
Entropy 2013, 15, 5510-5535; doi:10.3390/e15125510
OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

Information-Theoretic Data Discarding for Dynamic Trees on
Data Streams
Christoforos Anagnostopoulos 1,* and Robert B. Gramacy 2

1 Department of Mathematics, Imperial College London, South Kensington Campus,
London SW7 2AZ, UK

2 Booth School of Business, The University of Chicago, 5807 South Woodlawn Avenue, Chicago, IL
60637, USA; E-Mail: rbgramacy@chicagobooth.edu

* Author to whom correspondence should be addressed; E-Mail: canagnos@imperial.ac.uk;
Tel.: +44-02075942752

Received: 9 August 2013; in revised form: 4 December 2013 / Accepted: 9 December 2013 /
Published: 13 December 2013

Abstract: Ubiquitous automated data collection at an unprecedented scale is making
available streaming, real-time information flows in a wide variety of settings, transforming
both science and industry. Learning algorithms deployed in such contexts often rely on
single-pass inference, where the data history is never revisited. Learning may also need to be
temporally adaptive to remain up-to-date against unforeseen changes in the data generating
mechanism. Online Bayesian inference remains challenged by such transient, evolving
data streams. Nonparametric modeling techniques can prove particularly ill-suited, as the
complexity of the model is allowed to increase with the sample size. In this work, we
take steps to overcome these challenges by porting information theoretic heuristics, such as
exponential forgetting and active learning, into a fully Bayesian framework. We showcase
our methods by augmenting a modern non-parametric modeling framework, dynamic trees,
and illustrate its performance on a number of practical examples. The end product is
a powerful streaming regression and classification tool, whose performance compares
favorably to the state-of-the-art.

Keywords: regression and classification trees; dynamic trees; streaming data; massive data;
online learning; active learning

Entropy 2013, 15 5511

1. Introduction

It is a recognized fact that we are now faced with an unprecedented abundance of recorded information
in both sciences and industry, a phenomenon often referred to as “Big Data”. An important component
of this transformation is the availability of continual real-time information flows in a variety of settings,
referred to as data streams. This data deluge is in part the result of recent technological advances,
such as cheaper storage, connectivity, computational power and portable “smart” devices, as well as the
culmination of a cultural transformation in the commercial world, whereby data are no longer viewed
as a stale resource, but rather as a source of actionable insights. Ironically, this massive investment
in data collection and management can have an adverse effect on the sophistication of the analyses
thereof, as the size of the data can be prohibitive for all but the simplest of methods. This is particularly
true of non-parametric Bayesian methods, for technical reasons explained below. And yet, flexible
Bayesian methods are in much demand in Big Data, as they can handle diversity without compromising
on interpretability.

One way to achieve scalability of learning algorithms is online estimation/inference, where the
objective is to develop a set of update equations that incorporate novel information as it becomes
available, without needing to revisit the data history. This results in model fitting algorithms whose
space and time complexity remains constant as information accumulates, and can hence operate in
streaming environments featuring continual data arrival, or navigate massive datasets sequentially. Such
operational constraints are becoming imperative in certain application areas as the scale and real-time
nature of modern data collection continues to grow.

In certain simple cases, online estimation without information loss is possible via exact recursive
update formulae, e.g., via conjugate Bayesian updating (see Section 3.1). In parametric dynamic
modeling, approximate samples from the filtering distribution for a variable of interest may be obtained
online via sequential Monte Carlo (SMC) techniques, under quite general conditions. SMC is commonly
used in non-Gaussian non-linear state-space modeling, where the objective is to sequentially obtain
samples from the posterior distribution of the latent state at time t given observations up to that time.

This ability of SMC to draw sequential samples from distributions of increasing dimension renders
it an appealing tool for use in Bayesian non-parametric modeling, although this has not yet been
widely recognized in the literature. This was pioneered by [1] in the case of dynamic trees, where
the tree structure is viewed as the latent state that evolves dynamically. In effect, a “particle cloud” of
dynamic trees are employed to track parsimonious regression and classification surfaces as data arrive
sequentially. However, the resulting algorithm is not, strictly speaking, online, since tree moves may
require access to the full data history, rather than parametric summaries thereof. This complication
arises as an essential by-product of non-parametric modeling, wherein the complexity of the estimator
is allowed to increase with the dataset size. Therefore, this article recognizes that maintaining constant
operational cost as new data arrives necessarily requires discarding some (e.g., historical) data. Trees are
a good candidate for such work because both the particle evolution as well as our data discarding ideas
are natural and efficient with this particular non-parametric model: several of the operations involved are
local to the leaf, and can hence be handled parametrically, as will be seen in detail later.

Entropy 2013, 15 5512

Specifically, and to help set notation for the remainder of the paper, we consider supervised learning
problems with labelled data (xt, yt), for t = 1, 2, . . . , T , where T is either very large or infinite.
We consider responses yt which are real-valued (i.e., regression) or categorical (classification). The
p-dimensional predictors xt may include real-valued features, as well as binary encodings of categorical
ones. The dynamic tree model, reviewed shortly in Section 2, allows sequential non-parametric learning
via local adaptation when new data arrive. However its complexity, and thus computational time/space
demands, may grow with the data size T . The only effective way to limit these demands is to sacrifice
degrees-of-freedom (DoF) in representation of the fit, and the simplest way to do that is to discard data;
that is, to require the trees to work with a subset w � T of the data seen so far.

Our primary concern in this paper is managing the information loss entailed in data discarding. First,
we propose datapoint retirement (Section 3), whereby discarded datapoints are partially “remembered”
through conjugate informative priors, updated sequentially. This technique is well-suited to trees, which
combine non-parametric flexibility with simple parametric models and conjugate priors. Nevertheless,
forming new partitions in the tree still requires access to actual datapoints, and consequently data
discarding comes at a cost of both information and flexibility. We show that these costs can be managed,
to a surprising extent, by employing the right retirement scheme even when discarding data randomly.
In Section 4, we further show that active learning heuristics that are designed to maximize the
information present in a given subset of the data may be relied upon to prioritize points for retirement.
We refer to this technique as active discarding, and show that it leads to better performance still.

An orthogonal concern in streaming data contexts is the need for temporal adaptivity when the
concept being learned exhibits drift. This is where the data generating mechanism evolves over time
in an unknown way. The bulk of the Bayesian literature has so far focused on dynamic modeling as a
means of ensuring temporal adaptivity. However, as explained in Section 5, such models come at great
computational expense, typically prohibitive in streaming contexts, and can also be sensitive to model
mis-specification. A popular alternative in the streaming data literature is to heuristically modify the
given set of recursive update equations to endow it with temporally adaptive properties, commonly via
the use of exponential forgetting, whereby the contribution of past datapoints to the algorithm is smoothly
downweighed. In Section 5 we demonstrate how this practice can be motivated from an information
theoretic perspective. This results in historical data retirement through suitably constructed informative
priors that can be easily deployed in the non-parametric dynamic tree modeling context, while remaining
fully online. Using synthetic as well as real datasets, we show how this approach compares favorably
against modern alternatives. The paper concludes with a discussion in Section 6.

1.1. Relevant Work on Streaming Regression and Classification

Progress in the area of online, temporally adaptive modeling for streaming data has been more
forthcoming for classification than regression, presumably because of the fact that streaming data
contexts were primarily introduced by the computer science and machine learning communities, which
have a cultural preference for discrete responses. In classification, concept drift was introduced as
early as 1996 in [2] to denote the fact that temporal variation in data streams that may render past
information obsolete and/or misleading. Drift was initially handled via simple modifications to existing

Entropy 2013, 15 5513

algorithms, or sliding window implementations thereof. Incremental trees were discussed in the context
of streaming classification by [3,4], who introduced the Very Fast Decision Tree (VFTD) algorithm,
and its temporally adaptive counterpart, CVFDT, where leaves that are thought to represent obsolete
information are adaptively pruned. Other versions of incrementally updated trees include [5], where
learning techniques from neural networks are employed to adaptively update decision trees over streams.

An alternative popular approach has been to maintain a weighted collection of decision trees over
the stream, where the weights are adaptively tuned to maintain the best possible “weighted majority
vote”. The first instance of the ensemble approach was the Streaming Ensemble Algorithm (SEA)
of [6], but several variants have been proposed since, often involving decision trees among their
base learners [7–10]. Yet another approach includes the incorporation of fuzzy rules in the decision
tree (e.g., [11]).

Beyond trees, a large variety of adaptive parametric classifiers have been proposed in the literature
(see [12] for a review), where often the focus is not on the classifier per se, but rather on successfully
managing the trade-off between retaining obsolete information on one hand, and discarding useful
historical information on the other. This trade-off is often handled via adaptive forgetting factors, where
historical information is smoothly downweighted in an adaptive manner that aims to capture not only
the presence, but also the speed of the drift [13]. In [12], it is argued that long-term stability of the data
discarding/forgetting mechanism, as opposed to the flexibility of the underlying classifier, can often be
the real performance bottleneck in streaming classification, and an approach is proposed that seems to
be stable over arbitrarily long time horizons.

Enabling parametric regression models to fare better in streaming domains where the regression
surface may be subject to unforeseen temporal variation was pioneered by two communities: the adaptive
filtering community in non-stationary statistical signal processing [14]; and the stochastic learning [15]
community, which in part evolved from the continuous-response neural networks literature [16]. Both
relied on incremental updating equipped with forgetting factors and/or adaptive learning rates, but were
exclusively concerned with parametric models. Non-parametric regression modeling has also extensively
considered online updating (see [1] for a review), but not temporal drift per se. In part, this is because
non-parametric models are flexible enough to accommodate changing regression surfaces by growing
in complexity. However, we will later demonstrate that in the event where past information is obsolete
and/or misleading, this is an inefficient, or even improper, use of degrees of freedom.

Our work represents a novel contribution in this literature by bringing a variety of key insights about
data streams under a coherent Bayesian formalism. First, the particle filter dynamics mimic the behavior
of an adaptive ensemble of trees, but enable principled model averaging as opposed to weighted majority
votes. Second, the non-parametric tree structure is combined with parametric leaf models, generalizing
to a variety of tasks, including both classification and regression. Third, active discarding is considered
alongside historical discarding, accommodating more sophisticated data selection than a simple “sliding
window”. Third, forgetting factors are incorporated in the leaf priors, enabling us to perform full
Bayesian inference in a temporally adaptive fashion. Finally, model complexity is used sensibly, via
the combined effect of the tree prior, and up-to-date data selection.

Entropy 2013, 15 5514

2. Dynamic Trees

Dynamic trees [DT] [1] are a process–analog of Bayesian treed models [17,18]. The model
specification is amenable to fast sequential inference by SMC, yielding a predictive surface which
organically increases in complexity as more data arrive. Software is available in the dynaTree

package [19] for R on CRAN [20], which has been extended to cover the techniques described in this
paper. We now review model specification and inference in turn.

2.1. Bayesian Static Treed Models

Trees partition the input space X into hyper-rectangles, referred to as leaves, using nested logical
rules of the form (xi ≥ c). For instance, the partition (x1 ≥ 3) ∩ (x2 < −1), (x1 ≥ 3) ∩ (x2 ≥ −1) and
(x1 < 3) represents a tree with two internal nodes and three leaves. We denote by η(x) the unique leaf
where x resides, for any x ∈ X .

Treed models condition the likelihood function on a tree T and fit one instance of a given simple
parametric model per leaf. In this way, a flexible model is built out of simple parametric models (θη)η∈LT ,
whereLT is the set of leaves in T . This flexibility comes at the price of a hard model search and selection
problem: that of selecting a suitable tree structure. In the seminal work of [17], a Bayesian solution to
this problem was proposed that relied on a generative prior distribution over trees: a leaf node η may
split with probability psplit(T , η) = α(1 + Dη)

−β , where α, β > 0, and Dη is the depth of η in the tree
T . This induces a joint prior via the probability that internal nodes IT have split and leaves LT have
not: π(T) ∝

∏
η ∈IT psplit(T , η)

∏
η ∈LT

[1 − psplit(T , η)]. The specification is completed by employing
independent sampling models at the tree leaves: p(y1, . . . , yn|T ,x1, . . . ,xn) =

∏
η∈LT p(y

η|T ,xη).
Sampling from the posterior proceeds by MCMC, via proposed local changes to T : so-called grow,
prune, change, and swap “moves”. Any data type/model may be used as long as the marginal likelihoods
p(yη|T ,xη) are analytic, i.e., as long as their parameters can be integrated out. This is usually facilitated
by fully conjugate, scale invariant, default (non-informative) priors, e.g.,:

y | x ∼ N
(
βTη(x)x + µη(x), σ

2
η(x)

)
, π(βη(x), µη(x), σ

2
η(x)) ∝

1

σ2
η(x)

(1)

for linear, or, letting βη = 0, constant regression leaves. Similarly, multinomial leaves for classification
with Dirichlet priors can be employed. These choices yield analytical posteriors [1] but also efficient
recursive updates for incorporating new datapoints (see Section 3.1).

2.2. Dynamic Trees

In DTs the “moves” are embedded into a process, which describes how old trees mature into new ones
when new data arrive. Suppose that Tt−1 represents a set of recursive partitioning rules associated with
xt−1, the set of covariates observed up-to time t−1. The fundamental insight underlying the DT process
is to view this tree as a latent state, evolving according to a state transition probability, P (Tt | Tt−1,xt).
The dependence on xt (but not on yt) allows us to consider only moves local to the current observation:

Entropy 2013, 15 5515

i.e., pruning or growing can only occur (if at all) for the leaf η(xt). This builds computational tractability
into the process, as we in either case need to recompute in that area. Formally, we let:

P (Tt | Tt−1,xt) =

0, if Tt is not reachable from Tt−1 via moves local to xt

pmπ(Tt), otherwise
(2)

where pm is the probability of the unique move that can produce Tt from Tt−1, and π is the tree prior.
We allow three types of moves: grow, prune and stay moves. Each type is considered equiprobable,
whereas for grow moves, we choose among all possible split locations by first choosing a dimension j
uniformly at random, and splitting η(xt) around the location xj = ξ chosen uniformly at random from
the interval formed from the projection of η(xt) on the jth input dimension. The new observation, yt,
completes a stochastic rule for the update Tt−1 → Tt via p(yt|Tt,xt) for each Tt ∈ {Tt}.

2.3. Sequential Monte Carlo

The DT specification is amenable to Sequential Monte Carlo (SMC), e.g., Particle Learning [21],
inferential mechanics. At each iteration t, the discrete approximation to the tree posterior {T (i)

t−1}Ni=1,
based on N particles, can be updated to {T (i)

t }Ni=1 by resampling and then propagating. Resampling
the particles (with replacement) proceeds according to their predictive probability for the next (x, y)

pair, wi = p(yt|T (i)
t−1,xt). Then, propagating each resampled particle follows the process outlined in

Section 2.2. Overall, the PL recursion is given by the following formula, where T encodes both the tree
structure, and the leaf parameters:

p
(
Tt | (x, y)t

)
=

∫
p (Tt | Tt−1,xt, yt) dP

(
Tt−1 | (x, y)t

)
∝
∫
p (Tt | Tt−1,xt, yt)× p(xt, yt | Tt−1)dP

(
Tt−1 | (x, y)t−1

)
Both resampling and propagation are computationally efficient because they involve only local
calculations (requiring only the subtrees of the parent of each η(i)(x)). Nevertheless, the particle
approximation can shift great distances in posterior space after an update because the data governed by
η(xt)

(i) may differ greatly from one particle to another, and thus so may the weights wi. This appealing
division of labour mimics the behavior of an ensemble method without explicitly maintaining one.
As with all particle simulation methods, some Monte Carlo (MC) error will accumulate and, in practice,
one must be careful to assess its effect. Nevertheless, DT out-of-sample performance compares favorably
to other nonparametric methods, like Gaussian Process (GP) regression and classification, but at a
fraction of the computational cost [1]. A nice byproduct of SMC inference for DTs are reliable
marginal likelihoods via the sequential factorization p(yT |xT) ≈ 1

N

∑T
t=1 log p(yt|xt, T (i)

t−1), i.e., using
the probabilities calculated in the resample step.

It is worth emphasizing that not all SMC methods for Bayesian trees may serve as the basis of
streaming algorithms, since they might be sequential along a dimension other than time. A great example
is the recently proposed algorithm of [22]. In the scheme favored in our work, the tth stage of the SMC
algorithm results in a distribution over trees, modified (if at all) using the information present in a novel
(xt, yt). In contrast, in [22] the tth stage corresponds to a distribution over trees of depth (at most) t,
generated using the entire dataset, which is assumed to have been available offline from the onset.

Entropy 2013, 15 5516

3. Datapoint Retirement

At time t, the DT algorithm of [1] may need to access arbitrary parts of the data history in order
to update the particles. Hence, although sequential inference is fast, the method is not technically
online: tree complexity grows as log t, and at every update each of the xt = (x1, . . . ,xt) locations
are candidates for new splitting locations via grow. To enable online operation with constant memory
requirements, this covariate pool (xt) must be reduced to a size w, constant in t. One way to achieve this
is via data discarding. Crucially, the analytic/parametric nature of DT leaves enables a large part of any
discarded information to be retained in the form of informative leaf priors. In effect, this yields a soft
implementation of data discarding, which we refer to as datapoint retirement. We show that retirement
can preserve the posterior predictive properties of the tree even after data are discarded, and furthermore
following subsequent prune and stay operations. The only situation where the loss of data hurts is when
new data arrive and demand a more complex tree. In that case, any retired points would not be available
as anchors for new partitions. Again, since tree operations are local in nature, only the small subtree
nearby η(xt) is effected by this loss of DoFs, whereas the complement Tt \ η(xt), i.e., most of the tree,
is not affected.

3.1. Conjugate Informative Priors at the Leaf Level

Consider first a single leaf η ∈ Tt in which we have already retired some data. That is, suppose we
have discarded (xs, ys){s} which was in η in Tt′ at some time t′ ≤ t. The information in this data can be
“remembered” by taking the leaf-specific prior, π(θη), to be the posterior of θη given (only) the retired
data. Suppressing the η subscript, we may take π(θ) = P

(
θ | (xs, ys){s}

)
∝ L

(
θ; (xs, ys){s}

)
π0(θ)

where π0(θ) is a baseline non-informative prior employed at all leaves. The active data in η, i.e., the
points which have not been retired, enter into the likelihood in the usual way to form the leaf posterior.

It is fine to define retirement in this way, but more important to argue that such retired information
can be updated loslessly, and in a computationally efficient way. Suppose we wish to retire one more
datapoint, (xr, yr). Consider the following recursive updating equation:

π(new)(θ) = P
(
θ | (xs, ys){s},r

)
∝ L(θ;xr, yr)P

(
θ | (xs, ys){s}

)
(3)

As shown below, the calculation in Equation (3) is tractable whenever conjugate priors are employed.
Consider first the linear regression model, y ∼ N(Xβ, σ2I), where y = (ys){s} is the retired response

data, and X the retired augmented design matrix, i.e., whose rows are like [1,x′s]
′, so that β1 represents

an intercept. With π0(β, σ2) ∝ 1
σ2 , we obtain:

π(β, σ2) = P (β, σ2 | y,X) = NIG(ν/2, sν/2, β,G−1)

where NIG stands for Normal-Inverse-Gamma, and assuming the Gram matrix G = X′X is invertible
and denoting Xy = X′y, r = y′y, we have ν = n − p, β = G−1Xy, and s2 = 1

ν
(r − R), where

R = β G−1β. Having discarded (ys,xs){s}, we can still afford to keep in memory the values of the above
statistics, as, crucially, their dimension does not grow with |{s}|, and nor does their size, in practice

Entropy 2013, 15 5517

(see Section 3.3 for details on this latter point). Updating the prior to incorporate an additional retiree
(yr,xr) is easy:

G(new) = G +X ′rXr, Xy(new) = Xy + X′ryr, s(new) = s+ y′ryr, ν(new) = ν + 1 (4)

The constant leaf model may be obtained as a special case of the above, where x? = 1, G = ν and
β = µ. For the multinomial model, the discarded response values ys may be represented as indicator
vectors zs, where zjs = 1(ys = j). The natural conjugate here is the DirichletD(a). The hyperparameter
vector a may be interpreted as counts, and is updated in the obvious manner, namely a(new) = a + zr

where zjm = 1(yr = j). A sensible baseline is a0 = (1, 1, . . . , 1). See [23] for more details.
Unfolding the updating Equations (3) and (4) makes it apparent that retirement preserves the posterior

distribution. Specifically, the posterior probability of parameters θ, given the active (non-retired) data
still in η is

π(θ|xη, yη) ∝ L(θ;xη, yη)π(θ) ∝ L(θ;xη, yη)L(θ; (xs, ys){s})π0(θ) = L(θ;xη
′
, yη

′
)π0(θ)

where η′ is η without having retired (xs, ys){s}. Since the posteriors are unchanged, so are the posterior
predictive distributions and the marginal likelihoods required for the SMC updates. Note that new data
(xt+1, yt+1) which do not update a particular node η ∈ Tt → Tt+1 do not change the properties of the
posterior local to the region of the input space demarcated by η. It is as if the retired data were never
discarded. Only where updates demand modifications of the tree local to η is the loss in active datapoints
felt. We argue in Section 3.2 that this impact can be limited to operations which grow the tree locally.
Cleverly choosing which points to retire can further mitigate the impact of discarding (see Section 4).

Finally, it is worth mentioning that generalizing our approach to handle non-Gaussian conditional
leaves would require non-trivial modifications since neither the posterior nor the MLE would be available
in closed-form. We hence defer this to future work.

3.2. Managing Informative Priors at the Tree Level

Intuitively, DTs with retirement manage two types of information: a non-parametric memory
comprising an active data pool of constant sizew � t, which forms the leaf likelihoods; and a parametric
memory consisting of possibly informative leaf priors. The algorithm we propose proceeds as follows.
At time t, add the tth datapoint to the active pool, and update the model by SMC exactly as explained
in Section 2. Then, if t exceeds w, also select some datapoint, (xr, yr), and discard it from the active
pool (see Section 4 for selection criteria), having first updated the associated leaf prior for η(xr)

(i), for
each particle i = 1, . . . , N , to “remember” the information present in (xr, yr). This shifts information
from the likelihood part of the posterior to the prior, exactly preserving the time-t posterior predictive
distribution and marginal likelihood for every leaf in every tree.

The situation changes when the next data point (xt+1, yy+1) arrives. Recall that the DT update chooses
between stay, prune, or grow nearby each η(xt+1)

(i). Grow and prune moves are affected by the absence
of the retired data from the active data pool. In particular, the tree cannot grow if there are no active
data candidates to split upon. This informs our assessment of retiree selection criteria in Section 4,
as it makes sense not to discard points in parts of the input space where we expect the tree to require

Entropy 2013, 15 5518

further DoFs. Moreover, we recognize that the stochastic choice between the three DT moves depends
both upon the likelihood, and retired (prior) information local to η(xt+1)

(i), so that the way that prior
information propagates after a prune, or grow move, matters. The original DT model dictates how
likelihood information (i.e., resulting from active data) propagates for each move. We must provide a
commensurate propagation for the retired information to ensure that the resulting online trees stay close
to their full data counterparts.

If a stay move is chosen stochastically, no further action is required: retiring data has no effect on
the posterior. When nodes are grown or pruned, the retiring mechanism itself, which dictates how
informative priors can salvage discarded likelihood information, suggests a method for splitting and
combining that information. Following a prune, retired information from the pruned leaves, η and its
sibling S(η), must be pooled into the new leaf prior positioned at the parent P (η). Conjugate updating
suggests the following additive rule:

GP (η) = Gη + GS(η), XyP (η) = Xyη +XyS(η) sP (η) = sη + sS(η), νP (η) = νη + νS(η)

Note that this does not require access to the actual retired datapoints, and would result in the identical
posterior even if the data had not been discarded.

A sensible grow move can be derived by reversing this logic. We suggest letting both novel child
leaves `(η) and r(η) inherit the parent prior, but split its strength νη between them at proportions equal
to the active data proportions in each child. Let α = |`(η)|

|η| . Then,

ν`(η) = ανη, G`(η) = αGη, Xy`(η) = αXyη, s`(η) = αsη

νr(η) = (1− α)νη, Gr(η) = (1− α)Gη, Xyr(η) = (1− α)Xyη, sr(η) = (1− α)sη

In other words, the new child priors share the retired information of the parents with weight proportional
to the number of active data points they manage relative to the parent. This preserves the total strength of
retired information, preserves the balance between active data and parametric memory, and is reversible:
subsequent prune operations will exactly undo the partitioned prior, combining it into the same prior
sufficient statistics at the parent.

This brings to light a second cost to discarding data, the first being a loss of candidates for future
partitioning. Nodes grown using priors built from retired points lack specific location information from
the actual retired (xs, ys) pairs. Therefore newly grown leaves must necessarily compromise between
explaining the new data, e.g., (xt+1, yt+1), with local active data to η(x)t+1, and information from retired
points with less localized influence. The weight of each component in the compromise is |η|/(|η| + νη)

and νη/(|η|+ νη), respectively. Eventually as t grows, with w � t staying constant, retired information
naturally dominates, limiting new grows even when active partitioning candidates exist. This means that
while the hierarchical way in which retired data filters through to inference (and prediction) at the leaves
is sensible, it is doubly-important that data points in parts of the input space where the response is very
complex should not be discarded.

Finally, note that although in the original dynamic tree T referred only to the tree structure and
split locations (since all other parameters integrated out), in the presence of retirement, it is used to
additionally refer to the informative leaf priors.

Entropy 2013, 15 5519

3.3. Computational Complexity

The requirement that only w � t datapoints are ever kept in memory is necessary but not sufficient
to ensure constant memory requirements, as one needs to factor in the size of the model itself—the size
of each set of leaf parameters (or equivalently, the respective sufficient statistics), the number of leaves
per tree and the total number of trees (particles). We discuss these in turn.

The updates presented in Section 3.1 will, if implemented naı̈vely, take up space that grows
logarithmically with the number of updates (i.e., discarded datapoints |{s}|), and therefore also with the
time index t. Nevertheless, a minor modification can correct this. Consider for instance the following
two update equations:

Xy(new) = Xy + X′ryr, G(new) = G +X ′rXr

Although either statistic grows logarithmically with the number of updates, the linear model itself only
requires access to G−1(Xy), which in itself does not grow with t. This can be seen by first dividing either
statistic by ν to keep their size constant, and then note that

G−1(Xy) = (G/ν)−1 (Xy/ν)

Note also that the “scaled” versions of G and Xy, given by G̃ = G/ν and X̃y = Xy/ν can be updated
efficiently as follows:

G̃(new) =

(
1− 1

ν

)
G̃ +

1

ν
X ′rXr, νnew = ν + 1

This update also reveals that the updated statistic is a convex combination of the old value of the statistic
and the new information, with 1

ν
determining the weight of the novel information. Similar convex

updates, which we do not list to keep the exposition simple, are possible for all leaf statistics presented
so far, except for the “counts” themselves, such as ν. These latter will generally be commensurate to
the time index itself t, and hence their space requirements will grow logarithmically with t. However,
we argue here that there are good reasons to disregard this in practice.

First, keeping count of the number of datapoints that have been seen so far may be O(log(t)), but
has an incredibly small leading constant. In particular, in a modern computer, the counter t will take
constant space until it exceeds the maximum integer size, which, for a 32 bit computer, is about 4× 109,
at which point it will require one more byte for another time period of the same length. Consequently,
although both Xy and t grow logarithmically with t, the former would be infeasible to maintain naı̈vely
(hence the division by ν) for very large datasets, whereas the latter would require an impossibly large
dataset to cause it to exceed a modern computer’s capabilities. The second reason is subtler but perhaps
more important. The iteration count is only employed to determine the weight 1/t that new information
carries in the convex update above. However, 1/(4 × 109) is well below a 32 bit computer’s numerical
accuracy (more generally, in any given computer, 1/(max int size) will exceed its numerical accuracy),
so that capping t at a very large number and setting 1/t = 0 thereafter would produce a negligible error,
impossible to detect in practice. In any case, it is clear that for λ < 1 (which is the recommended setting
in streaming contexts anyway, since concept drift is always a possibility), the counter is not an issue
since it is bounded above by 1

1−λ = O(1).
We have demonstrated that, disregarding counts, each leaf takes constant space requirements over

time. Moreover, each tree will also have a maximum number of leaves which is a function of the size

Entropy 2013, 15 5520

of the active data pool—this is because of our constraints on the generation on new leaves. Finally, the
number of trees is a constant determined in advance. Therefore, overall, our algorithm is computationally
capable of handling indefinitely large data streams, which was not the case for [1].

In particular, as a first approximation, the number of leaves is O(w). The most expensive operation
per leaf per timestep (per particle) is the inversion of the Gram matrix in the linear regression case which
requires O(p3) computations (faster Sherman-Morrison-type [24] sequential updates for the inverse
Gram are not possible for grow moves). At any given time, only updates local to the datapoint in question
will take place, so the total computation spent per particle will comprise a search over all leaves, followed
by a local update, i.e., O(wp+p3). Active discarding adds a O(p2

∑N
i=1 |η(i)(x)|) term (see Section 4.4),

which can be bounded above by O(wp2). Since w � p, we may simplify the total computation per
timestep as O(Np3).

3.4. Discussion: Effect of Retirement on SMC Properties

Formally, retiring datapoints changes the posterior distribution, so that the SMC algorithm is tracking
a moving target. Obtaining theoretical guarantees in such a setting lies beyond the scope of this paper.
Nevertheless, the following thought experiment suggests that our proposal is a valid candidate for an
approximate SMC algorithm.

For sufficiently large data, it is not unreasonable to assume that the full data posterior distribution will
become increasingly peaked. This also applies to its non-parametric component. Put differently, as the
sample size grows, we might assume that the posterior distribution will eventually place most of its mass
on a finite number of fixed tree structures, each of finite complexity. At that point, it would be possible
to retire all but a fixed number of datapoints without any change to the predictive posterior distribution.
In principle, therefore, it seems possible for some fixed memory SMC with a sufficiently large but finite
active data pool, to approximate the full data SMC arbitrarily well. The question then becomes one of
coming up with the best selection mechanism that discards datapoints in such a manner so as to minimize
disruption during the learning process, as well as minimize the mismatch between the “optimal” set of
tree structures and the set of tree structures that is “reachable” via the active pool.

We conjecture that random discarding with a forgetting factor λ ≈ 1 but not equal to 1 is the safest
option, in that, assuming data exchangeability, the SMC is given ample opportunity to correct any
mistakes by virtue of the lower bound on the entropy of the leaf posteriors which is enforced by the
forgetting factor (it precludes peaking). For λ = 1, in contrast, it is possible for any given particle to be
misled during initial learning and never recover, although resampling over a large enough particle cloud
will certainly moderate the impact of such “local optima”.

Active discarding, which is discussed in the next section, is a higher-risk higher-reward alternative that
has the potential to offer great improvements over random discarding, but can also introduce subtle and
potentially hard to control forms of bias—in particular since the order in which datapoints are seen and
potentially removed matters. Motivating such selection mechanisms purely from theoretical arguments
would require a formal understanding of the non-parametric information present in a datapoint within
the context of an SMC algorithm, which seems intractable at the moment. Given the pressing need to
come up with scalable, online inference for flexible models, it seems to us that quicker progress may

Entropy 2013, 15 5521

be made via empirical evaluation of sensible, informed heuristics, inspired from active learning theory,
which may in turn drive future theoretical development.

4. Active Discarding

It matters which data points are chosen for retirement, so it is desirable to retire datapoints that will
be of “less” use to the model going forward. In the case of a drifting concepts, retiring historically,
i.e., retiring the oldest datapoints, may be sensible. We address this in Section 5. Here we consider
static concepts, or in other words i.i.d. data. We formulate the choice of which active data points to
retire as an active discarding (AD) problem by borrowing (and reversing) techniques from the active
learning (AL) literature—this analogy is described in Section 4.1. Regression and classification models
are handled separately, as they require different AD techniques, in Sections 4.2 and 4.3 respectively.
We shall see that in both cases AD is, in fact, computationally easier than AL since DTs enable thrifty
analytic calculations not previously possible, which are easily updated within the SMC.

4.1. Active Learning versus Active Discarding

Retiring a point (xr, yr) hurts the SMC algorithm in various ways, among which the most important
is that it can make locations near xr unavailable as potential future splits, and consequently some leaves
might become depopulated. Therefore, the decision of which datapoint to retire might be seen as
analogous to that of which locations the model would like to continue learning about. In this sense,
we seem to be facing the inverse of an active learning problem: which area of the input space is most
likely to produce informative observations? As in active learning, there are more than one ways to
specify what we mean by “informative”. We draw on the active learning literature to make that notion
more precise in Sections 4.2 and 4.3, for classification and regression respectively.

Although it allows us to make quick progress in coming up with sensible candidate heuristics to be
evaluated empirically, the analogy with active learning is not complete enough to act as a theoretical
justification. Indeed, the information-theoretic motivation of active learning heuristics is not readily
applicable to any non-parametric setting, let alone the much more intricate problem of active discarding
within SMC, which, to our knowledge, we are the first to consider. Despite their elusive formal
justification, active learning heuristics remain both popular and successful in non-parametric settings,
and, in similar fashion, they seem to be sufficiently relevant in our case to yield statistically significant
benefits over random discarding in our experiments. Such evidence is valuable in carving out a research
direction in this novel research problem. In contrast, the alternative of formally pinning down the exact
nature of the information loss entailed by data retirement and managing it in a provably optimal manner
seems theoretically intractable at the moment.

4.2. Active Discarding for Regression

Active learning (AL) procedures are sequential decision heuristics for choosing data to add to the
design, usually with the aim of minimizing prediction error. Two common AL heuristics are active
learning MacKay ([25], ALM) and active learning Cohn ([26], ALC). They were popularized in

Entropy 2013, 15 5522

the modern nonparametric regression literature [27] using GPs, and subsequently ported to DTs [1].
An ALM scheme selects new inputs x? with maximum variance for y(x?), whereas ALC chooses x? to
maximize the expected reduction in predictive variance averaged over the input space. Both approximate
maximum expected information designs in certain cases. ALC is computationally more demanding
than ALM, requiring an integral over a set of reference locations that can be expensive to approximate
numerically for most models. But it leads to better exploration when used with nonstationary models
like DTs because it concentrates sampled points near to where the response surface is changing most
rapidly [1]. ALM has the disadvantage that it does not cope well with heteroskedastic data (i.e.,
input-dependent noise). It can end up favoring regions of high noise rather than high model uncertainty.
Both are sensitive to the choice of (and density of) a search grid over which the variance statistics
are evaluated.

Our first simplification when porting AL to AD is to recognize that no grids are needed. We focus on
the ALC statistic here because it is generally preferred, but also to illustrate how the integrals required
are actually very tractable with DTs, which is not true in general. The AD program is to evaluate the
ALC statistic at each active data location, and choose the smallest one for discarding. AL, by contrast,
prefers large ALC statistics to augment the design. We focus on the linear leaf model, as the constant
model may be derived as a special case. For an active data location x and (any) reference location z,
the reduction in variance at z given that x is in the design, and a tree T is given by (see [1]):

∆σ2
x(z|T) = ∆σ2

x(z|η) ≡ σ2(z|η)− σ2
x(z|η) =

s2η −Rη

|η| −m− 3
×

(
1
|η| + z′G−1η x

)2
1 + 1

|η| + x′G−1η x

when both x and z are in η ∈ LT , and zero otherwise, and the expression for σ2
x(z | η) is given by the

standard formulae for Bayesian parametric linear regression, e.g., ([28], Chapter 14). This expression
is valid whether learning or discarding, however AL requires evaluating ∆σ2(x) over a dense candidate
grid of x’s. AD need only consider the current active data locations, which can represent a dramatic
savings in computational cost.

Integrating over z gives:

∆σ2(x) =

∫
Rd

∆σ2
x(z) dz =

s2η −Rη

(|η| −m− 3)(1 + 1
|η| + x′G−1η x)

×
∫
η

(
1

|η|
+ z′G−1η x

)2

dz

The integral that remains, over the rectangular region η, is tedious to write out but has a trivial O(p2)

implementation. Let the p-rectangle η be described by {(ai, bi)}p. Then,∫ b1

a1

· · ·
∫ bp

ap

(
c+

p∑
i=1

z̃ixi

)2

dz1 · · · dzp = Aηc
2 + c

∑
i

(∏
k 6=i

(bk − ak)

)
xi(b

2
i − a2i)

+
∑
i

(∏
k 6=i

(bk − ak)

)
x2i
3

(b3i − a3i) +
∑
i

∑
j<i

(∏
k 6=i,j

(bk − ak)

)
xixj

2
(b2i − a2i)(b2j − a2j)

where z̃ = z′G−1η , and c = 1/|η|. A general-purpose numerical version via sums using R

reference locations z—previously the state of the art [1]—requires O(Rp) computation with R growing
exponentially in p for reasonable accuracy (e.g., a hypercube on p dimensions requires 2p points).

Entropy 2013, 15 5523

Observe that the rectangular leaf regions generated by the trees is key. In the case of other partition
models (like Voronoi tessellation models), this analytical integration would not be possible.

In Figure 1, we observe that in repeated applications of ALC for AD the active points that remain
tend shuffle themselves so that they cluster near the high posterior partitioning boundaries, which makes
sense because these are the locations where the predictive surface is changing the fastest. The number of
such locations depends on the number of active data points allowed, w.

Figure 1. Snapshots of active data (25 points) and predictive surfaces spanning
275 retirement/updating rounds; Y (x) = x+ x2 + ε, ε ∼ N (0, 1).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2

0
2

4
6

t=25

x

y

(a)

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

−3 −2 −1 0 1 2

0
2

4
6

t=75

x

y

(b)

●
●

●

●

●

●

●

●

●●
●●
●

●

●●

●

●
●

●

●

●

●

●

−3 −2 −1 0 1 2

0
2

4
6

t=150

x

y

(c)

●
●

●

●

● ●

●

●●

●

●

●
●●

●

●●
●

● ●

●

●

●

●

−3 −2 −1 0 1 2

0
2

4
6

t=300

x

y
(d)

As an illustration, consider the simple example where the response is a parabolic function, which
must be learned sequentially via x-data sampled uniformly in (−3, 2), with w = 25. The initial 25,
before any retiring, are shown in the first panel. Each updating round then proceeds with one retirement
followed by one new pair, and subsequent SMC update. Since the implementation requires at least five
points in each leaf, seeing four regimes emerge is perhaps not surprising. By t = 150, the third pane, the
ability to learn about the mean with just 25 degrees of freedom is saturated, but it is possible to improve
on the variance (shown as errorbars), which are indeed smaller in the final t = 300 pane. Eventually, the
points will cluster at the ends because that is where the response is changing most rapidly, and indeed
the derivative is highest there (in absolute value).

4.3. Active Discarding for Classification

For classification, predictive entropy is an obvious AL heuristic. Given a predictive surface
comprised of probabilities p`(x) for each class `, from DTs or otherwise, the predictive entropy at
x is −

∑
` p`(x) log p`(x). Entropy can be an optimal method for measuring predictive uncertainty,

but that does not mean it is good for AL. Many authors (e.g., [29]) have observed that it can be too
greedy: entropy can be very high near the best explored class boundaries. Several, largely unsatisfactory,
remedies have been suggested in the literature. Fortunately, no remedy is required for the AD analog,
which focuses on the lowest entropy active data, a finite set. The discarded points will tend to be far into
the class interior, where they can be safely subsumed into the prior. Their spacing and shifting of the
active pool is quite similar to discarding by ALC for regression, and so we do not illustrate it here.

Entropy 2013, 15 5524

4.4. Fast Local Updates of Active Discarding Statistics with Trees

The divide and conquer nature of trees—whose posterior distribution is approximated by thrifty, local,
particle updates—allows AD statistics to be updated cheaply too. If each leaf node stores its own AD
statistics, it suffices to update only the ones in leaf nodes which have been modified, as described below.
Any recalculated statistics can then be subsumed into a global, particle averaged, version. Note that
no updates to the AD statistics are needed when a point is retired since the predictive distributions
are unchanged.

When a new datapoint (x, y) arrives, the posterior undergoes two types of changes: resample then
propagate. In the resample step the discrete particle distribution changes, although the trees therein
do not change. Therefore, each discarded particle must have its AD statistics (stored at the leaves)
subtracted from the full particle tally. Then each correspondingly duplicated particle can have its AD
statistics added in. No new integrals (for ALC) or entropy calculations (for classification) are needed.
In the propagate step, each particle undergoes a change local to η(x)(i) ∈ T (i)

t . This requires first
calculating the AD statistic for the new (x, y) for each η(i)(x), before the dynamic update occurs, and
then swapping it into the particle average. New integrations, etc., need evaluating here. Then, each
non-stay dynamic update triggers swap of the old AD statistics in η(i)(x) for freshly re-calculated ones
from the leaf node(s) in T (i)

t+1. The total computational cost is in O(p2N) for incorporating (x, y) into
N particles, plus O(p2

∑N
i=1 |η(i)(x)|) to update the leaves. One might imagine a thriftier, but harder to

implement version, which waits until the end to calculate the AD statistic for the new point (x, y). But it
would have the same computational order.

4.5. Empirical Results

Here we explore the benefit of AD over simpler heuristics, like random discarding and subsetted
data estimators, by making predictive comparisons on benchmark regression and classification data. All
results use the publicly available R implementation of dynaTree available in CRAN, in a fashion
analogous to the demonstrator routines demo("online") and demo("elec2")

To focus the discussion on our key objective for this section, we employ moderate data sample sizes
in order to allow a comparison to full-data versions of DTs, and assess the impact of data discarding
on performance. In particular, we do not repeat here a comparison of full-data DTs to competitors,
which may be found in [1], but emphasize that discarding enables DTs to operate on (arbitrarily long)
data streams, where the original DTs, as well as their main GP-based competitors, will eventually
become intractable. This is better illustrated by the use of massive and streaming classification datasets
in Section 5.

4.5.1. Simple Synthetic Regression Data

We first consider data originally used to illustrate multivariate adaptive regression splines
(MARS) [30], and then to demonstrate the competitiveness of DTs relative to modern (batch)
nonparametric models [1]. The response is 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 plus N (0, 1)

additive error. Inputs x are random in [0, 1]5. To allow a direct comparison with [1] we run a shorter

Entropy 2013, 15 5525

experiment with a total sample size of 2, 000, but also include a longer experiment with sample size
20, 000. We considered four estimators: one based on 100 pairs (ORIG), one based on making use of the
entire dataset (FULL), and two online versions using either random (ORAND) or ALC (OALC) retiring
to keep the total active data set limited tow = 100. ORIG is intended as a lower benchmark, representing
a naı̈ve fixed-budget method; FULL is at the upper end.

The full experiment comprised 100 repeats in a MC fashion, each with new random training sets, and
random testing sets of size 1,000. N = 1, 000 particles and a linear leaf model were used throughout.
Similar results were obtained for the constant model.

Figure 2 reveals that random retiring is better than subsetting, but retiring by ALC is even better,
and can be nearly as good as the full-data estimator. This conclusion persists across both the smaller
and larger experiment, with only moderate performance improvements in the latter case. In fact, OALC
was the best predictor 16% and 28% of the time by average predictive density and RMSE, respectively.
The average time used by each estimator was approximately 1, 33, 45, and 67 seconds, respectively.
So random retiring on this modestly-sized problem is 2-times faster than using the full data. ALC costs
about 18% extra, time-wise, but leads to about a 35% reduction in RMSE relative to the full estimator.
The time-demands of the full estimator grow roughly as t log t, whereas the online versions stay constant.
This required a significant amount of computation for the 20,000 dataset, needing almost 4 GB of RAM,
whereas the online versions’ requirements were in the order of megabytes instead.

Figure 2. Friedman data comparisons by average posterior predictive density (higher is
better) and RMSE (lower is better). A suffix of “20”, as opposed to “2”, indicates the larger
experiment with a sample size of 20,000.

●
●●

●

●●●

●

●

●
●

●

●
●

or
ig

2

or
ig

20

or
an

d2

or
an

d2
0

oa
lc

2

ol
ac

20

fu
ll2

fu
ll2

0

0.10

0.15

0.20

0.25

0.30

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

or
ig

2

or
ig

20

or
an

d2

or
an

d2
0

oa
lc

2

ol
ac

20

fu
ll2

fu
ll2

0

1.0

1.5

2.0

2.5

Average predictive density
mean 5% 95%

orig2 1.8990 1.5177 2.3446
orig20 1.8449 1.4694 2.2701
orand2 1.1510 0.9237 1.4788
orand20 1.0875 0.8369 1.3291
oalc2 0.8996 0.7519 1.1967
olac20 0.8344 0.7038 1.0090
full2 0.8376 0.7520 0.9520
full20 0.7529 0.7060 0.8042

rmse

orig2 0.1326 0.1120 0.1529
orig20 0.1356 0.1173 0.1529
orand2 0.2116 0.1811 0.2381
orand20 0.2228 0.1906 0.2554
oalc2 0.2414 0.2026 0.2677
olac20 0.2547 0.2297 0.2764
full2 0.2530 0.2372 0.2670
full20 0.2695 0.2628 0.2772

Entropy 2013, 15 5526

It was also interesting to observe the tree characteristics across different methods. In the larger
experiment, OALC grew to an average depth of about 6 (12 leaves, with 8 active and 150 retired points
each), whereas FULL achieved depths of about 25, with about 20 points in each. These results emphasize
the fact that the bound on the active data pool in the online algorithms poses a constraint not only on
available information, but also on the maximum depth of the trees. Under such constraints, the small
difference in performance between FULL and OALC seems promising.

4.5.2. Spam Classification Data

Now consider the Spambase data set, from the UCI Machine Learning Repository [31]. The data
contains binary classifications of 4601 emails based on 57 attributes (predictors). We report on a similar
experiment to the Friedman/regression example, above, except with classification leaves and 5-fold CV
to create training and testing sets. This was repeated twenty times, randomly, giving 100 sets total.
Again, four estimators were used: one based on 1/10 of the training fold (ORIG), one based on the full
fold (FULL), and two online versions trained on the same stream(s) using either random (ORAND) or
entropy (OENT) retiring to keep the total active data set limited to 1/10 of the full set.

Figure 3 tells a similar story to the Friedman experiment: random discarding is better than subsetting,
but discarding by entropy is even better, and can be nearly as good as the full-data estimator. Entropy
retiring resulted the best predictor 7% of the time by misclassification rate, but never by posterior
predictive probability.

Figure 3. Spam data comparisons by average posterior predictive probability (higher is
better) and misclassification rate (lower is better) on the testing set(s).

orig orand oent full

0.
68

0.
70

0.
72

0.
74

0.
76

0.
78

pr
ed

ic
tiv

e
pr

ob
ab

ili
ty

●

●

●
●

orig orand oent full

0.
10

0.
12

0.
14

0.
16

m
is

s−
ra

te

Average predictive probability
mean 5% 95%

ORIG 0.69393 0.68103 0.70872
ORAND 0.70824 0.69651 0.72135
OENT 0.73761 0.72290 0.75019
FULL 0.77620 0.76968 0.78608

Misclassification rate

ORIG 0.14109 0.13014 0.15345
ORAND 0.13049 0.12162 0.14303
OENT 0.10294 0.09433 0.10968
FULL 0.09518 0.08807 0.10195

To give some indication of comparative performance, we run a single experiment of our
proposed method against several state-of-the-art online classifiers, implemented in [32]. In
addition to SPAM, we included a larger dataset, ELEC2 (comprising more than 25K obser-
vations), described in [33] and commonly used in studies of streaming classification perfor-

Entropy 2013, 15 5527

mance. However, as none of the classifiers in [32] is designed to handle concept drift, we
additionally randomly shuffled ELEC2 to remove any time-dependence. The results are shown
in Table 1. It is clear that the performance of the proposed method is competitive with the
state-of-the-art, with OENT featuring in both cases among the top 3 performers.

Table 1. Misclassification rate (lower is better) of variants of dynamic trees against four
state-of-the-art streaming classifiers described in [32].

FULL OENT ORAND MCLP Boost Random Forest MC Boost LaRank

SPAM 0.205 0.126 0.163 0.06 0.125 0.08 0.332
ELEC2 0.271 0.270 0.268 0.459 0.335 0.309 0.401

5. Handling Drift Using Forgetting Factors

The accumulation of historical information at the leaf priors introduced by data retirement may
eventually overpower the likelihood of active datapoints. This is natural in an i.i.d. setting, but may cause
performance deterioration in streaming contexts where the data generating mechanism may evolve or
change suddenly. To promote responsiveness, we may exponentially downweight the retired data history
s when retiring an additional point ym. The term power priors was coined in [34] to refer to the resulting
modified Bayesian update formula:

P (λ)(θ | D,D0) ∝ L(θ;D)Lλ(θ;D0)π0(θ)

In effect, the power prior is a family of priors for λ ∈ [0, 1], where λ = 0 is tantamount to ignoring the
data D0 and falling back to the data-independent initial prior, whereas λ = 1 is identical to an ordinary
Bayesian update, whereby no distinction is made between novel and historical data. The authors in [34]
proceed to prove that for λ ∈ (0, 1), we have:

P (λ)(θ | D,D0) = argmin
g
{λKL(g, P (θ | D)) + (1− λ)KL(g, P (θ | D,D0))}

This suggests that P (λ)(θ | D,D0) is an “interpolation” (in the KL-divergence sense) between P (θ | D)

and P (θ | D,D0), a desirable and intuitive property. In [35], it is also shown that P (λ)(θ | D)

may be understood as the maximum entropy distribution that lies within a certain distance α (in the
KL-sense) from P (θ | D,D0), where α is the Lagrangian version of the constant λ. This emphasizes
the dual property of power priors: in addition to downweighing historical information, they increase
the distribution’s uncertainty to reflect the fact that data has been discarded. This results in posterior
distributions that are more nuanced, and centered around more recent data statistics, mimicking the
behavior of Markov state-space model posteriors, without incurring the intractable computational
overheads of performing inference in the latter context. Further discussion of this important comparison
is offered in [35] wherein it is argued that, much like power priors, dynamic models too are often merely
operational devices ensuring temporal adaptivity, rather than faithful representations of the underlying
dynamics, in which case the risks of model mis-specification may exceed the benefits of coherent

Entropy 2013, 15 5528

inference offered by the presence of an explicit dynamic model. Quoting [35], “when we have only
vague knowledge concerning how the parameters actually vary, it may be better not to exceed it.”

In our context, use of power priors results in the following update:

π
(new)
λ (θ) ∝ L(θ | ym)Lλ(θ; (ys,xs){s})π0(θ)

For λ ∈ (0, 1), two effects are introduced. First, the overall “strength” of the prior relative to the
likelihood is diminished. Second, as the prior is sequentially updated, it will place disproportionately
more weight on recently retired datapoints as opposed to older retired data. For the leaf models
entertained in this paper, a recursive application of this principle, with λ ∈ (0, 1), modifies only
slightly the conjugate updates of Section 3, as follows. For the linear and constant models, we have(
A(new)

)−1
= λA−1 +X ′mXm, R(new) = λR+X′mym, s(new) = λs+y′mym, and ν(new) = λν+1, whereas

for the multinomial, we get a(new) = λa + zm. For λ < 1, κ and ν will be bounded above by their
limiting value 1

1−λ , irrespective of the total number of retired datapoints.
In [34], this family of priors is shown to satisfy desirable information-theoretic optimality properties.

Exponential downweighting as a means of enabling temporal adaptivity also has a long tradition in
non-stationary signal processing [14], as well as streaming classification [12], where λ is often referred
to as a forgetting factor. We only consider historical discarding in this section, since active discarding
relies on an i.i.d. assumption whereby poorly-fitted datapoints are thought of as necessarily “useful”,
rather than possibly obsolete, and are hence unsuitable for drifting contexts—an interesting research
problem in its own right, to be addressed in the future.

5.1. Streaming Regression

We now revisit the Friedman dataset from Section 4.5, and introduce smooth drift by replacing
the non-linear term 10 sin(πx1x2) with a time-varying version, 10at sin(πx1x2). The coefficient at is
allowed to vary smoothly between −1 and 3 over time as at = 2 sin(2πkt/1000) + 1. In this way k
controls the speed of the drift, and we consider two values thereof: k = 0.1, producing one full cycle
every 10,000 timesteps, and k = 0.5, producing one full cycle every 2,000 timesteps. The simulation
measures 1-step-ahead performance in terms of RMSE as follows: at each timestep t, it first generates 1

datapoint from the current model; this is first used as a test datapoint to measure the RMSE of the
dynamic tree (trained using data up to time t− 1); and it is then used to update the DT. A particle cloud
of moderate size is used (N = 50) throughout, with an active data pool of 500 datapoints, and a stream
length of 104. Each experiment is repeated 100 times. Note that Monte Carlo runs will differ from each
other due to random variation in both the particle cloud evolution, and the data itself.

In Figure 4, we plot the one-step-ahead RMSE for a sequence of λ values between λ = 1, where
retirement via Bayesian conjugate updating is performed, up to λ = 0.4, where retirement is minimal,
and the model effectively discards the data historically. For comparison, we additionally report the
performance of a model that is trained using the full data (FULL). There are several interesting points to
make. First, we compare the three methods that do not feature exponential forgetting factors: namely, the
FULL model; the online model “H1”, that retires discarded points via conjugate Bayesian updating; and
the online model “H0.4”, that mostly ignores discarded points and maintains very weakly informative
leaf priors. These three setups represent a decreasing reliance on historical information: from fully

Entropy 2013, 15 5529

remembering past data, to remembering them via the leaf priors, to mostly discarding them altogether.
A monotonic improvement in performance is observed (note the dotted line connecting the three setups),
suggesting that historical information in this context is outright detrimental, and should be altogether
ignored. And yet, introducing exponential forgetting at the leaf priors reveals a characteristic U-shaped
performance curve, notably lying strictly below the performance attainable by any of the above three
methods. The forgetting factor can be seen to negotiate the trade off between throwing away too much
information at one extreme (λ = 0.4), and retaining obsolete information at the other (λ = 1). This
is emphasized by comparing slow with fast drift: in the former case, λ = 0.98 performs best, whereas
λ = 0.95 is the best performer in the latter case. The error bars are tight enough to be confident in this
conclusion – although at times neighboring values feature some overlap, the overall shape of the curve
is highly statistically significant.

Figure 4. Slowly (k = 0.1, plot (a)) and rapidly (k = 0.5, plot (b)) drifting Friedman data
experiments. Performance is measured by one-step-ahead RMSE (lower is better) for the
FULL model, as well as the online version with various degrees of forgetting, ranging from
λ = 1 (no forgetting) to λ = 0.4.

●
●●

●

FULL H1 H0.99 H0.98 H0.97 H0.95 H0.9 H0.8 H0.7 H0.6 H0.5 H0.4

5
6

7
8

9
10

RMSE (lower is better)

(a)

●

●

●

●

●

●

● ●

●

●

●●

●●

● ●
●

FULL H1 H0.99 H0.98 H0.97 H0.95 H0.9 H0.8 H0.7 H0.6 H0.5 H0.4

7
8

9
10

RMSE (lower is better)

(b)

It is worth reiterating that, had we not considered the use of forgetting factors, empirical evidence
would have clearly argued in favor of noninformative priors over conjugate priors in drifting contexts,
a misguiding conclusion, since in fact “forgetful” conjugate priors, despite their simplicity, represent a
major performance improvement. We expect that this result may hold more generally in online Bayesian
updating in streaming contexts.

We now turn our attention to model complexity over time. In Figure 5, we investigate the effect
that discarding and forgetting have on model complexity, as measured by average tree height over time.
A useful aspect of our choice of simulator engine is the fact that as at increases in magnitude, the
non-linearity of the regression surface will accentuate, as the first term is responsible for much of its

Entropy 2013, 15 5530

complexity. We hence consider an A-B-A regime change setup over a longer time horizon ranging to
t = 3× 104, setting at = 10 between t = 10, 000 and t = 20, 000 (denoted by vertical lines in Figure 5),
and 0 otherwise, so that the complexity of the regression surface rises sharply and then drops again. We
deploy a DT without discarding (i.e., sequentially incorporating the full dataset), a DT with a fixed budget
of 100 active datapoints and no forgetting, and one with the same budget and mild forgetting (λ = 0.9).
First observe that capping the active data pool size significantly penalizes model complexity on the
whole, as opposed to maintaining the full dataset in active memory. Also note that all three methods
react to the rise in complexity at t = 104 by favoring deeper trees. However, once the data complexity
drops again at t = 2× 104, both FULL and H1 retain their average tree depth, failing to return to earlier
levels. By contrast, λ = 0.9 allows the model to adapt to the change and drop its complexity as soon as
the data allow it. This difference can be attributed to the fact that without forgetting, leaf priors tend to
persist, whereas exponential forgetting allows them to become eventually outweighed by the impact of
novel information. Conceptually, since the distant past is increasingly unlike the present, added degrees
of freedom are needed to accurately represent both in the same model.

Figure 5. Snapshots of the changing relationship between the response and the interaction
term in the Friedman data at various time intervals of the experiment (plot (a)). The true
regression surface complexity rises in t ∈ [104, 2 × 104]. The reaction of the average tree
height is depicted in plot (b), for FULL, H1, and H0.9.

● ● ●

● ●●

●

●●
●

●
●

●

●

●

● ●● ●
●

●
●● ●

●●
●

●

●●
●

●
●

● ●
●

●
●

● ●●
●

●

●
● ●

● ●●
● ●

●

●
● ●● ●

●

●
● ● ●●●

●
●●●● ●● ● ●

● ● ●●● ●
●●

●●● ●
●●

●
● ●

●
●

●●
●

● ●
●

●●
●

●
● ●●

●
● ●●● ●●

● ●● ●● ●
● ●

●
● ●

●
● ●

●

●
●

● ●

●●●
●

●
●●

●
●

●
●

●
●●

●
●

●
●

●

●
● ●●●●

●

●
●●

●
●

●

●
● ●●

● ●

●
● ●●

●
●

●
●●

●
●

●
● ● ●

●
● ●

●●
●

●
●

●
●

●

● ●
●

● ●●
●

●
●

● ●
●

●●

●
●● ●●

●

● ●

●
●●

●

●

● ●
● ● ●●

●

●
●

● ●

●

●
●

●

●
●●

●
●

●●
● ●●

●

●● ●
● ●

●
●

●

●●
●●

●
●●

● ●
●

● ●

● ●● ● ● ●
● ● ●● ●

● ●

●
●

●
●

●
●

●
●

●
●

●

●

●● ●
● ●●● ●

●
●

● ●
● ●●● ●

●
● ●

●
●●● ●●

●

●●

● ●
●

● ● ●●
●
● ●●●

●● ●
●
●

●● ●

●
●

●

●

●
●

●
●

●
● ●

● ● ●
●

●

●● ●●●●
●●

● ●● ●
● ●

●
● ●

● ●● ●
●

●

●
●

●●
● ● ●

●
●

● ●
●● ●

●
●●

●●
●

●
●

●
●

●
● ●

● ●
●●

●
● ●

●

●

●●
●

●● ● ●●
● ● ●

●

●
●● ● ● ●

● ●
●

●

●
●

● ●

●
●● ● ●

●
●

●●

●

● ●●
●

● ●● ●
●

●
● ●● ●

●
● ●●●

●● ●
●●●

●● ● ●
● ●●● ●● ●

●

●

●
●● ●

●●
● ●

●
● ●

● ● ●●●
●●

●●
●

●
●

●
●●● ●●

●
●

●
●● ●

● ●
●

●
●

●

●

●

●
●

●
●●

● ●
● ●● ●

● ●●●
●

●●

●

● ●● ●
●● ●● ●

●

●

●●
●

●
●●

●
●

●●
● ●

●
● ●

●●●
●● ●● ● ●

●
●

● ●
●● ●● ●● ●

●
●

●●●
●

●
●

●

●
● ● ●● ● ●

●
●

● ●
●

●
●●

●
●

●
●●●

●
● ●

●
● ● ●

●●
● ●

●
●

● ●
●● ●

●

●●

●

●
● ●●

● ●●●
● ● ●

●
● ●●●

●
● ● ●●

● ●● ●●
●●●

●●
●

●●●
●

● ●
●

●

●
●

●

●
● ●●

●
●● ●

●
●

●
●

● ●
●

●
●

●● ●
●

●
●

●
●

● ●●
● ●

● ●● ●

●
●

● ●
●

● ●

●

●

●

●
●

● ● ●
●

●
●

●
●

●
● ●●
● ●

●●
●

●
●

●
●●

●

●

●●
●

●●
●

●
●

● ●● ●
●

●
●●

●
● ●●

●
● ●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●
●● ● ●●

●

● ●
●

●●●
● ●

●
●

●●
●● ● ●

●● ●● ●
●

●

●●
●

● ●● ●
●

●

●●● ●●
●●

●
●

●
●

●
●

●
● ●● ● ●●

● ●
●●

●
●

●
● ●

● ●
●●●●●

●

●
● ●

●

●
● ● ●

●
●●

●●
● ●● ●

●
● ●

●● ● ●
●

●

●
● ●

●

●

● ●●
●

●
●

●
●

●

●
●

● ● ●● ●
●●

● ●
●

●

●

●●
●●

●● ●
● ●

●

●
●

●
● ●

●● ●●
●

●
● ●

● ● ●
●

●
●

●
●●

●
●

● ● ●
●

●
●

●
● ●●

●
●●

●
●

●●
● ●

●

●●
●

●●
● ●●

●
●

● ●● ●

0.0 0.2 0.4 0.6 0.8

0
20

40
60

80
12

0

y

t = 1 to 9991

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.0 0.2 0.4 0.6 0.8

0
20

40
60

80
12

0

y

t = 11001 to 19991

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●
●

●

●
●●

●
●

●●
●

●
●

●
●

●
●

●

●
●●

●

● ●●
●● ●●

● ●
●

●
●

●
●

●
●●

●
●

●● ●
●●●

●●● ●
●●

●●
●

●

●
●

● ●
●

●
● ●

● ●●● ●●
●●

● ●●
●

●●
●

●
●

●
●● ● ●

●
●

●

●●

●
●

●
●●

●
● ●

●
●● ●● ●

●● ●●
●

●
● ●●

●
●●

●●
●

●●●
●●

● ●

●
●

●
●

●

● ●
●●●

● ● ●

● ●
● ●

●● ●
● ●●

●●● ●●●●

●●
●

●
●● ●

●

●●
● ●

●
●●

●
●

● ●

●
● ●● ● ●

●
●●

●● ●

●
●

●
●

●● ●
●

●●
●

●●
●

●●● ●
● ●●

●●
●●

● ●
● ● ● ●

●
●

● ●
●

●
●●

●
●

● ●
●

●

● ●

●
●

●
● ●

● ●
●

●
●

●
●

●

●●
●

● ●
●

●

●
● ● ●● ●

●

●

●●
●

●
●

●
●

●●
●

● ●
●

●

● ●
●

●
●

●

●●
●

● ●● ●
●

●
●●

●
●

●

●

● ● ●
●

●
●

●
●

●
● ●●

●●●
●

●

● ●

●
●●

● ●● ●

●●
●

●

● ●●

●
● ●

●

●
●

●
●● ●

●
●

●
●●●

● ●●
●

●
●

●●

●
●

● ●
●●

●
●

●

●

●
●

●
●●

●
●

●● ●
●

● ●
●●

●●
●

●
●

●●
●

●
● ●

●
●

●
●

●
●

●

●
●●● ●

●
●

● ●
●

●
●

●●●

●

●
● ●

●

● ●
●●●

●

●●
●

●●
●

●
●

●
●●

● ● ●
●

● ●
●

●●
●

●

●

●
●●

● ●
●

●
●

●
●

●●● ●
●

●

●
●●

●

●●
●

●●
●

● ●●● ●
●

● ●●

●

●
●

● ●●
● ●

●

● ● ●
●

●

●
●

●●

●
●

●
●

●●

●
●●

●●●
● ●

●
●● ●

●

●●
●●

●
●●● ●● ●

●●

●

●
●

●
●

●
●

●

● ●● ●

● ● ●

●

●
●●

●
●

● ●●

●

● ●●

●

●
● ● ●
● ●●

●●
●

●
●

●

● ●

●

●
●

●

●●
●

● ●
●

●● ●
● ●●

●

● ●

● ●

● ●
●

●●
●

●
● ●●

●

●●

●

●
● ● ●

●
●●

●
●●●

●

●
● ●

●
●

●

●
●

●
●

●

●

●

●●

●
● ●

●●
● ●

●●

●
●

●
●

●
● ●
●●

● ●

●●

●
● ●

● ●●

● ●

●

●
●

● ●
●

●
●

● ●
●●

●

●
●● ●●●

●
●

●● ●●● ●●●
●

● ●
●

●
●●●● ● ●

●
●

●

●

●● ●●
●
● ●
● ●

●
●

●
●● ●

●

●
● ●

●
●

●
●●●

●

●

● ●
●

●●● ●
●

●
●

●

●●
●

●
● ●

●
●● ●●●●

●

●
● ●●● ●● ●●

●

●

●

● ●

●

●
●

● ●

●
●●

●
●

●
● ●● ●

●●
●● ●

● ●●●
●●

●
●

●
●

●

●

●

●● ●
●

●●

●
●

●

●

●●
●

● ●
●

●●
●

●
●

●
●

●
●●

●

●
●●

●
● ● ●

●
●

●
●

●
●

● ● ●

●
●

●
●

●●●
●

●●
●●

●
● ●

●●
●●●

●
●●●

●●
●●●

●

● ●
●

● ●
●●

●
●

●
●

●

●
●

●
●

● ●●

●
● ●●

●

●●

●
● ● ●

●
●

● ●
●

●
●

●● ●●●

●
●●

●

●
●●● ●

●
●

●

●
●

●

●●
●

●

●●
●

●● ●●

● ●
●●

●
●

●
●

● ●
●●

● ●● ●
●

●
● ●

● ●
●● ● ●

●

●
● ●●

0.0 0.2 0.4 0.6 0.8

0
20

40
60

80
12

0

X_1 X_2 interaction term

y

t = 20001 to 29991

(a)

0 5000 10000 15000 20000 25000 30000

5
10

15
20

Time

A
ve

ra
ge

 tr
ee

 h
ei

gh
t

FULL
H1.0
H0.9

(b)

Entropy 2013, 15 5531

5.2. Streaming Classification

We now turn to streaming classification. We again adopt the one-step-ahead performance paradigm,
using aggregate measures of classification performance to avoid issues resulting from imbalanced
classes, namely the AUC, and a recently proposed alternative, the H-measure [36]. Throughout, we
compare with alternative classifiers, to give a balanced view of performance. Please note that this is not
intended as an exhaustive comparative study, since not all relevant methods were publicly available or
directly applicable (e.g., CVFDT does not support real-valued covariates). We have compared against
LDA-AF [12], a streaming linear parametric classifier that claims very stable long-term performance;
and random forests [37] implemented over a sliding window (for lack of a more principled streaming
version thereof in the literature), where the window size is set to be equal to the active data pool, namely
w = 500. We will look at two datasets, one real and one synthetic, both of length n = 100, 000. We
deploy three versions of dynamic trees: “FULL (n = 30×103)” where 30K datapoints are incrementally
incorporated without retirement, and no update occurs thereafter; “H1.0”, “H0.5” and “H0.01”, with
historical retirement as before.

We start by considering a synthetic dataset, designed to produce a non-linear decision boundary, via an
XOR problem that rotates in space over time so that older data become increasingly misleading, referred
to as MOVINGXOR, of length n = 100×103. In Figure 6 (left) we show how classification performance
evolves over time in terms of AUC measured over a sliding window. The overall performance in
terms of both AUC and the H-measure is shown in the leftmost column of Table 2. Data discarding
hardly improves performance when λ = 1, whereas for λ = 0.5 significant improvement is possible.
In Figure 6, it is visually obvious that this difference is because of the cumulative detrimental effect of
obsolete, misleading data which affects both FULL and H1.0 almost equally—their performance only
recovering near the end of the simulation where the decision boundary returns to its initial position.
RF-W is inferior to H0.5, but stable over time, thanks to the sliding window implementation. In this
particular experiment, LDA-AF performs very poorly as expected, given that the true decision boundary
is highly non-linear at any given point in time.

Table 2. Overall performance in terms of Area Under the Curve (AUC) and H-measure (H)
(in both cases higher is better), for FRAUD and MOVINGXOR.

MOVINGXOR FRAUD
AUC H AUC H

FULL 0.570 0.024 0.661 0.121
H1.0 0.526 0.029 0.805 0.278
H0.5 0.684 0.124 0.952 0.708
LDA.AF 0.504 0.001 0.945 0.748
RF.W 0.662 0.096 0.933 0.710

We now consider a real dataset, FRAUD, also of length n = 100× 103, containing information about
credit card transactions, and their respective status as legitimate or fraudulent, determined by experts

Entropy 2013, 15 5532

(see [12] for more details). An additional challenge with FRAUD is that it is an extremely imbalanced
dataset, with the vast majority of examples being non-fraudulent. The presence of drift is again suggested
by the deteriorating performance of both H1.0 and FULL over time. Again, H0.5 manages to remain
up-to-date and maintain a stable performance, comparable (and slightly superior) to RF-W. Another
striking result is that LDA-AF, which was vastly inferior in the synthetic example, dominates here,
obtaining an advantage over the best dynamic tree. This result suggests that the true decision boundary
is drifting but at any given time remains close to linear. This would put both the DT and RF-W in a
disadvantageous position, as trees with constant leaves are not able to easily capture a linear decision
boundary. We note however that a DT with linear classification leaves (e.g., logistic regression leaves) is
a straightforward extension which we are considering in future work. Note that in terms of overall AUC,
H0.5 still outperforms LDA.AF (Table 2). This does not necessarily contradict Figure 6, since aggregate
measures of performance such as the AUC or the H-measure perform complex operations over the data,
rather than simple averages.

Figure 6. Average classification performance in terms of AUC for the FRAUD dataset (plot
(a)) and MOVINGXOR (plot (b)) datasets.

20 40 60 80

0.
50

0.
55

0.
60

0.
65

0.
70

Time (x10^3)

A
U

C

FULL
H1
H0.5
LDA.AF
RF.W

(a)

20 40 60 80

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Time (x10^3)

A
U

C

FULL
H1
H0.5
LDA.AF
RF.W

(b)

The temptation to produce a “best-performing” method must be balanced against the inescapable fact
that the ranking of a classifier will in general depend on the application and the dataset. Still, these
experiments give a strong signal that the use of forgetting factors can drastically improve performance of
flexible Bayesian tools for online classification in the presence of concept drift, without compromising
on coherence or interpretability.

6. Conclusions

In this work, we strive to fully utilize the potential of Bayesian machinery in the context of streaming
non-parametrics. We propose data retirement via conjugate Bayesian updating in the context of SMC

Entropy 2013, 15 5533

inference for a dynamic tree model, preserving non-parametric flexibility while enabling constant
memory online operation. Second, the availability of tractable predictive distributions allows us to
devise computationally efficient active retirement heuristics, hence maintaining a fixed budget of highly
informative datapoints. Both features minimize information loss incurred by single-pass processing.
Finally, we deploy a maximum entropy heuristic inspired from exponential forgetting factors to introduce
temporally adaptive informative priors, and handle concept drift without the need for computationally
expensive explicit dynamic modeling. This results in a novel, powerful algorithmic scheme for
non-parametric regression and classification tailored to the Big Data era. As future work, we intend
to pursue techniques for automatic tuning of forgetting factors in streaming contexts, and their interplay
with active retirement heuristics.

Acknowledgments

The first author was supported by a Cambridge Statistics Initiative Research Fellowship at the
Statistical Laboratory, University of Cambridge, for a large part of this work.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Taddy, M.; Gramacy, R.; Polson, N. Dynamic trees for learning and design. J. Am. Stat. Assoc.
2011, 106, 109–123.

2. Widmer, G.; Kubat, M. Learning in the presence of concept drift and hidden contexts. Mach. Learn.
1996, 23, 69–101.

3. Hulten, G.; Spencer, L.; Domings, P. Mining high-speed data streams. In Proceedings of the Sixth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’00,
Boston, MA, USA , 20–23 August 2000; pp. 71–80.

4. Hulten, G.; Spencer, L.; Domingos, P. Mining Time-Changing Data Streams. In Proceedings of
the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’01, San Francisco, CA, USA, 26–29 August 2001; ACM: New York, NY, USA, 2001;
pp. 97–106.

5. Basak, J. Online adaptive decision trees. Neural Comput. 2004, 16, 1959–1981.
6. Street, W.N.; Kim, Y. A Streaming Ensemble Algorithm ({SEA}) for Large-Scale Classification.

In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD’01, San Francisco, CA, USA, 26–29 August 2001; ACM: New York, NY,
USA, 2001; pp. 377–382.

7. Kuncheva, L. Classifier Ensembles for Changing Environments. In Proceedings of the 5th
International Workshop on Multiple Classifier Systems, Cagliari, Italy, 9–11 June 2004; Roli, F.,
Kittler, J., Windeatt, T., Eds.; Springer Verlag: Berlin Heidelberg, Germany, 2004; Volume 3077,
pp. 1–15.

Entropy 2013, 15 5534

8. Wang, H.; Fan, W.; Yu, P.S.; Han, J. Mining Concept-Drifting Data Streams Using Ensemble
Classifiers. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD’03, Washington DC, WA, USA, 24–27 August 2003; ACM:
New York, NY, USA, 2003; pp. 226–235.

9. Kolter, J.; Maloof, M. Dynamic Weighted Majority: A New Ensemble Method for Tracking
Concept Drift. In Proceedings of the Third IEEE International Conference on Data Mining,
Melbourne, FL, USA, 19–22 November 2003; pp. 123–130.

10. Muhlbaier, M.; Polikar, R. An ensemble approach for incremental learning in nonstationary
environments. Lect. Notes Comput. Sci. 2007, 4472, 490–500.

11. Hashemi, S.; Yang, Y. Flexible decision tree for data stream classification in the presence of concept
change, noise and missing values. Data Min. Knowl. Discov. 2009, 19, 95–131.

12. Anagnostopoulos, C.; Tasoulis, D.K.; Adams, N.M.; Pavlidis, N.G.; Hand, D.J. Online linear and
quadratic discriminant analysis with adaptive forgetting for streaming classification. Stat. Anal.
Data Min. 2012, 5, 139–166.

13. Kuncheva, L.; Plumpton, C. Adaptive learning rate for online linear discriminant classifiers. In
Structural, Syntactic, and Statistical Pattern Recognition, Lecture Notes in Computer Science;
Springer: Berlin Heidelberg, Gemery, 2008; Volume 5342, pp. 510–519.

14. Haykin, S. Adaptive Filter Theory; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1996.
15. Bottou, L. Stochastic Learning. In Advanced Lectures on Machine Learning; Bousquet, O., von

Luxburg, U., Eds.; Springer Verlag: Berlin, Germany, 2004; Volume 2600, pp. 146–168.
16. Saad, D. On-Line Learning in Neural Networks; Cambridge University Press: Cambridge,

UK, 1998.
17. Chipman, H.; George, E.; McCulloch, R. Bayesian CART model search (with discussion).

J. Am. Stat. Assoc. 1998, 93, 935–960.
18. Chipman, H.; George, E.; McCulloch, R. Bayesian treed models. Mach. Learn. 2002, 48,

303–324.
19. Gramacy, R.B.; Taddy, M.A. dynaTree: Dynamic Trees for Learning and Design, R Package

Version 2.0; Booth School of Business, University of Chicago: Chicago, IL, USA, 2011.
20. R Development Core Team. R: A Language and Environment for Statistical Computing; R

Foundation for Statistical Computing: Vienna, Austria, 2010.
21. Carvalho, C.M.; Johannes, M.; Lopes, H.F.; Polson, N.G. Particle learning and smoothing. Stat.

Sci. 2010, 25, 88–106.
22. Lakshminarayanan, B.; Roy, D.M.; Teh, Y.W. Top-Down Particle Filtering for Bayesian Decision

Trees. In Proceedings of the The 30th International Conference on Machine Learning, ICML 2013,
Atlanta, GA, USA, 16–21 June 2013.

23. O’Hagan, A.; Forster, J. Kendall’s Advanced Theory of Statistics, Volume 2B, Bayesian Inference;
Arnold Publishers: London, UK, 2004.

24. Sherman, J.; Morrison, W. Adjustment of an inverse matrix corresponding to a change in one
element of a given matrix. Ann. Math. Stat. 1950, 21, 124–127.

25. MacKay, D.J.C. Information–based objective functions for active data selection. Neural Comput.
1992, 4, 589–603.

Entropy 2013, 15 5535

26. Cohn, D.A. Neural Network Exploration using Optimal Experimental Design. Neural Networks
1996, 6, 1071–1083.

27. Seo, S.; Wallat, M.; Graepel, T.; Obermayer, K. Gaussian Process Regression: Active Data
Selection and Test Point Rejection. In Proceedings of the IEEE International Joint Conference
on Neural Networks, Como, Italy, 24–27 July 2000; Volume III, pp. 241–246.

28. Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B. Bayesian Data Analysis; CRC Press: Florida,
FL, USA, 2003.

29. Joshi, A.; Porikli, F.; Papanikolopoulos, N. Multi-Class Active Learning for Image Classification.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’09,
Miami, FL, USA, 20–25 June 2009.

30. Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67.
31. Asuncion, A.; Newman, D. UCI Machine Learning Repository. Available online:

http://www.ics.uci.edu/ mlearn/MLRepository.html/ (accessed on 18 September 2012).
32. Saffari, A.; Leistner, C.; Santner, J.; Godec, M.; Bischof, H. On-Line Random Forests. In

Proceedings of the 3rd IEEE ICCV Workshop on on-Line Computer Vision, Kyoto, Japan,
27September–4 October 2009.

33. Harries, M. Splice-2 Comparative Evaluation: Electricity Pricing; Technical Report TR-9905;
School of Computer Science and Engineering, University of New South Wales: Sydney,
Australia, 1999.

34. Ibrahim, J.; Chen, M.; Sinha, D. On optimality properties of the power prior. J. Am. Stat. Assoc.
2003, 98, 204–213.

35. Kulhavy, R.; Zarrop, M. On a general concept of forgetting. Int. J. Control 1993, 58, 905–924.
36. Hand, D. Measuring classifier performance: A coherent alternative to the area under the ROC

curve. Mach. Learn. 2009, 77, 103–123.
37. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32.

c© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

	Introduction
	Relevant Work on Streaming Regression and Classification

	Dynamic Trees
	Bayesian Static Treed Models
	Dynamic Trees
	Sequential Monte Carlo

	Datapoint Retirement
	Conjugate Informative Priors at the Leaf Level
	Managing Informative Priors at the Tree Level
	Computational Complexity
	Discussion: Effect of Retirement on SMC Properties

	Active Discarding
	Active Learning versus Active Discarding
	Active Discarding for Regression
	Active Discarding for Classification
	Fast Local Updates of Active Discarding Statistics with Trees
	Empirical Results
	Simple Synthetic Regression Data
	Spam Classification Data

	Handling Drift Using Forgetting Factors
	Streaming Regression
	Streaming Classification

	Conclusions

