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Abstract: Optomechanics may be viewed as a light-mechanics interface to realize hybrid
structures for (classical or quantum) information processing, switching or storage. Using
the two-laser technique, in this paper, we theoretically devise a protocol for quantum light
memory via a cavity optomechanical system composed of a Fabry–Perot cavity and a
mechanical resonator. Due to the long-lived mechanical resonator, this quantum memory
for light based on optomechanically induced transparency (OMIT) can serve as a long-term
memory that can store the full quantum light contained in an optical pulse. It is shown that,
with the tunable pump laser, the quantum signal light can be reaccelerated and converted
back on demand. Our presented work could open the door to all-optical routers for light
memory devices and have a guide to actual experiments.
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1. Introduction

Storing and retrieving quantum light on demand, without corrupting the information it carries, have
attracted wide attention in the field of quantum optics and quantum information processing [1–3]. So
far, successful demonstrations of quantum light storage have been used in atomic vapor [4], doped
solid [5], and quantum cavity system [6,7]. Equally exciting is the possibility that these results
will lead to useful applications in the fields of telecommunications and optical buffer [8]. There
are several possible techniques of implementing quantum light memory such as electromagnetically
induced transparency (EIT) [9], coherent population oscillation (CPO) [10], Raman and Brillouin
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amplification [11], among others [12]. EIT is the earliest technique to achieve the light storage in
three-level system, which has been proved to be a powerful technique for eliminating the effect of a
medium on a propagating beam of electromagnetic radiation [13–16]. Since EIT can retain the large
and desirable nonlinear optical properties associated with the resonant response of a material system,
it has been subjected to increasing investigation, especially in the realm of modern quantum optics and
quantum information processing [17–21].

Moveover, based on EIT effect, a novel interference optical technique called optomechanically
induced transparency (OMIT) has emerged recently, which leads to destructive interference for the
excitation of an intracavity probe field, inducing a tunable transparency window for the probe
beam [22,23]. Kippenberg et al. [23] have experimentally demonstrated that OMIT is equivalent to
EIT in a cavity optomechanical system operated in the resolved sideband regime. Since then, the unique
features of optomechanics system such as the on-chip integration, large bandwidth of operation, high Q
factor and relatively long delay times have attracted many theoretical and experimental researchers’
attention. For example, Teufel et al. [24] have realized the circuit cavity electromechanics in the
strong-coupling regime. Most recently, Safavi-Naeini et al. [25] have theoretically achieved the light
storage involving an optical waveguide coupled to an optomechanical crystal array, where light in the
waveguide can be dynamically and coherently transferred into long-lived mechanical vibrations of the
array. Some other work includes the report of storing optical information as a mechanical excitation in a
silica optomechanical resonator [7]. All these works have experimentally demonstrated EIT and tunable
optical delays in a nanoscale optomechanical crystal [26].

With this backdrop, in the present letter, we use the same protocol with Kippenberg et al. [23] and
theoretically predict that in such system the quantum light memory can be achieved without any signal
distortion. This is an all-optical controlled processing, in which the cavity photons interfere with the
quantum signal pulse while dressing with the mechanical resonator mode (phonon mode). Recently, we
theoretically demonstrated the nonlinear optical mass sensor with an optomechanical microresonator,
which will provide a route towards the use of cavity optomechanical system in biomedical sensors,
deposition monitors, chemical reaction monitors and other nonlinear measurement fields [27]. In the
present article, theoretical analysis shows that light in the Fabry–Perot cavity can be dynamically and
coherently transferred into long-lived vibrations of mechanical resonator, which provides a metastable
state for photons. This dark-state polariton can be reaccelerated and converted back into a photon pulse
by switching off and on the pump pulse on demand. Thanks to the long-lived mechanical resonator,
the signal pulse can stay for a long time compared with other semiconductor systems. Our proposed
quantum memory for light in an optomechanics system combines many of merits over other previous
approaches, in that it allows the delay and release of pulse to be rapidly and all-optically controlled and
achieves the long-term light memory due to the long lifetime of mechanical resonator. This scheme gives
rise to the speculation of the ability of photons dressed by phonons, which can enable new possibilities
for manipulating light through the manipulation of sound.
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2. Theory

We consider the canonical situation in which a driven high-finesse optical cavity is coupled by
momentum transfer of the cavity photons to a micro-mechanical resonator. The physical realization
is shown in Figure 1, which is a Fabry–Perot-type cavity with the right mirror movable and perfectly
reflecting and the left mirror fixed. The cavity is driven by a strong pump field and a weak signal field
with frequencies of ωp and ωs, respectively. The circulating light inside the cavity deflects the movable
mirror, and therefore, via radiation pressure, the driven high-frequency cavity mode is coupled to the
high-Q, low-frequency mechanical mode. This mechanical mode can be treated as phonon mode. In
the adiabatic limit, the input laser drives only one cavity mode ωc, and the cavity-free spectrum range
L/2c (c is the speed of light in the vacuum and L is the effective cavity length [28,29]) is much larger
than the frequency of movable mirror (ωm). Hence, we can ignore the scattering of photons to other
cavity modes.

Figure 1. Schematic diagram of an optomechanics system consisting of a Fabry–Perot cavity
with a movable mirror in the presence of a strong pump field and a weak signal field.
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In the simultaneous presence of a strong pump field and a weak signal field, the Hamiltonian of the
total system can be written as [30,31]

Ht = Hc +Hm +Hc−m +Hc−o (1)

Hc = h̄ωca
+a (2)

Hm =
1

2
h̄ωm(p

2 + q2) (3)

Hc−m = h̄G0a
+aq (4)

Hc−o = ih̄Ep(a
+e−iωpt − aeiωpt) + ih̄Es(a

+e−iωst − aeiωst) (5)

where Hc is the energy of the cavity mode, a and a+ denote the annihilation and creation operators with
commutation relation [a, a+] = 1. Hm gives the energy of the mechanical mode, which is modeled as
a harmonic oscillator and described by dimensionless position and momentum operators q and p with
commutation relation [q, p] = i. The Hamiltonian Hc−m corresponds the coupling of the movable mirror
to the cavity field via radiation pressure. The parameter G0 = (ωc/L

√
h̄/mωm) is the coupling rate

between the cavity and the oscillator (m is the effective mass of the mechanical mode [32]). Hc−o shows
the interaction between cavity and classical inputs with frequencies ωp and ωs, Ep and Es are slowly
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varying envelope of the pump field and signal field, respectively, which related to the laser power P by
|Ep| =

√
2Ppκ/h̄ωc and |Es| =

√
2Psκ/h̄ωs (κ is the cavity amplitude decay rate).

When the cavity photons couple to the mechanical resonator via the radiation pressure, the cavity
photons will be dressed by an infinite number of possible phonon states as shown in Figure 2(b). Based
on some experimental studies [23,26], we can only select the three-level as a lambda structure as shown
in Figure 2(c). All the metastable states other than |N, n + 1⟩ are not considered due to the transition
energy of |N, n⟩ → |N + 1, n⟩ is much larger than that in |N,n⟩ → |N, n+ 1⟩ (|N⟩ and |n⟩ denote the
number states of the photon and phonon, respectively).

Figure 2. The process of quantum memory for light (a) The initial model of the cavity
photons and a mechanical resonator. G0 is the coupling between the optical cavity and
mechanical resonator. The vibration modes of mechanical resonator are treated as phonons
modes; (b) The split energy levels of the cavity photon when dressing the vibration mode
of mechanical resonator. |N⟩ and |n⟩ denote the number states of the photon and phonon,
respectively; (c) The process of quantum memory for light, where the |N,n+1⟩ → |N+1, n⟩
and |N,n⟩ → |N + 1, n⟩ transitions can be induced by the pump beam and signal beam,
respectively. |N,n + 1⟩ is the metastable state caused by mechanical vibration. The signal
pulse is temporarily stored in the state between |N,n+ 1⟩ and |N, n⟩.
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The mechanism of quantum memory by adiabatic passage is well-known when the medium is made
of lambda three-state atoms. The storage is then realized through the coherence of the atomic ground
states. The idea of present work is to replace the lambda atoms by the photons dressed by the mechanical
resonator as done in [23,26] and to take advantage of the long coherence induced by the resonator. In
the following, in order to investigate the propagation properties of the quantum signal pulse in this
optomechanics system, we follow the treatment outlined in [33,34] and use a quasi-one-dimensional
model, consisting of one propagating beam ε̂(z, t) passing through a cavity of length L. ε̂(z, t) is a weak
signal field that couples the state |N, n⟩ and |N + 1, n⟩, and is related to the positive frequency part of
the electric field by

Ê+
s (z, t) =

√
h̄ωc

2ε0V
ε̂(z, t)ei(ωc/c)(z−ct) (6)

where ωc is the frequency of the |N, n⟩ → |N +1, n⟩ transition (i.e., the frequency of the cavity photon),
V is the quantization volume of the electromagnetic field, c is the light velocity in vacuum, ε0 is the
free space permittivity, z is the direction along the cavity of length L. As compared with the three-level
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atomic systems, here the |N,n + 1⟩ → |N + 1, n⟩ transition is driven by the strong pump laser (see
Figure 2(c)). One can change the pump detuning simply by a tunable pump laser.

To perform a quantum analysis of the quantum signal light interacting with the cavity photons dressed
by the resonator mode, it is useful to introduce locally averaged operators. ℵz is the photon number in
cavity along with z direction (ℵz ≫ 1). Assuming the slowly-varying amplitude ε̂(zj, t) does not change
much, we can introduce the locally-averaged, slowly-varying operators

σ̂µν(zj, t) =
1

ℵzj

∑
zj∈Nz

σ̂j
µν(t)e

i(ωµν/c)(zj−ct) (7)

where σ̂j
µν(t) = |µj(t)⟩⟨νj(t)| is the jth dressed photon state in cavity(µ,ν = 1, 2, p, where for

simplification we have used |1⟩, |p⟩, |2⟩ to replace |N,n⟩, |N,n+ 1⟩, |N + 1, n⟩).
Going to the continuum limit, the effective interaction Hamiltonian for the reduced three-level system

can be written in terms of the locally-averaged operators as [15]

Ĥ = −
∫ ℵh̄

L
[gσ̂21(z, t)ε̂(z, t) + Ωpσ̂2p(z, t) + H.c.]dz (8)

where ℵ is the photon number density in Fabry–Perot cavity, g = µ
√
ωc/2ε0V h̄ is the cavity

photon-quantum signal field coupling constant. Ωp = ⟨n + 1, N | µ2p E(t) |N + 1, n⟩/2h̄ describes
the coupling to the pump field and the transition, E(t) is the amplitude of the pump field, the “dipole
moment” µ2p corresponds to the transition between the state |N + 1, n⟩ and the state |N, n+ 1⟩.

The evolution of the Heisenberg operator corresponding to the quantum signal field can be described
in a slowly varying amplitude approximation by the propagation equation

(
∂

∂t
+ c

∂

∂z
)ε̂(z, t) = igℵσ̂12(z, t) (9)

The dressed photon state evolution is governed by a set of Heisenberg–Langevin equations

∂

∂t
σ̂µν = −γµν σ̂µν +

i

h̄
[Ĥ, σ̂µν ] + F̂µν (10)

where γµν are the cavity decay rates and Fµν are δ-correlated Langevin noise operators.
Making the approximation that the quantum signal field intensity is much less than that of pump field

and assuming all the photon are initially in the state |N,n⟩, we can solve Equation (10) perturbatively to
the first order in gε̂/Ωp to obtain a pair of two equations

∂

∂t
σ̂12 = −γ12σ̂12 + igε̂+ iΩpσ̂1p + F̂12 (11)

∂

∂t
σ̂1p = −γ1pσ̂1p ++iΩpσ̂12 + F̂1p (12)

where γ12 and γ1p are the decay rates of |N + 1, n⟩ → |N, n⟩ and |N, n+ 1⟩ → |N, n⟩, respectively. In
the above equations if we assume a sufficiently slow change of pump laser power and neglect the decay
rate γ1p of the photon, and then [33]

σ̂12(z, t) ≈ − i

Ωp

∂

∂t
σ̂1p(z, t) (13)

σ̂1p(z, t) ≈ −g
ε̂(z, t)

Ωp

(14)
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By combining with Equation (9), we can obtain the propagation equation of the quantum light pulse in
the optomechanics system in the perturbative and the adiabatic limit as follows,

(
∂

∂t
+ c

∂

∂z
)ε̂(z, t) = −g2ℵ̄

Ωp

∂

∂t

ε̂(z, t)

Ωp

(15)

where ℵ̄ denotes the mean photon numbers in the cavity. The group velocity of the signal field is given by

vg =
c

1 + (ℵ̄g2/Ω2
p)

(16)

We can see from the above equation that for finite pump field and large ℵ̄, the incident signal field can be
slowed down significantly as shown in [26,35]. One can obtain an analytical solution of Equation (15)
by introducing a new quantum field operator Ψ̂(z, t),

Ψ̂(z, t) = cos θ(t)ε̂(z, t)− sin θ(t)
√
ℵ̄σ̂1p(z, t) (17)

with

cos θ(t) =
Ωp(t)√

Ω2
p(t) + g2ℵ̄

(18)

sin θ(t) =
g
√
ℵ√

Ω2
p(t) + g2ℵ̄

(19)

tan2 θ(t) =
g2ℵ̄
Ω2

p(t)
(20)

Introducing the adiabaticity parameter ε ≡ (g
√
ℵ̄T )−1 with T being a characteristic time, one can

expand the equations of motion in power of ε. In the lowest order, such as the adiabatic limit, we can
obtain [33]

ε̂(z, t) = cos θ(t)Ψ̂(z, t) (21)√
ℵ̄σ̂1p = − sin θ(t)Ψ̂(z, t)e−i∆kz (22)

Furthermore, the new operator Ψ̂(z, t) obeys the following equation of motion

[
∂

∂t
+ c cos2 θ(t)

∂

∂z
]Ψ̂(z, t) = 0 (23)

which describes a shape-preserving propagation with velocity v = vg(t) = c cos2 θ(t). It is should
be noted here that σ̂1p(z, t) in Equations (17) and (22) corresponds to the creation operator of the
|N, n⟩ → |N, n + 1⟩, which is different from atomic spin operator in three-level atomic systems [36].
In the linear limit, this new operator satisfies the Bosonic commutation relation and we can refer this
new Bosonic particle to phonon-polariton.
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3. Results and Discussions

Equation (23) illustrates a shape- and quantum-state preserving propagation

Ψ̂(z, t) = Ψ̂(z, t)(z − c
∫ t

0
dτ cos2 θ(τ), 0) (24)

It is obvious that by adiabatically rotating θ from 0 to π/2 via a tunable pump laser, one can decelerate
and stop the signal pulse on demand. When θ → 0, Ω2 ≫ g2ℵ̄, which corresponds to the strong external
pump field, the polariton has purely photonic character Ψ̂(z, t) = ε̂(z, t) and the signal propagation
velocity equals to the vacuum speed of light. For θ → π/2, the polariton becomes phonon-like,
Ψ̂(z, t) = −

√
ℵ̄σ̂1pe

i∆kz, and its propagation velocity approaches zero. In this process, the quantum
signal field are mapped onto a phonon-polariton which are different from the atomic spins in three-level
atomic systems. This phonon-polariton can then be reaccelerated to the vacuum speed of light in which
the stored quantum states are transferred back to the photonic state. Figure 3 displays the coherent
amplitude of a dark-state phonon-polariton, which results from an initial light pulse, as well as the
corresponding field and matter components.

Figure 3. Quantum light propagation of a dark-state polariton with envelope
exp{−(z/10)2}, according to the expression cot θ(t) = 100(1 − 0.5 tanh[0.1(t − 15)] +

0.5tanh[0.1(t − 125)]). (a) The coherent amplitude of the polariton Ψ̂(z, t) = ⟨Ψ̂(z, t)⟩ as
functions of time t and length z; (b)The process of light storage. ε(z, t) = ⟨ε̂(z, t)⟩; (c)The
matter component part | σ1p |=| ⟨σ̂1p⟩ |,where c = 1.
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Here, we show an example of the signal laser storage and recall on demand. First, under constant
pump laser Ep, the signal optical pulse Es completely enters the optomechanics system consisting of a
Fabry–Perot cavity and a mechanical resonator (Figure 1). Once the signal pulse inside, the amplitude
of Es will turn to reduce gradually. However, when the pump laser is switched off rapidly, the signal
laser information is stored in the coherence between the |N, n⟩ and |N,n+ 1⟩ subbands. The maximum
storage time is set by the mechanical decay rate, ∼ 1/γm. Otherwise, turning on the pump laser results
in a retrieved signal pulse. There is no additional distortion during the storage because the width of the
signal pulse spectrum is very much less than the width of the OMIT window [26,35].

As we know, when storing light in atomic systems using EIT, characteristics of the field are recorded
as a spin wave in the atomic ensemble. The storage time is determined by the coherence times of the
hyperfine transitions. However, in optomechanical systems, the term “storage” implies the conversion
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of signal pulse into the phonon coherence σ1p, whose lifetime is determined by the lifetime of mechanical
resonator. Towards the realistic optomechanical systems, Gröblacher et al. [37] recently experimentally
showed that in optomechanical system, the mechanical quality factor Q = 6700 and the decay rate
γm = 2π × 140Hz, which corresponds to the lifetime of resonator is 7ms. In this case, the light storage
time can reach an ideal situation if we select a long vibration lifetime of mechanical resonator.

During the theoretical simulations, the noise processes are neglected. Actually, there are various
noise sources that will limit the performance of the cavity optomechanical system for quantum light
memory. Among these noise sources, the thermal noise of the mechanical motion in the linear regime is
the dominant noise of error in our device, which through the optomechanical coupling can be mapped
into noise power in the cavity optomechanical system. This is essentially coursed by the conversion of
signal pulse into the phonon coherence to yield longer storage times. When Γopt ≫ γm the optical noise
power is given by [25]

Pnois ≈
h̄ωc

2

κex

κ
(γmnth + Γopt(

κ

4ωm

)2) (25)

Γopt = 4Ωp/κ is defined as an effective optically induced cooling rate, nth = (eh̄ωm/kBTb − 1)−1 is
the Bose occupation number at the mechanical frequency and Tb is the bath temperature. The first
term in the brackets corresponds to the up-conversion of thermal mechanical noise, which can be
suppressed by working at lower temperatures, while the second term corresponds to optically-induced
Stokes scattering, which can be suppressed with good sideband resolution, κ ≪ ωm. At room
temperature, nth ≈ kBTb/h̄ωm is large and thermal noise will dominate. However, as the thermal noise
scales inversely with mechanical frequency, it makes noise remain tolerable even at room temperature
to employ high-frequency mechanical oscillators. At very low temperature, these high-frequency
oscillators can be thermally cooled to the ground state, which enables the optomechanical system we
proposed here as a suitable choice for quantum memory for photons.

4. Conclusions

In conclusion, we have theoretically achieved the quantum light memory by tuning another pump laser
in an optomechanics system consisting of a Fabry–Perot cavity and a mechanical resonator. Theoretical
analysis shows that it is possible to store and retrieve the quantum signal light by switching off and
on the pump laser. This light storage is based on the coherence between quantum light and mechanical
resonator via cavity photons. The storage time of signal pulse can be determined by the vibration lifetime
of mechanical resonator. Taking advantages of this optical device, it has prepared the stage of all optical
buffers, quantum optical processing and other related biological [38], chemical applications [39]. Finally,
we hope that our predictions in the present work can be testified by experiments in the near future.
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23. Weis, S.; Rivière, R.; Deléglise, S.; Gavartin, E.; Arcizet, O.; Schliesser, A.; Kippenberg, T.J.
Optomechanically induced transparency. Science 2010, 330, 1520.

24. Teufel, J.D.; Li, D.; Allman, M.S.; Cicak, K.; Sirois, A.J.; Whittaker, J.D.; Simmonds, R.W. Circuit
cavity electromechanics in the strong-coupling regime. Nature 2011, 471, 204.

25. Chang, D.E.; Safavi-Naeini, A.H.; Hafezi, M.; Painter, O. Slowing and stopping light using an
optomechanical crystal array. New J. Phys. 2011, 13, 023003.

26. Safavi-Naeini, A.H.; Alegre, T.P.M.; Chan, J.; Eichenfield, M.; Winger, M.; Lin, Q.;
Hill, J.T.; Chang, D.E.; Painter, O. Electromagnetically induced transparency and slow light with
optomechanics. Nature 2011, 472, 69.

27. Li, J.J.; Zhu, K.D. Nonlinear optical mass sensor with an optomechanical microresonator. Appl.
Phys. Lett. 2012, 101, 141905.

28. Kippenberg, T.J.; Rokhsari, H.; Carmon, T.; Scherer, A.; Vahala, K.J. Analysis of radiation-pressure
induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 2005, 95, 033901.

29. Schliesser, A.; Del’Haye, P.; Nooshi, N.; Vahala, K.J.; Kippenberg, T.J. Radiation pressure cooling
of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 2006, 97, 243905.

30. Genes, C.; Vitali, D.; Tombesi, P.; Gigan, S.; Aspelmeyer, M. Ground-state cooling of a
micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes. Phys.
Rev. A 2008, 77, 033804.

31. Giovannetti, V.; Vitali, D. Phase-noise measurement in a cavity with a movable mirror undergoing
quantum Brownian motion. Phys. Rev. A 2001, 63, 023812.

32. Pinard, M.; Hadjar, Y.; Heidmann, A. Effective mass in quantum effects of radiation pressure. Eur.
Phys. J. D 1999, 7, 107.

33. Fleischhauer, M.; Lukin, M.D. Effective mass in quantum effects of radiation pressure. Phys. Rev. A
2002, 65, 022314.

34. Peng, A.; Johnsson, M.; Bowen, W.P.; Lam, P.K.; Bachor, H.A.; Hope, J.J. Squeezing and
entanglement delay using slow light. Phys. Rev. A 2005, 71, 033809.

35. He, W.; Li, J.J.; Zhu, K.D. All-optical control of light group velocity with a cavity optomechanical
System. 2010, ArXiv: 1011.4993v1.

36. Fleischhauer, M.; Lukin, M.D. Quantum memory for photons: Dark-state polaritons. Phys. Rev.
Lett. 2000, 84, 5094.
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