) = logV(2Du)
Ms

(τ)
τ�1
≈ σ0λ+τ and S(2Dc)

Ms
= logV(2Dc)

Ms
(τ)

τ�1
≈ σ0λ+τ (27)

since:

V(2Du)
Ms

(τ)
τ�1
≈
[(

µ0 + 2σ0
σ2
0λ+

)
exp (σ0λ+τ)

τ

]
(28)

V(2Dc)
Ms

(τ)
τ�1
≈ 1

(1− r2)
V(2Du)
Ms

(τ)

From Equation (27), we observe that:
S(2Dc)
Ms

τ�1
≈ S(2Du)

Ms
(29)

The IGE does not change asymptotically for either of the 2D models being considered. Equation (28)
is quite interesting, since it quantitatively shows that the information geometric complexity (IGC),
V(2Dc)
Ms

, of the correlated 2Dc model diverges as the correlation coefficient (introduced via the constraint
Equation (11)) approaches unity. As expected, the two cases are identical for r = 0. In [3], the IGE of
the quantum-like model 2Du was less than the IGE of the classical model (3D). That result indicated a
weaker (softer) chaoticity for the 2Du model. Here, the comparison of the uncorrelated and correlated
models shows that further constraining the quantum-like model 2Du with a covariance term, σxy, does
not lead to any additional global softening.

5. Jacobi Vector Field Intensity

There seems to be no change to the chaoticity when we further constrain the old, quantum-like model
(2Du) with a covariance term, σxy, since the IGE for each 2D model is identical in the asymptotic limit.
However, when considering chaoticity characterizations (geodesic spread), it is the local curvature of
the manifold that must be examined. This information is encoded in the sectional curvatures of the
manifold when it is isotropic (maximally symmetric). When the manifold is anisotropic (non-maximally
symmetric), the Riemann curvature tensor components come into play.

From above, we see that, indeed, the sectional curvatures, K, of both 2D models are constant (and,
consequently, maximally symmetric) and exhibit the relationship:

K(2Dc) = −1

4

(
1− r2

)
≥ −1

4
= K(2Du) (30)

with r2 < 1. However, since the sectional curvatures are different, to the extent that the 2Dc model
depends on the correlation coefficient, the local curvature is different. We can then follow [3] in
integrating the Jacobi-Levi-Civita (JLC) equation describing the geodesic spread. Omitting technical
details, we find that the asymptotic temporal behavior of the Jacobi vector field intensities, J , on such
maximally symmetric statistical manifolds satisfy the following inequality relation, which is closely
related to Equation (30):

J (2Du) (τ)
τ→∞
≈ exp

(
+
√
K(2Du)τ

)
≥ exp

(
+
√
K(2Dc)τ

)
τ→∞
≈ J (2Dc) (τ) (31)
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This would imply that there is indeed a local softening of the geodesic spreads on the quantum-like
model, the 2Du model, when it is further constrained by a covariance constraint, σxy, manifested in the
correlation term, r.

6. Other Considerations

• While σxy = rσxσy is physically sensible for x and y representing either position-position,
momentum-momentum or position-momentum pairs, the macro-quantum-like constraint
Σ2 = σxσy with Σ2 being constant and x and y representing either position-position or
momentum-momentum pairs is physically ambiguous in view of the fact that all physical
observables commute with the permutation operator. This seems to suggest that the constraint
Σ2 = σxσy is only active when x and y refer to micro-variables that are not self-similar. Might
one be able to use empirical data to trace the information-theoretic conditions that either relax
the constraint Σ2 = σxσy (so that Σ2 6=constant) or renders it active? It should be further noted
that even if one considers micro-variables with dissimilar dimensions, then while the covariance
constraint and the macro-quantum-like constraint would be compatible, one would then have
to consider a more general form of the macro-quantum-like constraint Equation (4) due to the
presence of entanglement. This will be considered for a future work.

• We also stress that our information geometric analysis could accommodate non-minimum
uncertainty-like relations. However, such an extension would require a more delicate analysis
where maximum relative entropy methods are used to process information in the presence of
inequality constraints [20]. However, for this, as well as the more general uncertainty constraint,
a deeper analysis is needed, and we leave that for future investigations. Our work is especially
relevant for the quantification of soft chaos effects in entropic dynamical models used to describe
actual physical systems when only incomplete knowledge about them is available [21].

• Statistical complexity is a quantity that measures the amount of memory needed, on average, to
statistically reproduce a given configuration [22]. In the same vein of our works in [3], a recent
investigation claims that quantum mechanics can reduce the statistical complexity of classical
models [23]. Specifically, it was shown that mathematical models featuring quantum effects
can be as predictive as classical models, although implemented by simulators that require less
memory, that is, less statistical complexity. Of course, these two works use different definitions
of complexity, and their ultimate goal is definitively not the same. However, it is remarkable
that both of them exploit some quantum feature, Heisenberg’s uncertainty principle in [3] and
the quantum state discrimination (information storage) method in [23], to exhibit the complexity
softening effects. Is there any link between Heisenberg’s uncertainty principle and quantum state
discrimination? Recently, it was shown that any violation of uncertainty relations in quantum
mechanics also leads to a violation of the second law of thermodynamics [24]. In addition,
it was reported in [25] that a violation of Heisenberg’s uncertainty principle allows perfect
state discrimination of non-orthogonal states, which, in turn, violates the second law of
thermodynamics [2]. The possibility of distinguishing non-orthogonal states is directly related
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to the question of how much information we can store in a quantum state. Information storage
and memory are key quantities for the characterization of statistical complexity. In view of these
considerations, it would be worthwhile to explore the possible thermodynamic link underlying
these two different complexity measures [26].

All these considerations will be the subject of forthcoming efforts.

7. Conclusions

In a previous paper [3], we studied the information geometry of an uncorrelated 3D Gaussian
statistical model with an additional information constraint resembling the canonical minimum
uncertainty relation, which, here, we called 2Du. We showed that the chaoticity of such a modified
Gaussian statistical model (quantum-like model, 2Du), quantified by means of the Information
Geometric Entropy [4] and the Jacobi vector field intensity, was indeed softened with respect to
the chaoticity of the standard Gaussian statistical model (classical-like model, 3D). However, the
statistical model was limited in that we assumed there was no correlation between the constituents of
the phase space.

In this paper, we expanded our previous findings by further constraining the quantum-like 2Dumodel
with a covariance term, σxy. It was shown that the Ricci scalars of the two 2D models, Equations (8)
and (16) varied by a constant related to this covariance term, Equation (11). It seems that the IGE is
insensitive to the presence of correlation terms, since the asymptotic behavior of the IGE of the two 2D

models, S(2Du)
Ms

(τ) and S(2Dc)
Ms

(τ), are identical. Although the IGE analysis seemed to indicate that there
was no further global softening, examination of the Jacobi vector field intensity seems to indicate that the
softening only appears locally (geodesic spread-deviation equations). Therefore, when the quantum-like
2Du model is further constrained by the knowledge of a covariance term, σxy, no softening appears at
the global (geodesic equations) scale, but only appears locally, where this softness is dependent on the
correlation term, r. In a forthcoming investigation, we will consider τ -dependent r quantities and study
whether or not this formal identical behavior between the IGEs is preserved for such cases, as well. The
stronger condition of τ -dependent r may affect the chaoticity features of the correlation constrained 2Dc

model at a global scale.
Finally, we would like to point out a very intriguing analogy inspired by one of the referees (which

we suspect to be very profound) between Einstein’s Equivalence Principle [27] and the local softening
effect considered in this work. Einstein’s Equivalence Principle states that gravitation, like space-time
curvature, works only globally, while locally, there is no gravitational field: physics is simply connected
only locally. It may be worthwhile deepening this point also in future investigations, taking into proper
consideration the fact that while Einstein was discussing space-time regions, our considerations concern
regions on curved statistical manifolds.
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