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Abstract: In this paper the combinations of maximum entropy method and Bayesian 

inference for reliability assessment of deteriorating system is proposed. Due to various 

uncertainties, less data and incomplete information, system parameters usually cannot be 

determined precisely. These uncertainty parameters can be modeled by fuzzy sets theory and 

the Bayesian inference which have been proved to be useful for deteriorating systems under 

small sample sizes. The maximum entropy approach can be used to calculate the maximum 

entropy density function of uncertainty parameters more accurately for it does not need any 

additional information and assumptions. Finally, two optimization models are presented 

which can be used to determine the lower and upper bounds of systems probability of failure 

under vague environment conditions. Two numerical examples are investigated to 

demonstrate the proposed method. 

Keywords: deteriorating system; maximum entropy method; small sample sizes;  
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Acronyms and Abbreviations 

RV Random variable 

PDF Probability density function 

CDF Cumulative distribution function 

MM Method of moments 

MLE Maximum likelihood estimation 

MEE Maximum entropy estimation 

S. Integral domain 

 Lagrange multipliers 

 A fuzzy number 
 Membership function 

 The -level set of  

 Triangular fuzzy number 

 Prior distribution 

 Maximum entropy density function 

 Posterior PDF 

Di(t) Degradation at time t of unit 

Df Critical threshold 

y. Given samples  

1. Introduction 

Degradation is a common cause of failure of many products. In structural reliability analysis, 

traditionally, the uncertain deterioration and degradation are usually modeled using lifetime 

distributions [1], and the information of systems can be analyzed using degradation data. Generally, 

system reliability assessment using degradation data has many advantages because the analysts can use 

less collected degradation data to assess system reliability, which is useful for applications [2–5]. 

In engineering practice, time-dependent reliability analysis for modeling deterioration systems is 

necessary because the performance of many products is a deterioration process [6]. Traditionally, the 

deteriorations of structures usually are modeled by using random variables models (such as the 

deterioration rate), cumulative damage models and gamma processes [6–9], respectively. The random 

variable (RV) models (also called degradation curve models) are used widely in engineering 

applications for assessing the reliability of deteriorating components [10]. Examples of the RV models 

for reliability estimation can be found in references [11–15]. Another widely used method for modeling 

deteriorating systems is the gamma process, which belongs to a general class of stochastic processes [6]. 

The gamma process can be used to model gradual damage monotonically accumulating over time, such 

as wear, fatigue, corrosion, erosion, crack growth, consumption, creep, swell, etc., and these failure 

models are common causes of failure of many engineering components [8,16]. 

In engineering practice, it is well known that data sometimes cannot be recorded or collected 

precisely due to various uncertainties [17,18] such as human errors, machine errors, incomplete 
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information or some other unexpected situations [19]. In this case, the Bayesian inference has shown to 

be useful for modeling uncertainty. A lot of researchers have paid more attention to Bayesian reliability 

analysis under vague information conditions. For example, Bayesian reliability estimations under fuzzy 

environments constraints were proposed by Wu [19–21], Taheri and Zarei [22], respectively, in recent years. 

Despite many efforts, reliability assessment for deteriorating systems using traditional RV models 

also has some limitations. In the traditional RV models, the distributions of random variables (such as 

the deterioration rate) usually are assumed known and precisely determined, such as normal distribution 

and Weibull distribution. However, determining lifetime distributions requires sufficient data which is 

often impossible to acquire in engineering practice, especially for some reliable and long lifetime 

products such as satellites, spaceships and so on. Furthermore, these assumptions are not reasonable in 

the case of less data and incomplete information. For example, we may face the problem that the 

distribution of one random variable can be viewed as a normal or Weibull distribution under small 

sample sizes. In order to solve the problem and consider the advantages of both the maximum entropy 

method and the Bayesian inference for systems under small sample sizes and incomplete information 

constraints, combinations of the two methods are considered for the deteriorating systems, and the fuzzy 

Bayesian reliability assessment for deteriorating components is proposed in this paper. 

The remainder of the paper is organized as follows: in Section 2, Bayesian inference and fuzzy 

theory are introduced. The maximum entropy method is given in Section 3. The proposed fuzzy 

Bayesian reliability assessment for deteriorating components under small sample sizes is given in 

Section 4. Two numerical examples are presented in Section 5. Finally, Section 6 presents brief 

discussions and our conclusions. 

2. Review of Bayesian Inference and Fuzzy Theory 

2.1. Bayesian Inference 

Bayesian inference is based on the subjective view of probability. Let be a random variable with a 

probability density function (PDF) , which is indexed by a parameter vector . Bayesian 

inference with observations  can be given by [23–25]: 

 (1)

where  is the prior PDF,  is the posterior PDF of , and  is the sampling PDF 

of the observations, respectively. To apply Equation (1), the prior PDF is needed. Generally, the prior 

PDF plays an important role in reliability analysis. The more accurate of the prior PDF is, the more 

accurate of the posterior PDF will be. There are five methods to formulate a prior PDF based on the past 

data [24]: (I) the method of moments (MM); (II) maximum likelihood estimation (MLE); (III) maximum 

entropy estimation (MEE); (IV) two-state updating of a non-informative “pre-prior”; and (V) credible 

interval-based method. Furthermore, non-informative prior PDF is used widely in engineering under the 

case of no prior available information. More information about the non-informative prior PDF can be 

found in references [25,26]. 
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2.2. Fuzzy Theory 

In engineering practice, the value or distribution of a parameter usually cannot be determined 

precisely under small sample sizes or vague information conditions. For example, we often state that 

the critical threshold is “about 10” or “about 9–11”, and the statements “about 10” and “about 9-11” can 

be viewed as fuzzy numbers. Therefore, the fuzzy sets theory provides an appropriate tool for modeling 

the situations where some parameters are fuzzy numbers. Let be a fuzzy real number with 

membership function . Its -level set is defined by  for all . 

Generally,  is convex, closed and bounded in real number [20], and is a closed interval which 

can be expressed as . 

There are many kinds of membership functions that can be used in engineering applications.  

For illustration purposes, a special kind of fuzzy real number is introduced in the paper. We say that  

is a triangular fuzzy real number if its membership function is given by [22]: 

 (2)

Triangular fuzzy number  can be denoted by . The -level set of triangular fuzzy 

real number  is calculated by  =  for all

. In this paper,  is also denoted by . The -level set of

, shown in Figure 1, is used widely in system reliability analysis. 

Figure 1. The -level set of the fuzzy real number a . 

 

3. Maximum Entropy Methods 

In order to improve the accuracy in systems reliability assessment, additional assumptions should be 

avoided. The maximum entropy method [27–29] is a flexible and powerful tool for density 

approximation as it does not need any additional information or assumptions. The algorithms for 

calculating maximum entropy density can be found in [29–31]. The maximum entropy density function 

(also called FDF of sample in order to keep the naming consistent with PDF) is calculated by 

maximizing Shannon’s entropy [29]: 
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(3)

with the constraints: 

 (4)

 (5)

where  is the maximum entropy density function, is the integral domain, and is the 

known ith moment. 

From the Lagrange’s method, the p(x) can be expressed as [30]: 

 (6)

where i is the Lagrangian multiplier for the ith moment constraint, and: 

 (7)

To solve for the Lagrange multipliers , a feasible method, named the Newton’s 

iterative algorithm, can be adopted [29,31]. Some studies, such as references [32,33], have been shown 

that the first three or four moments are sufficient to describe a wide range of distribution types. 

4. Fuzzy Bayesian Reliability Assessment for Deteriorating Components under Small  

Sample Size Conditions 

4.1. The Degradation Curve of Deteriorating Components 

In order to assess the reliability of deteriorating components using RV models, the degradation curves 

of components should be determined firstly. Suppose that a linear degradation curve exists and its initial 

value is D0, the degradation at time t for the ith unit is given by 

 (8)

where θ is a random variable and θi is a unit specific parameter. When the unit’s degradation reaches a 

critical threshold Df, the unit is considered to fail. From Equation (8), the pseudo lifetime of the ith unit 
is . Suppose the measurement error is a normally distributed random variable with 

distribution . The observed degradation at  is denoted by , and the degradation of the 

unit at  is denoted by . The relationships between  and  under considering 

measurement errors can be expressed as: 

 (9)

In reality, the degradation curves are more complicated than linear degradation curves such as power 

laws and exponential curves. In these situations, these complicated curves can be transformed by 
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logarithms. For example, we can transform an exponential curve  to a linear curve by 

logarithmic arithmetic, which is given by: 

 (10)

In the situation of considering measurement errors, Equation (10) can be rewritten as: 

 (11)

Where . Let , , and , Equation (11) can be 

rewritten as: 

 (12)

For simplicity, we let . Consider the situation of , where 

, which is a very complicated regression model and is called non-linear regression  

model [34]. The information of non-linear regression model is omitted here, but can be found in some 

related books. The following degradation curves are used widely for deterioration system reliability 

assessment [35], which can be expressed as: 

 (13)

 (14)

 (15)

The different kinds of degradation curves are shown in Figure 2. 

Figure 2. Different degradation curves. 

 

4.2. Bayesian Reliability Assessment for Deteriorating Components under Small Sample Sizes 

From the aforementioned discussions, many commonly used degradation curves can be transformed 

into a linear curve by using some corresponding transformations. For simplicity and illustration 

purposes, the linear degradation curve  is considered in this paper. 
Suppose that  ( 30n  ) units’ degradation data of a component is shown in Table 1 [9], the 

degradation curve is given by , and the critical threshold is Df. θ is a random variable, 
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and specific parameters  can be determined by the least squares method for the ith unit 

degradation data. Three cases are considered in order to assess the component reliability, respectively. 

Table 1. Degradation data. 

Time t t0
 t1

 t2
 t3

 … tj
 

1(unit) D1(t0)
 D1(t1) D1(t2) D1(t3)  D1(tj)

2(unit) D2(t0)
 D2(t1) D2(t2) D2(t3)  D2(tj)

… … … … … … … 

n(unit) Dn(t0)
 Dn(t1) Dn(t2) Dn(t3)  Dn(tj)

Case 1: There is no prior information for random variables θ and T. 

According to Equation (13), the pseudo lifetime Ti of the corresponding ith unit can be calculated as
. Then we can obtain n pseudo lifetimes Ti . The maximum entropy density 

(PDF of sample) p(t) of the random variable T can be given by: 

 (16)

From Equation (16), the cumulative distribution function (CDF) of is given by: 

 (17)

From Equation (17), the probability of failure  under  becomes: 

 (18)

Generally, Equation (17) has no analytical and close form solutions. We can solve it by using 

numerical integration methods such as the Simpson and Romberg algorithms [36]. 

Case 2: There is prior information for random variable T. 

Suppose that the prior PDF of T is . From Equations (1) and (16), the posterior PDF  

is given by: 

 (19)

The integration  is a constant which can be denoted by . 

Therefore, Equation (19) can be rewritten as: 
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 (20)

From Equation (20), the CDF  can be expressed as: 

 (21)

From Equation (21), the probability of failure  under  becomes: 

 (22)

Case 3: There is prior information for the random variable θ. 

Suppose that the prior PDF of θ is . According to Equations (1) and (16), the posterior PDF 

 is given by: 

 (23)

where  =  is a constant. 

For example, if the prior PDF of θ is normally distributed such as , according to 

Equations (1) and (23), the posterior PDF of θ becomes: 

 (24)

where  = . 

Similarly, if the prior PDF of θ is a Weibull distribution with  = , from 

Equations (1) and (23), the posterior PDF of θ is given by: 

 (25)
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Considering a random variable X with PDF , , is a monotonically 

differentiable function of x with a unique inverse function. We have  is a continuous random 

variable, and its PDF  is given by [34]: 

 (26)

where , , and is unique inverse function of 

, respectively. 

According to Equation (26), the posterior PDF  of is calculated by: 

 (27)

From Equation (27), the CDF  is given by: 

 (28)

From Equation (28), the probability of failure  under  becomes: 

 (29)

For example, let , when the prior PDF of θ is normally distributed such as

, from Equations (24) and (27), the PDF  is given by: 
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From Equation (30), the CDF  of becomes: 

 (31)

Similarly, when the prior PDF of θ is a Weibull distribution with the shape parameter  and the scale 
parameter , from Equations (24) and (27), the posterior PDF  and CDF  are 
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4.3. Fuzzy Bayesian Reliability Assessment for Deteriorating Components 

In Section 4.2, we described how to combine Bayesian inference and the maximum entropy method 

to assess component reliability in details. However, due to various uncertainties and lacking of data, it is 

impossible to determine all parameters precisely. For example, the critical threshold cannot be 
determined precisely but can be modeled by the fuzzy number . The prior distribution of the random 

variable θ is , that is, the mean value is a fuzzy number . In this section, we will discuss 

how to assess reliability when fuzzy parameters exist in the systems. 

Case 1: The critical threshold is a fuzzy number  
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can be expressed as:  

 (34)

and: 

 (35)

respectively. 

From Equations (34) and (35), the lower and upper bounds of probability of failure under the -level 

sets can be calculated as: 

 (36)

and: 

 (37)

respectively. 
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Suppose that the prior PDF of the random variable θ is , and the parameters  in 

 are fuzzy numbers. The lower and upper bounds of probability of failure under the -level set can 

be expressed as the following optimization model: 

 
(38)

With different -level, the membership function of  can be determined. The minimum and 

maximum probability of failure can be calculated by: 

 (39)

For example, suppose that the prior PDF of is , where the mean value  is a fuzzy 

number. The lower and upper bounds of probability of failure under the -level sets can be determined as: 

 (40)

and: 

 (41)

respectively. 

5. Illustrative Examples and Discussion 

In this section, two examples are analyzed to demonstrate the proposed method. The first example is 

associated with only one linear degradation cure, and its critical threshold is a fuzzy number.  

The degradation curve of the second example is a non-linear curve, and some fuzzy numbers exist in the 

prior distribution. 
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experiments is impossible. Suppose the degradation data of five GaAs laser units is as shown in Table 2.  
The critical threshold  is 10, that is, the laser is failure if its current increases more than the original 

value by 10% [9]. The degradation curve of the GaAs lasers is a linear function. 

Table 2. Degradation data of GaAs [9]. 

t (h) 0 500 1000 1500 2000 2500 3000 3500 4000 

1(unit) 0 0.93 2.72 4.34 5.48 6.72 8.00 9.49 10.94 
2(unit) 0 1.22 2.30 3.75 4.99 6.07 7.16 8.42 9.28 
3(unit) 0 1.17 1.99 2.97 3.94 4.45 5.27 6.02 6.88 
4(unit) 0 0.74 1.85 2.95 3.92 5.47 6.50 7.39 8.09 

5(unit) 0 0.61 1.77 2.58 3.38 4.63 5.62 6.32 7.59 

Since the degradation curve is a linear function, it can be expressed as , where 

can be determined by the least squares method from the degradation data of the ith unit. In order to 

assess system reliability, θ and T usually are assumed as known distribution such as normal distribution 

or Weibull distribution in the traditional methods, and the values of distribution parameters are 

determined by using the maximum likelihood estimation. In reality, the distributions information of θ 

and T cannot be known clearly under the small sample size conditions. In order to avoid personal 

assumptions, the maximum entropy method can be used since it does not need any additional 

assumptions and information. The degradation data of each unit and its fitted curve are shown in Figure 3. 

Figure 3. Degradation data of each unit and its fitted curve. 

 

From Table 2 and Equation (16), the PDFs of the random variable T are shown in Figure 4, where  

k = 3 and k = 4 denote the results calculated using the first three and four moments, respectively. 

Generally, the first four moments are sufficient to describe a wide range of distribution types. From 

Equation (17), the CDFs of T are shown in Figure 5. 

In reality, critical thresholds sometimes cannot be determined precisely due to various uncertainties. 

The more appropriate way to describe the thresholds is that Df is a fuzzy number around 10. The phrase 

“around 10” should be regarded as a fuzzy number . Suppose that the critical threshold Df in this 

example is a triangular fuzzy number (9, 10, 11). System reliability under T equal to 4000 hours is 

considered. From Equations (36) and (37), the probability of failure under different -levels are shown 
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in Figure 6, which shows that the probability of failure is a fuzzy number rather than precise value.  

From Figure 6 we also know that a small variation of the critical threshold may lead to a big change of 

the probability of failure. 

Figure 4. PDFs of T calculated by using the first three and four moments. 

 

Figure 5. CDFs calculated by using the first three and four moments. 

 

Figure 6. Probability of failure under different -levels. 
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Example 2 

Suppose that the degradation curve of a time-depending deteriorating system is
, and the critical threshold Df = 10. θ is a random variable with fuzzy normally 

distributed prior distribution , that is, the value of μθ is a triangular fuzzy number  

(1.1, 1.2, 1.3). The values of θ for the six units are given in Table 3. 

Table 3. The values of θ from experiments. 

θ (unit) 1 2 3 4 5 6 

value 1.28 1.47 1.15 1.33 1.08 1.21 

In engineering practice, the available information, such as the past data and expert opinions, is 

valuable information for us. In this example, we consider the situation where there is prior information 

for the random variable θ. However, the mean value of the prior distribution is a triangular fuzzy 

number. Suppose that μθ is precisely determined, that is, μθ = 1.2. From Equation (23) and the Bayesian 

inferences, the posterior distributions (also called updated distributions) of θ are shown in Figure 7. 

However, if μθ is a fuzzy number, the posterior distribution are family distributions rather single ones. 

Figure 7. Posterior distribution for when μθ = 1.2. 

 

From Equations (27), (28), (38) and (39), the probability of failure under  = 4.5 year are given in 

Tables 4, 5 and Figure 8, respectively. From Figure 8, we know that the probability of failure is a fuzzy 

number. When , it denotes that is precisely determined, and the probability of failure is a 

precise value. Furthermore, the probability of failure under different  values is shown in Figure 9. 

Table 4. Probability of failure bounds under different -levels when k = 3. 

 0 0.2 0.4 0.6 0.8 1.0 

 0.0019 0.0030 0.0049 0.0076 0.0116 0.0172 

 0.0942 0.0698 0.0507 0.0361 0.0252 0.0172 
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Table 5. Probability of failure bounds under different -levels when k = 4. 

 0 0.2 0.4 0.6 0.8 1.0 

 0.0023 0.0039 0.0063 0.0101 0.0159 0.0245 

 0.1476 0.1088 0.0779 0.0543 0.0449 0.0245 

Figure 8. Probability of failure under is a fuzzy number. 

 

Figure 9. Probability of failure for different  values 
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optimization models proposed in the paper. From the discussions and the illustrated examples, we know 

that the proposed method requires neither the additional assumptions nor the large sample sizes, which 

are needed in other commonly used methods. It should be noted that there are some limitations to the 

proposed method. The RV deterioration model cannot capture temporal variability associated with 

evolution of degradation. The extension of the method for handling multiple failure modes will be the 

subject of future work in our research. 
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