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Abstract: Atomic structure models of multi-principal-element alloys (or high-entropy alloys) 

composed of four to eight componential elements in both BCC and FCC lattice structures are 

built according to the principle of maximum entropy. With the concept of entropic force, the 

maximum-entropy configurations of these phases are generated through the use of Monte 

Carlo computer simulation. The efficiency of the maximum-entropy principle in modeling 

the atomic structure of random solid-solution phases has been demonstrated. The bulk 

atomic configurations of four real multi-principal-element alloys with four to six element 

components in either BCC or FCC lattice are studied using these models. 

Keywords: high-entropy alloys; multi-principal-element alloys; entropic force; atomic 

structure modeling; Monte Carlo simulation 
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1. Introduction 

The discovery of high-entropy alloys [1,2] renewed people's understanding of the importance of 

entropy in the structure formation of solid state matter. The concept of entropy was introduced by 

Clausius in 1865 [3]. Boltzmann gave a theoretical explanation for entropy from the viewpoint in 

microscopic scale [4]. By definition, entropy is a measure of disorder, randomness, or multiplicity in a 

physics system. The condition of thermodynamic equilibrium for a condensed-mater system is given 

by the minimization of Gibbs free energy, G = U + PV − TS, where U, S, P, V and T are the internal 

energy, entropy, pressure, system volume, and temperature, respectively. Particle systems composed of 

atoms, ions, or molecules can exist in various states from gas, liquid to solid under different 
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temperature and pressure conditions. The structure stability of a solid phase is closely related with its 

surrounding environment. A stable phase at high temperature can be unstable or metastable in low 

temperature, and vice versa. Under ambient atmospheric pressure conditions, the internal energy and 

the entropy of a system are the two important factors of phase stability at a finite temperature, 

especially entropy which acts the leading role under high temperature conditions. The formation of 

solid solutions in multi-component high-entropy alloys originates from the high value of their 

mixed/configurational entropy as the alloy solidifies [1]. The higher the configurational entropy, the 

easier the formation of random solution phases at high temperatures. Therefore, it is essential to 

explore the atomic structures characterized by the maximum entropy for these unique alloys having 

random solid solutions. 

High-entropy alloys generally contain five or more componential elements in nearly equimolar 

composition [1,5–7]. In this respect, high-entropy alloys are also called multi-principal-element (MPE) 

alloys. The successful experimental preparation of quaternary high-entropy alloys with compositions 

of WNbMoTa [8] and FeCoCrNi [9] were reported. It is astonishing that some high-entropy alloys 

possess quite simple lattice structures, despite their highly complicated elemental compositions. These 

alloys are found greatly to favor close-packed and disordered crystal structures. The most commonly 

seen structure patterns of high-entropy alloys form body centered cubic (BCC) [1,6–9] or face centered 

cubic (FCC) [1,5,7] lattices. High-entropy alloys with hexagonal close packing (HCP) structure have 

been predicted theoretically, but have not yet been realized experimentally . 

The principle of maximum entropy (MaxEnt) is a combinatorial theory comprising Shannon’s 

entropy in information theory [10] and the Boltzmann-Gibbs entropy in statistical mechanics for 

estimating probability distribution from a few limited pieces of information [11]. It uses a variational 

method for the analysis of complicated systems. In physics, the particle distribution of maximum 

entropy corresponds to the macrostate that has the most microstates. The successes of the MaxEnt 

principle have been demonstrated in various applications in the study of condensed matters [12–17]. 

In this work we build atomic structure models of bulk MPE alloys with BCC and FCC lattices for 

compositions ranging from four to eight principal elements according to the MaxEnt principle. The 

entropic force for the particle distribution in a closed system is defined. The MaxEnt configuration is 

generated by Monte Carlo simulation through entropic force minimization. Based on the built models, 

the atomic structure features of bulk MPE alloys are analyzed. The optimized lattice structures and 

lattice distortion parameters of several real quaternary, quinary, and senary MPE alloys are obtained 

using the models built in this work. 

2. Method and Algorithm in Model Building 

The entropy of an alloy system mainly consists of four parts: electronic entropy, magnetic entropy, 

vibrational entropy and configurational entropy or entropy of mixing. The electronic entropy is caused 

by the variation of electron distribution with structure configuration and temperature. The contribution 

of electronic entropy to the system free energy is usually very small. Alloys with iron, nickel, and 

cobalt elements may have magnetic entropy. The magnetic entropy describes the change of material 

magnetization with temperature and magnetic field [18]. Material magnetization goes to zero at very 

high temperature, therefore the effect of magnetic entropy on the formation of random solid 



Entropy 2013, 15 5538 

 

 

solutions can be omitted. The vibrational entropy comes from the lattice vibration of atoms in a solid 

under finite temperature conditions. The configurational entropy is related to the number of possible 

configurations of a system. Besides, there is zero point entropy in solids. Zero point entropy arises 

from the existence of the frozen-in phase which is stable at higher temperature and is not able to 

reach real thermal equilibrium as the material cools to 0 K [19]. The configurational entropy of  

high-entropy alloy molten solutions or melts plays the decisive role in the structure formation of this 

kind of novel alloy. 

The configurational entropy of multi-component alloy melt is very like the entropy of mixing in 

ideal gases. Like the mixing entropy of ideal gases, the configurational entropy of n-component alloy 

melt is defined by: 
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where xi is the molar concentration of the ith element which satisfies the following equation: 
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R is the gas constant. It should be noted that Equation (1) is also valid for random solid solutions of a 

multi-component alloy.  

A Lagrangian equation can be constructed from Equations (1) and (2) according to the MaxEnt 

principle [10]: 
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The xi, for the maximum entropy distribution, is solved from Equation (4): 
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Noticing that 
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* 1, one finally gets the condition of molar concentration under the maximum 

configurational entropy for a n-component alloy to be: 

n
xi

1*  , (6)

i.e., all the componential elements should have the equimolar concentration. 

The free space of a particle is defined as its maximum non-overlapping space with the other 

particles. We define vi as the free space of the particle i for a system with N identical particles in 

space V. Following the above procedure, it is easy to prove that vi = V/N under the MaxEnt 

condition, i.e., the identical particles should have the equal maximum free space V/N within the 

limitation of maximum entropy. This is a state of uniform spatial distribution of particles. 

Therefore, the maximum entropy state has the configuration with a uniform particles distribution 

over the system. 
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According to the MaxEnt principle, every particle is striving for the maximum free space in the 

system. The driving force for this trend is called as the entropic force. The definition of the entropic 

force is given by [20,21]: 

)()( XXF X ST , (7)

where T is temperature, S(X) is the entropy under the system configuration X. Since there is a 

proportional relationship between entropy and the particle's free space for a closed particle system with 

a fixed volume V, the contribution of particle i to the system entropy can be written as: 

)()( rr ii kvs  , (8)

where vi(r) is the free space of particle i at position r, k is a constant. Derived from Equations (7) and (8), 

the entropic force fi(r) on particle i is given by: 

)()( rrf r ii vkT . (9)

Equation (9) indicates that the entropic force fi(r) is pointed to the direction of vi(r) increase. Hence, 

the MaxEnt configuration can be reached through minimizing fi(r) or maximizing vi(r) for each particle 

in the system. 

3. Results and Analyses 

3.1. Binary Alloys 

The atomic structure models of BCC binary random-substitution alloys Fe1-xCrx (x = 0.085, 0.111, 

0.206) are created to illustrate the MaxEnt algorithm for the atomic structure modeling of MPE alloys 

in the follows. 
A n  n  n BCC lattice of Fe matrix is created firstly. Then, the Fe atoms at some random sites 

are replaced by the solute atoms Cr. In the next step, this initial configuration is optimized according 

to the MaxEnt principle in the following way: The state of the maximum system entropy for this 

binary phase should be that each of Cr atom approaches to its maximum free space. Let ir0  to be the 

distance of atom i to its nearest same-element neighbor and rf = ir0 /2, the volume of the atom's free 

space can be approximately calculated by 3/4 3
fi rv  . As for a system with particles in a closed 

space, the maximum free space means that there is no any other same-element atom within this range. 

This condition for a solid solution is equivalent to that where all solute atoms should be separated as 

far as possible. A Monte Carlo simulation code in Python language [22], numerically enhanced by 

NumPy [23], was developed to perform the maximum-entropy optimization for the above initial 

random configuration. The main part of the optimization program is constituted by a big repeat loop. 

The neighboring status quo of the solute atom i is analyzed at first in each loop, then the code 

invokes a Monte Carlo routine to seek a possible position replacement of solute atom i with a Fe 

solvent atom through random sampling algorithm. The position-replacing action is executed only 

when the distance of solute atom i, at the new position, to its nearest solute neighbor becomes 

longer than at its original one. The solute Cr atoms are restricted to replace the Fe atom only on 

the strict BCC lattice sites during the optimization process. The loop terminates until the MaxEnt 
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condition is satisfied. Our created 4  4  4 atomic structure models of binary alloys Fe1-xCrx are 

illustrated in Figure 1. 

Figure 1. 4  4  4 atomic structure models of binary alloys Fe1-xCrx. The ratios of solute 

to solvent atoms in Figure 1a to 1c are 16:173, 21:168, and 39:150, respectively. Cr atoms 

(black balls) are dispersed in the Fe (transparent balls) solvent matrix. 

 
(a) (b) (c) 

The created models are carefully examined to assess the degree of compliance with the MaxEnt 

principle. The results of model structure analysis are given in Table 1. The table shows that the averaged 

distance to the nearest neighbors, 0r , monotonically decreases with the increase of solute atoms which 

is in consistent with the fixed model volume.  r gives the difference between the maximum rmin and 

minimum rmax distances for the nearest neighbors among solute atoms. The smaller the value, the more 

uniform the distribution of the solute atoms. It was suggested that the random packing of hard spheres in 

three dimensional space has a density limit between 55.5% [24] and 63.4% [25]. The packing density of 

the atoms’ free-space balls in our built models is a little smaller than the low limit. The main reason 

can be understood from the fact that there is a BCC lattice-site restriction for the positions of solute 

atoms in the built models which reduces the packing efficiency to a certain extent. Another reason can 

be attributed to the small model size. 

Table 1. Structure analysis of Fe1-xCrx models. The length unit is the lattice constant a0  

of FeCr alloys. 

Phase 0r   rmin  rmax   r Density (%) 

Fe0.915Cr0.085 2.2361 2.2361 2.2361 0.0000 52.6 

Fe0.889Cr0.111 2.0684 2.0000 2.1795 0.1795 54.3 

Fe0.794Cr0.206 1.4705 1.4142 1.6583 0.2441 52.0 

3.2. BCC Multi-Principal-Element Alloys 

Bulk atomic structure models of BCC MPE alloys for compositions from four to eight componential 

elements were created in this study. These models can be used in the studies for any four- to eight-element 

MPE alloys through appropriate element substitution. Since there is not a major element to act as 

solvent in MPE alloys, all atoms from the componential elements were randomly filled up in a cubic 

box by a n  n  n BCC lattice at the beginning of the model building. Then these atoms undergo 

distribution optimization according to the MaxEnt principle for the configuration with their maximum 

free space, i.e., all the same-element atoms should be separated as far as possible. Here, unlike the case 

of a binary phase, the condition for different-type atoms replacement is that the sum of the distances 
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for the two replacing atoms to their nearest same-element neighbors should be increased, and no any 

neighboring-distance decrease should be caused after the replacement. There could be a small 

deviation from the equimolar concentration for some elements in the model owing to the limitation of 

total lattice-site number in a n  n  n BCC box. The influence of this deviation to the final model 

structure can be omitted for this negligible composition fluctuation (within 1.0%). 

Figure 2 graphically illustrates some representative models selected from each type of these MPE 

phases. The information on the structure analyses of these models is presented in Table 2. The 

shortest distance of an atom is the distance of the atom to its nearest same-element atom. The table 

shows that same-elements as the first nearest neighbor can all be avoided for those BCC MPE phases 

with five or more elements in our MaxEnt models. Most of the same elements in quaternary and 

quinary BCC MPE phases are in the second nearest neighborship. This peak area moves to the third 

nearest neighbor as the element number increases. The uniform elemental distributions in these 

models are verified by the fact that the shortest distances between most of the same elements are 

located in a narrow range. 

Figure 2. Atomic structure models of four- to eight-element BCC MPE phases by MaxEnt 

method. (a) 8  8  8 quaternary phase, (b) 8  8  8 quinary phase, (c) 8  8  8 senary 

phase, (d) 8  8  8 septenary phase, (e) 8  8  8 octonary phase. 

Table 2. Distribution of the shortest distances between the same-element atoms on the 

nearest neighbor lattice sites in the created BCC and FCC MaxEnt models. The distances 

for the successive nearest neighbor sites in BCC and FCC lattices are 2/3 0a , a0, 02a ,...; 

and 2/2 0a , a0, 02/3 a ,..., respectively. 

Phase Cell type 
Distance distribution in nearest neighbor sites (%) 

1 2 3 4 5 6 

Quaternary phase 
BCC 8.5 83.0 6.9 1.6 0.0 0.0 

FCC 74.3 23.8 1.9 0.0 0.0 0.0 

Quinary phase 
BCC 0.0 65.5 30.6 3.4 0.5 0.0 

FCC 47.3 45.0 7.5 0.2 0.0 0.0 

Senary phase 
BCC 0.0 41.4 52.4 6.0 0.2 0.0 

FCC 17.2 64.9 17.7 0.2 0.0 0.0 

Septenary phase 
BCC 0.0 19.2 65.3 15.0 0.3 0.2 

FCC 3.9 50.4 44.4 1.1 0.2 0.0 

Octonary phase 
BCC 0.0 2.5 70.9 24.3 2.1 0.2 

FCC 0.2 27.1 69.8 2.7 0.2 0.0 

 

   
(a) (b) (c) (d) (e) 
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3.3. FCC Multi-Principal-Element Alloys 

FCC MPE phases are formed when the difference of the atomic radii between the componential 

elements are small. The built 6  6  6 bulk structure models for four- to eight-element FCC MPE 

phases in this work are presented in Figure 3. 

Figure 3. Atomic structure models of four- to eight-element FCC MPE phases by MaxEnt 

method. The graphs from (a) to (e) are the quaternary, quinary, senary, septenary, and 

octonary phases, respectively. 

  

(a) (b) (c) (d) (e) 

Since the number of atoms in FCC bulk is twice as much as in the BCC phase, it becomes more 

difficult to separate the same-element atoms. The element distribution analyses given in Table 2 shows 

that the situation of same-element atoms in the first nearest neighbor is very serious for the quaternary, 

quinary, and senary FCC MPE phases. The situation gradually improves as the element number increases. 

The highest frequency of same-element neighboring is at the first nearest neighbor for the first two 

phases. This peak area moves to the second, and the third nearest neighbors started from the senary, and 

octonary phases respectively, and only a trace is left in the first nearest neighbor in the octonary phase. 

Figure 4 shows the atomic structure model of 2  2  2 quinary FCC MPE phase. There are 63 atoms in 

the model. The atom numbers of the five different elements are assigned as 13, 13, 13, 12, and 12. It is 

seen from the figure that some same-element atoms in the first nearest neighborship cannot be avoided 

because of the limitations in geometry size under this model composition. 

Figure 4. Model of 2  2  2 quinary FCC MPE phase. There are six atoms in blue color, three 

atoms in yellow color, and two atoms in magenta color in the first nearest neighborship. 

 



Entropy 2013, 15 5543 

 

 

3.4. Applications to the Real Multi-Principal-Element Alloys 

Because no direct interatomic interaction was considered in the above modeling work, the built 

models should subject to further atomic-coordinates optimization [26] by molecular dynamics or  

first-principles simulations before applying them to the study of various physical properties of the 

alloys. Applications of the built models to some typical MPE alloys, recently reported by experimental 

researches, are given in the follows. These alloys are the quaternary FCC FeCoCrNi [9,27], quinary 

FCC CoCrFeMnNi [28], quinary BCC AlCoCrFeNi [29], and senary BCC AlCoCrCuFeNi [30]. 

Firstly, the original bulk models of these MPE phases are created from the corresponding MaxEnt 

models by appropriate elemental substitution. Then, the atomic structures in these models are 

optimized by Molecular Mechanics simulation by the similar procedure as described in [26]. 

Chen's lattice inversion pair-function potentials [31] are used to calculate the interatomic 

interaction in the simulation. The optimized 8  8  8 bulk structures of these phases are illustrated 

in Figure 5. The optimized lattice parameters together with the relevant experimental data are 

listed in Table 3. It was demonstrated that the atomic structure of equimolar multi-component 

alloys have the 3D paracrystalline lattice configuration [26]. This paracrystalline feature is also 

reflected in the optimized structure models in Figure 5. The lattice distortion in paracrystals is 

measured by the lattice distortion parameter g [32], which is defined by: 

1
2

2


d

d
g . (10)

where, d is a lattice geometrical parameter of the structure, it can be the inter-planar spacing or 

local lattice parameter; d  and 2d are the mean and square mean values of the lattice geometrical 

parameter, respectively. The local lattice constant al is used in g calculation in this study. The local 

lattice constant varies due to the lattice distortion in MPE alloys. The calculation method of local 

lattice constant is illustrated in Figure 6. Parameter g measures the statistical correlation of local 

lattice constant. The paracrystalline lattice distortion parameters g of these alloys are given in the 

last column of Table 3. The lattice constant given in this table is the averaged local lattice 

parameter al for all lattice sites in the model. A relatively larger error in the theoretical lattice 

constant compared to the experimental one of these optimized MPE phases is seen in Table 3. The 

reason for the problem could be mainly attributed to the empirical interatomic pair-potentials used 

in the model structure optimization. This problem will be further explored in the discussion section 

later. The g parameter provides a quantitative evaluation of the lattice distortion in MPE phases, 

which can be directly measured through x-ray diffraction experiment [32]. There are generally 

much more serious lattice distortions in BCC MPE alloys than in FCC ones as reflected in Figure 5 

and the g parameters in Table 3. The g parameter of BCC MPE alloys is about two to three times 

higher than that of the FCC ones. The reason for the phenomenon is largely because the atomic 

radii of the componential elements vary widely in the BCC phases. The degree of lattice distortion 

in MPE alloy is sensitively depended on its composition as reflected from the calculated  

g-parameter. There is a close correlation between lattice distortion and the metallic radii [33] of 

the componential elements. For examples, the FCC phases of FeCoCrNi and CoCrFeMnNi own 

very small g parameters, which can be explained from the little differences in the metallic radii of 
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their componential elements: Fe 1.26 Å, Co 1.25 Å, Cr 1.28 Å, Ni 1.24 Å, and Mn 1.27 Å. The 

metallic radius can be served as an effective criterion for the composition design of MPE alloys. 

Table 3. Lattice constant and lattice distortion parameter of the optimized MPE alloys. 

Phase a (Å) aexpt (Å) Error g 

FCC FeCoCrNi 3.84 3.56 [27] 7.9% 0.0085 

FCC CoCrFeMnNi 3.84 3.59 [5] 7.0% 0.0070 

BCC AlCoCrFeNi 3.08 2.87 [29] 7.3% 0.0210 

BCC AlCoCrCuFeNi 3.10 2.87 [30] 8.0% 0.0150 

Figure 5. Relaxed atomic structure models of four typical MPE alloys. The Al, Fe, Co, 

Cr, Ni, Mn, and Cu atoms are in red, magenta, green, blue, cyan, yellow, and grey 

colors respectively. 

  
(a) FCC FeCoCrNi (b) FCC CoCrFeMnNi 

 
(c) BCC AlCoCrFeNi (d) BCC AlCoCrCuFeNi 
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Figure 6. Illustration of the local lattice constant calculation for a deformed cubic cell. The 

local lattice constant al near the yellow atom is calculated by the averaged length of its 

three neighboring edges al=(a1+a2+a3)/3 along the three forward axis-directions. 

 

4. Discussion 

It could be an impossible task to deduce an explicit expression of entropic force from the definition 

in Equation (9) because the vi(r) is correlated with the local environment at position r. This situation is 

similar to the charge density calculation (r) in the density-functional theory. However, the structure 

optimization can be done by maximizing the spacing of same-type particles since vi(r) is proportional 

to the distance of their nearest neighbor. As a rough approximation, the entropic force might be 

expressed in a similar way as the repulsive Coulomb force of same-type charges in the simulation. The 

Monte Carlo algorithm is used to search for the system configuration with the maximum distance 

distribution of same-element atoms in this work. The advantage of this method is that it gives a highly 

efficient implementation of uniform particles distribution by rapid traversing the entire system space, 

and thus the time-consuming process of particles diffusion can be avoided. In the physics world, 

substance is the energy in condensed state, and the behavior of energy is determined by entropy. The 

in-depth study of entropic force is expected to unify all physics forces, including the electromagnetic 

force [34,35], gravity [20], etc., and finally leads to the establishment of the Unified Field Theory. 

How to accurately modeling the microstructure of the condensed matters with lack of strict 

periodicity is a long-standing issue in materials research. More difficulty is imposed by the structural 

description of the random multi-componential systems. Historically, the cluster expansion method [36], 

the virtual crystal approximation or coherent potential approximation [37], and the special  

quasi-random structures method [38] were proposed to deal with the local disordered structures seen in the 

random-substitution alloys. However, none of these methods is sufficient for the structual modeling of 

MPE alloys, and no success story using these methods in MPE study has been reported yet. MPE alloys 

receive the name of high-entropy alloys for the high-entropy feature in their structure formation [1].  

The maximum-entropy distribution is the most reasonable choice when there are not enough details 

available in a physical system. MaxEnt is the ideal state of random alloys system in equilibrium. 

Although the real alloys may deviate from this ideal state due to the diffusion of particles resulting 

from the local unevenness of physical fields or the special affinity among some elements, the MaxEnt 

configuration can serve as the reference standard or the starting point for the studies of these real 

materials. By the MaxEnt principle, there are a great number of MaxEnt configurations for a MPE 
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alloy. The structure model given in this work is considered as a representative of this total 

collection. It is expected that the atomic structure modeling study in this work will provide a 

useful guidance for exploring the relationship between the microstructure and macroscopic 

properties of MPE alloys. 

The advantages for using pair-potentials in the structure optimization of MPE alloys are 

simplicity, easy creation, and low calculation cost. Almost all the pair-potentials between any two 

metal elements in the Periodic Table of elements had been created by Chen's lattice inversion 

method, which is greatly convenient to the studies for the complicated and diverse alloy systems, 

such as high-entropy alloys. However, these pair-potentials were created from the first-principles 

total-energy calculation of the relevant unary or binary phases in their ideal stable lattice 

configurations [31], pair-potentials cannot account for the directional nature of chemical bonds.  

A considerable error in using these pair-potentials to MPE alloys should be estimated for the quite 

difference local atomic configurations around the pair atoms in MPE alloys to the creation 

conditions of these pair-potentials. It should be pointed that there are similar problems in using 

any other empirical interatomic potentials in the study of MPE alloys. A possible solution to this 

problem might be the direct first-principles calculation within the framework of density functional 

theory (DFT). The cost of first-principles calculation is tens of thousands times higher than the 

empirical potential method. Nevertheless, there are two main difficulties to use DFT calculation in 

the study of bulk property of MPE alloys: firstly, an efficient DFT calculation is usually realized 

by the plane-wave pseudo-potentials method which demands a periodic boundary condition, but 

there is lack of strict periodicity in MPE alloys. The next difficulty is that MPE alloys are 

composed mainly of transition metal elements, there are still many unsolved problems for how to 

properly deal with the strong correlations in the localized f- and d-orbitals in transition elements, 

even for the most ‘state of the art’ DFT theory. As a balance between cost and accuracy, the 

empirical potential calculation could be a reasonable choice in MPE alloy studies. 

5. Conclusions  

In this paper we have successfully built atomic structure models of multi-principal-element alloys 

with components ranging from four to eight elements according to the principle of maximum entropy. 

The principle of maximum entropy predicts a uniform particle distribution in a random-alloy system. 

With the concept of entropic force, a Monte Carlo method was developed for generating the structure 

configurations of uniform particle distributions in the models. The lattice geometries of four real MPE 

alloys are optimized, and their lattice distortion parameters are calculated. 
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