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Abstract: The law of multiplicative error is presented for independent observations and
correlated observations represented by the q-product, respectively. We obtain the standard
log-normal distribution in the former case and the log-q-normal distribution in the latter
case. Queirós’ q-log normal distribution is also reconsidered in the framework of the
law of error. These results are presented with mathematical conditions to give rise to
these distributions.
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1. Introduction

In physics, especially in thermodynamics, statistical physics and quantum physics, fluctuation of a
physical observable has been significant for describing many physical phenomena [1]. There are many
theoretical ways to unify fluctuations, such as the Boltzmann equation, the maximum entropy principle,
the Fokker-Planck equation, and so on. In every approach, fluctuation is considered as a variance of
values of a physical observable. In repeated measurements of a physical observable, the most natural
and simplest assumption is the “independence” of the measurements. This corresponds to the treatment
in Boltzmann-Gibbs-Shannon statistics, i.e., every value of a physical quantity is observed independently
in repeated measurements [2]. On the other hand, in generalized statistics, such as Tsallis statistics, a
certain correlation as a generalized independence (e.g., the “q-product” in Tsallis statistics) is applied. In
fact, starting from the q-product, Tsallis entropy is uniquely determined as the corresponding entropy [3].
In order to unify and determine probability distributions of physical values for each of the statistics, the



Entropy 2013, 15 4635

most simple and powerful way is the reformulation of the “law of error” because the standard product as
independence (which appears in the likelihood function) in Boltzmann-Gibbs-Shannon statistics is only
replaced by the generalized product in generalized statistics. Note that the “error” in the law of error
means “fluctuation” in physics.

The law of error is well known as the first derivation of the normal distribution by Carl F. Gauss, so
that, nowadays, the normal distribution is also called Gaussian distribution [4,5]. Gauss’ contribution
on this topic is not only his discovery of the important probability distribution, but it is also the first
application of the likelihood function in his discovery, although it might be intuitive. Later, the likelihood
function was fully understood by Ronald A. Fisher [6], the pioneer of modern statistics wherein the
maximum likelihood estimation plays an important role [7]. Gauss’ derivation is now considered a
typical application of the maximum likelihood method. Moreover, Gauss’ law of error has often been
taken as an assumption of error in most of the fields related to measurement.

In the original Gauss’ law of error, an observed value is given by the addition of an error to the
true value. We call this type of error “additive error”, which is the most fundamental and natural type
in our understanding. An error is a difference between an observed value and the true value, so other
types of error such as the ratio can be also considered. In this paper, a “multiplicative error”, given
by the ratio of an observed value and the true value, is applied to the formulation of the law of error.
As a result, a multiplicative error is found to follow a log-normal distribution, which is quite a natural
derivation of a log-normal distribution with fruitful backgrounds in the sense that the mathematical
condition to obtain a log-normal distribution is clearly presented. Moreover, the original law of error
was recently generalized for the so-called q-statistics (i.e., Tsallis statistics [8,9]) by means of the
q-product [10,11]. Tsallis statistics describes a strongly correlated system exhibiting power-law behavior,
which results in the q-Gaussian distribution as the distribution of an additive error in q-statistics [12].
Along similar lines, the laws of error for other generalized statistics are also presented in [13,14].
The q-Gaussian distribution provides us not only with a one-parameter generalization of the standard
Gaussian distribution (q = 1), but also with a nice unification of important probability distributions such
as the Cauchy distribution (q = 2), the t-distribution (q = 1 + 2

n+1
, n ∈ N) and Wigner semicircle

distribution (q = −1). The q-Gaussian distribution was originally derived from the maximization of
Tsallis entropy under the appropriate constraint [15,16], and Tsallis entropy is uniquely determined
from the q-multinomial coefficient defined by means of the q-product [3]. Therefore, these mathematical
results are consistent with each other, because every mathematical formulation in q-statistics originates
in the fundamental nonlinear differential equation dy/dx = yq with the q-exponential function as its
solution [17–19]. Thus, along these characterizations using the maximum likelihood method, a
probability distribution for a multiplicative error in q-statistics is expected, that is, a log-q-normal
distribution, with clear mathematical reasons for obtaining this distribution in the framework of
the law of error. Note that this paper analytically derives the q-Gaussian distribution and the
log-q-normal distribution from the maximum likelihood principle. Relevant important discussions about
the numerical verification in q-statistics can be found in [20,21], which is not applicable in the present
mathematical work.

This paper consists of five sections. Following this first section, the introduction, Section 2 presents
the definition of additive error and multiplicative error for the discussion in this paper. Section 3
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derives the law of error for these two types of error in the case of independent observations. Based
on the previous sections, Section 4 discusses its generalization for the case of correlated observations
represented by the q-product. The final section is devoted to the conclusion.

2. Additive Error and Multiplicative Error

A given observed value, x ∈ R, is assumed to have some kinds of error in it. In the original law of
error, an additive error is considered in the sense:

x = x̂+ e(a) (1)

where x̂ is the true value and e(a) is an additive error. On the other hand, in some fields, a multiplicative
error is taken into consideration in the form:

x = e(m) · x̂ (2)

where e(m) (> 0) is a multiplicative error. An alternative expression for a multiplicative error, e(m), is
sometimes formulated as x =

(
1 + e(m)

)
x̂ with 1 + e(m) > 0, but for simplicity, we use Equation (2)

throughout the paper. In case the true value x̂ = 0 (i.e., x = 0) in Equation (2), obviously, a multiplicative
error, e(m), is not employed. Due to the positivity of e(m), the sign of x and x̂ coincide with each other.
When a multiplicative error, e(m), is considered, the only case x > 0 (i.e., x̂ > 0) is discussed without
loss of generality. Then, Equation (2) is reformed to be

lnx = ln x̂+ ln e(m) (3)

which has a similar structure to the additive error Equation (1). Therefore, the law of multiplicative error
can be formulated in the same way as the case of additive error.

If the true value, x̂ 6= 0, and both of these two kinds of errors, e(a) and e(m), are considered, an
observed value, x, is given in the form:

x = e(m)x̂+ e(a) or x = e(m)
(
x̂+ e(a)

)
. (4)

Throughout the paper, the term “observation” is often used, which means “random variable” in the
mathematical sense.

Under these preparations, some mathematical definitions are given for our discussion.

Definition 1 Let Xi (i = 1, · · · , n) be a random variable with value xi ∈ R (i = 1, · · · , n),
respectively. Then, for random variables, E(a)

i (i = 1, · · · , n) , defined by

E
(a)
i := Xi − x̂ (i = 1, · · · , n) (5)

with a constant x̂ ∈ R , each value e(a)i of E(a)
i is called an additive error and satisfies

e
(a)
i = xi − x̂ (i = 1, · · · , n) . (6)

Under the same situation as above, if
x̂Xi > 0 (7)
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for random variables E(m)
i defined by

E
(m)
i :=

Xi

x̂
(i = 1, · · · , n) , (8)

each value e(m)
i of E(m)

i is called a multiplicative error and satisfies

e
(m)
i =

xi
x̂

(i = 1, · · · , n) . (9)

Note 2 Due to the positivity ofE(m)
i , the sign ofXi and x̂ coincide with each other. When a multiplicative

error is considered, without loss of generality, only the case Xi > 0 is discussed.

Note that, if both of these two errors are considered, each Xi is given by

Xi = x̂E
(m)
i + E

(a)
i or Xi = E

(m)
i

(
x̂+ E

(a)
i

)
(i = 1, · · · , n) . (10)

Usually, only observed values, x1, x2, · · · , xn ∈ R, are given, and other values such as x̂, e(a)i , e
(m)
i are

not known in advance (of course!). Thus, under the assumption that observed values include one of the
two kinds of error, the probability distribution of each error should be studied.

3. Law of Error for Independent Observations

In this section, let Xi (i = 1, · · · , n) in Definition 1 be i.i.d. (independent, identically distributed)
random variables which means independent and identical observations.

3.1. Additive Error

X1, · · · , Xn are i.i.d. random variables, so every E(a)
i has the same probability density function, f (a).

Then, we define the likelihood function for additive error in independent observations.

Definition 3 Let f (a)be the probability density function (pdf, for short) for E(a)
i defined by Equation (5).

The likelihood function, L(a) (θ), for additive error is defined as a function of a variable, θ, such that

L(a) (θ) :=
n∏
i=1

f (a) (xi − θ) . (11)

Then, we have the famous theorem which is often referred to as “Gauss’ law of error” [5].

Theorem 4 If the function L(a) (θ) of θ for any fixed x1, x2, · · · , xn ∈ R attains the maximum value at

θ = θ∗ :=
1

n

n∑
i=1

xi, (12)

then f (a) must be a Gaussian pdf:

f (a) (e) =
1√
2πσ

exp

(
− e2

2σ2

)
. (13)
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In the proof of this theorem, the following lemma plays an essential role.

Lemma 5 Let ϕ be a continuous function from R into itself and satisfying that
∑n

i=1 ϕ (ei) = 0 for every
n ∈ N and e1, · · · , en ∈ R with

∑n
i=1 ei = 0. Then, there exists a ∈ R, such that ϕ (e) = ae.

The proofs of Theorem 4 and Lemma 5 are found in [12].

3.2. Multiplicative Error

In the case of a multiplicative error, the random variables, E(m)
i and Xi, and a constant, x̂, are all

positive, so that by taking the logarithm of both sides of (8), we have

lnE
(m)
i = lnXi − ln x̂ (i = 1, · · · , n) (14)

which is a similar form to (5). The lnE
(m)
i are also i.i.d. random variables, so every lnE

(m)
i has the

same probability density function.

Definition 6 By means of the random variables, E(m)
i , defined by (8), the new random variables,

F
(m)
i and Yi, are defined by

F
(m)
i := lnE

(m)
i (i = 1, · · · , n) , (15)

Yi := lnXi (i = 1, · · · , n) . (16)

Then, the likelihood function, L(m) (θ), for multiplicative error is defined by

L(m) (θ) :=
n∏
i=1

f
(m)
Y (yi − θ) (17)

where f (m)
Y is the pdf of F (m)

i .

Then, we obtain the law of multiplicative error in independent observations.

Theorem 7 If, for any fixed x1, x2, · · · , xn ∈ R+, the function L(m) (θ) attains the maximum value at

θ = θ∗ :=
1

n

n∑
i=1

lnxi, (18)

then f (m)
Y must be a Gaussian pdf:

f
(m)
Y (e) =

1√
2πσ

exp

(
− e2

2σ2

)
. (19)

Note that
n∑
i=1

(yi − θ∗) =
n∑
i=1

(lnxi − θ∗) = 0 (20)

which means that Lemma 5 can be applied to the proof of the theorem, which is almost the same as that
of Gauss’ law of error.

The pdf, f (m)
Y , is for the random variable F

(m)
i = lnE

(m)
i , so that the pdf, f (m)

X , for E(m)
i is

easily obtained.
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Corollary 8 The pdf, f (m)
X , for the random variable, E(m)

i (> 0), is given by the log-normal distribution:

f
(m)
X (e) = f

(m)
Y (ln e)

1

e
=

1√
2πσe

exp

(
−(ln e)2

2σ2

)
. (21)

4. Law of Error for Correlated Observations Represented by the q-Product

In the standard maximum likelihood principle, the random variables used in the likelihood function,
L (θ), are assumed to be independent. Recently, the likelihood function was generalized for correlated
systems by means of the q-product and its maximization results in the q-Gaussian distribution which
coincides with the probability distribution obtained in the maximization of Tsallis entropy under
the appropriate constraint on the variance [12]. The q-Gaussian distribution recovers several typical
distributions: Cauchy distribution (q = 2), t-distribution (q = 1 + 2

n+1
, n ∈ N), the standard Gaussian

distribution (q = 1) and Wigner semicircle distribution (q = −1). In other words, these distributions
belong to a family of q-Gaussian distributions.

The law of multiplicative error for correlated observations will be obtained in this section, following
the lines of the derivation in the previous section. For this purpose, the mathematical preliminaries on
the q-product are given.

The maximum entropy principle (MaxEnt, for short) for Boltzmann-Gibbs-Shannon entropy:

S1 := −
∫
f (x) ln f (x) dx (22)

yields the exponential function, exp (x), which is well known to be characterized by the fundamental
linear differential equation dy/dx = y. In parallel with this, the MaxEnt for Tsallis entropy:

Sq :=
1−

∫
f (x)q dx

q − 1
(23)

yields a generalization of the exponential function, expq (x), [17,19,22] which is characterized by
the nonlinear differential equation dy/dx = yq [23] (see also Chapter 10 in [24] for more general
deformations). According to the solution of dy/dx = yq, the q-logarithm lnq x and the q-exponential
expq (x) are defined as follows:

Definition 9 The q-logarithm lnq x : R+ → R and the q-exponential expq (x) : R→ R are defined by

lnq x :=
x1−q − 1

1− q
, (24)

expq (x) :=

{
[1 + (1− q)x]

1
1−q if 1 + (1− q)x > 0,

0 otherwise.
(25)

Then, a new product, ⊗q, to satisfy the following identities as the q-exponential law is introduced.

lnq (x⊗q y) = lnq x+ lnq y, (26)

expq (x)⊗q expq (y) = expq (x+ y) . (27)
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For this purpose, the new multiplication operation, ⊗q, is introduced in [10,11]. The concrete forms of
the q-logarithm and q-exponential are given in Equations (24) and (25), so that the above requirement,
Equation (26) or (27), as the q-exponential law leads to the definition of ⊗q between two positive
numbers.

Definition 10 For x, y ∈ R+, if x1−q + y1−q − 1 > 0, the q-product ⊗q is defined by

x⊗q y :=
[
x1−q + y1−q − 1

] 1
1−q . (28)

The q-product recovers the standard product in the sense lim
q→1

(x⊗q y) = xy. The fundamental

properties of the q-product ⊗q are almost the same as the standard product, but

a (x⊗q y) 6= (ax)⊗q y (a, x, y ∈ R) . (29)

The other properties of the q-product are available in [10,11].
Note that, in general, the maximization of some general entropies such as Rényi entropy yields the

same q-exponential function. Contrary to the procedure in the MaxEnt, starting from the q-exponential
function and the q-product, Tsallis entropy is uniquely determined, which means that the entropy
corresponding to the q-exponential function is only Tsallis entropy in the mathematically consistent
sense. See [3,19] for these approaches.

In this section, let Xi (i = 1, · · · , n) in Definition 1 be identically distributed random variables.

4.1. Additive Error

X1, · · · , Xn are identical random variables, so every E(a)
i has the same pdf f (a). Then, we define the

q-likelihood function, L(a)
q (θ), for additive error in the correlated observations.

Definition 11 Let f (a)be the pdf for E(a)
i defined by Equation (5). The q-likelihood function L(a)

q (θ) for
additive error is defined by

L(a)
q (θ) := f (a) (x1 − θ)⊗q · · · ⊗q f (a) (xn − θ) . (30)

Theorem 12 If the function, L(a)
q (θ), of θ for any fixed x1, x2, · · · , xn ∈ R attains the maximum

value at

θ = θ∗ :=
1

n

n∑
i=1

xi, (31)

then f (a) must be a q-Gaussian pdf:

f (a) (e) =
1

Zq
expq

(
−βe2

)
(32)

with β > 0 and where

Zq :=

∫
de expq

(
−βe2

)
. (33)
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The proof of the theorem is found in [12].
Using the so-called q-variance, σ2, β and Zq are represented by

β =
1

(3− q)σ2
, (34)

Zq =


(

3−q
q−1σ

2
) 1

2
B
(

3−q
2(q−1) ,

1
2

)
(1 < q < 3)(

3−q
1−qσ

2
) 1

2
B
(

2−q
1−q ,

1
2

)
(q < 1)

(35)

where B is the beta function.
The q-Gaussian pdf can also be derived by using the standard product (independence) and the general

error, e (θ) (defined further on), instead of the q-product in Equation (30).

Theorem 13 If the likelihood function:

L(g) (θ) :=
n∏
i=1

f (e (xi − θ)) (36)

for any fixed x1, x2, · · · , xn attains the maximum value at

θ = θ∗ such that
n∑
i=1

e (xi − θ∗) = 0 (37)

where

e (θ) :=


tan

(√
β(q−1)θ

)
√
β(q−1)

, q > 1

θ, q = 1
tan

(√
β(1−q)θ

)
√
β(1−q)

, q < 1

and β > 0, (38)

then the probability density function, f , must be a q-Gaussian probability density function:

f (e) ∝ expq
(
−βe2

)
. (39)

The meaning of the general error Equation (38) is still missing at present. The proof of this theorem
is found in the Appendix.

4.2. Multiplicative Error

Similar to above, the lnE(m)
i defined by Equation (14) are identical random variables, so every lnE

(m)
i

has the same pdf.

Definition 14 Given the random variables, F (m)
i and Yi, defined by Equations (15) and (16), respectively,

the q-likelihood function, L(m)
q , for a multiplicative error is defined by

L(m)
q (θ) := f

(m)
Y (y1 − θ)⊗q · · · ⊗q f (m)

Y (yn − θ) (40)

where f (m)
Y is the pdf of F (m)

i .
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Theorem 15 If the function, L(m)
q (θ), for any fixed x1, x2, · · · , xn ∈ R attains the maximum value at

θ = θ∗ :=
1

n

n∑
i=1

lnxi, (41)

then f (m)
Y must be a q-Gaussian pdf:

f
(m)
Y (e) =

1

Zq
expq

(
−βe2

)
. (42)

As expected, f (m)
Y is the pdf for F (m)

i = lnE
(m)
i , so that the pdf, f (m)

X , for E(m)
i is easily obtained.

Corollary 16 The pdf, f (m)
X , for the random variable E(m)

i (> 0) is given by

f
(m)
X (e) = f

(m)
Y (ln e)

1

e
=

1

Zq · e
expq

(
−β (ln e)2

)
. (43)

Here, the support of f (m)
X is{
x > 0, (q > 1) ,

exp
(
−
√

1
β(1−q)

)
< x < exp

(√
1

β(1−q)

)
, (q < 1) .

(44)

We call this distribution Equation (43) “log-q-normal distribution” in contrast to “q-log-normal
distribution” given by Queirós, discussed in the next section. The graphs of the log-q-normal distribution
are given in Figure 1.

4.3. Reconsideration of Queirós’ q-Log-Normal Distribution in the Framework of the Law of Error

In advance of the present work, Queirós derived the q-log-normal distribution [25,26]:

fQueirós
q (e) =

1√
2πσeq

exp

(
−(lnq e)

2

2σ2

)
(45)

where µ = 0 in his original distribution: 1√
2πσeq

exp
(
− (lnq e−µ)2

2σ2

)
. In the framework of the law of error,

this distribution can be derived under the following conditions:

• independent observations, i.e., Xi (i = 1, · · · , n) are i.i.d. random variables,

• multiplicative error Equation (2) is modified to

x = e(m) ⊗q x̂. (46)

i.e., the standard logarithm in Equation (14) is replaced by the q-logarithm:

lnq E
(m)
i = lnqXi − lnq x̂ (i = 1, · · · , n) . (47)
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Figure 1. Log-q-normal distribution (q = 0.2, 1.0, 1.8) (linear-linear scale (upper), log-linear
(center), log-log scale (lower)).
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Equation (46) obviously differs from the original multiplicative error Equation (2). Using the
q-logarithm, Equation (46) is reformulated to

lnq
x

e(m)
=

lnq x̂

(e(m))
1−q (48)

which reveals a scaling by means of e(m). This scaling effect disappears when q = 1. However, at
present, a satisfactory explanation of Equation (46) is missing in the law of error, but an interesting
interpretation may be found in some physical models.

If Equation (46) is accepted as a modified multiplicative error, the pdf obtained from the similar
maximum likelihood method is

fq,q′ (e) =
1

Zq′ · eq
expq′

(
− (lnq e)

2

(3− q′)σ2

)
(49)

where Equation (35) is used. We can call this distribution “q-log-q′-normal distribution” or
“(q, q′)-log-normal distribution”. This is the most general form of the standard log-normal distribution
in the framework of the law of error. Of course, such a general pdf recovers more data than the standard
case. The condition giving rise to this general distribution are

• The likelihood function of identical random variables Xi (i = 1, · · · , n) is given by the q′-product
of its pdf,

• Instead of Equation (2), a modified multiplicative error Equation (46) is obtained.

5. Conclusions

Along the generalization of the law of additive error [12], the law of multiplicative error is presented
in the case of independent and correlated observations, respectively. As a result, the standard log-normal
distribution and log-q-normal distribution are determined with mathematical conditions to give rise to
these distributions. Furthermore, Queirós’ q-log normal distribution is reconsidered in the framework of
the law of error.

The law of error is a direct application of the maximum likelihood principle, so that the study on this
topic can be applied not only in error analysis or assumptions in practical science such as engineering
and experimental physics, but also in statistical inference and divergence theory in theoretical science
such as mathematics and theoretical physics.
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ubiquity of Lévy distributions in nature. Phys. Rev. Lett. 1995, 75, 3589–3593.
16. Prato, D; Tsallis, C. Nonextensive foundation of Levy distributions. Phys. Rev. E 1999, 60,

2398–2401.
17. Tsallis, C. What are the numbers that experiments provide ? Quimica Nova 1994, 17, 468.
18. Tsallis, C. What should a statistical mechanics satisfy to reflect nature? Physica D 2004, 193, 3–34.
19. Suyari, H.; Wada T. Scaling Property and the Generalized Entropy Uniquely Determined by

a Fundamental Nonlinear Differential Equation. In Proceedings of the 2006 International
Symposium on Information Theory and its Applications, COEX, Seoul, Korea, 29 October 2006.



Entropy 2013, 15 4646

20. Hilhorst, H.J.; Schehr, G. A note on q-Gaussians and non-Gaussians in statistical mechanics.
J. Stat. Mech. 2007, P06003.

21. Dauxois T. Non-Gaussian distributions under scrutiny, J. Stat. Mech. 2007, N08001.
22. Tsallis, C.; Mendes, R.S.; Plastino, A.R. The role of constraints within generalized nonextensive

statistics. Physica A 1998, 261, 534–554.
23. Tsallis, C. What should a statistical mechanics satisfy to reflect nature? Physica D 2004, 193, 3–34.
24. Naudts, J. Generalised Thermostatistics; Springer: London, UK, 2011.
25. Queirós, S.M.D. Generalised cascades. Braz. J. Phys. 2009, 39, 448–452.
26. Queirós, S.M.D. On generalisations of the log-Normal distribution by means of a new product

definition in the Kaypten process, Physica A 2012, 391, 3594–3606.

Appendix: Proof of Theorem 13

Proof. By taking the derivative of the log-likelihood function L(g) (θ) in Equation (36) with respect to θ
leads to

dL(g)

dθ
L(g) (θ)

=
n∑
i=1

df

de
· de (xi − θ)

dθ
f (e (xi − θ))

. (50)

When θ = θ∗, the likelihood function L(g) (θ) attains the maximum value, so that

dL(g)

dθ
L(g) (θ)

∣∣∣∣∣∣∣∣
θ=θ∗

= 0 if and only if
n∑
i=1

df

de
· de (xi − θ)

dθ

∣∣∣∣
θ=θ∗

f (e (xi − θ∗))
= 0. (51)

Let ρ be defined by

ρ (e (x− θ∗)) :=

df

de
· de (x− θ)

dθ

∣∣∣∣
θ=θ∗

f (e (x− θ∗))
, (52)

then Equation (51) can be rewritten as

n∑
i=1

ρ (e (xi − θ∗)) = 0. (53)

With this, our problem is reduced to determining the function, ρ, satisfying Equation (53) under the
constraint Equation (37). By means of Lemma 5, we have

ρ (e) = ae (54)

for a ∈ R. Thus,
df

de
· de (x− θ)

dθ
f (e)

= ae, (55)

that is,
df

de
· de (θ)

dθ
f (e)

= −ae. (56)



Entropy 2013, 15 4647

From Equation (38) follows
d

dθ
e = 1 + (q − 1) βe2, (57)

so that Equation (55) becomes
df

de
f (e)

=
−ae

1 + (q − 1) βe2
. (58)

The solution, f , satisfying Equation (58) can be obtained as a q-Gaussian pdf:

f (e) =
1

Zq
expq

(
−βe2

)
. (59)

Figure 2. e as a function of q (β = θ = 1).

The general error, e (θ), defined by Equation (38), is obtained as the solution of the differential
Equation (57). The graph of e as a function of q is given in Figure 2.
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