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Abstract: A computer-aided detection (CAD) system is helpful for radiologists to detect
pulmonary nodules at an early stage. In this paper, we propose a novel pulmonary nodule
detection method based on hierarchical block classification. The proposed CAD system
consists of three steps. In the first step, input computed tomography images are split into
three-dimensional block images, and we apply entropy analysis on the block images to
select informative blocks. In the second step, the selected block images are segmented and
adjusted for detecting nodule candidates. In the last step, we classify the nodule candidate
images into nodules and non-nodules. We extract feature vectors of the objects in the selected
blocks. Lastly, the support vector machine is applied to classify the extracted feature vectors.
Performance of the proposed system is evaluated on the Lung Image Database Consortium
database. The proposed method has reduced the false positives in the nodule candidates
significantly. It achieved 95.28% sensitivity with only 2.27 false positives per scan.
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1. Introduction

The primary cause of cancer-related death is lung cancer [1]. Moreover, the mortality of lung cancer
is higher than other cancers. The five-year relative survival rate of lung cancer is only 16%; however,
if defective nodules are detected at an early stage, the survival rate can be increased [2]. In lung cancer
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research, computed tomography (CT) is one of the most sensitive methods for detecting pulmonary
nodules, where a nodule is defined as a rounded and irregular opaque figure on a CT scan, with a diameter
up to 30 mm. The early detection of pulmonary nodules is important in the treatment of lung cancer.
However, a CT scan has a large number of images that must be interpreted by a radiologist, which
is a fatiguing process. As such, the use of a computer-aided detection (CAD) system can provide an
effective solution by assisting radiologists in increasing the scanning efficiency and potentially improving
nodule detection [3,4].

Generally, a nodule detection system consists of three main steps: lung volume extraction, nodule
candidate detection, and false positive reduction [4]. There are a variety of methods for extracting
lung volume from a pulmonary CT scan. In order to segment lung, approaches such as global
thresholding [5,6], optimal thresholding [7,8], three-dimensional (3-D)-adaptive fuzzy
thresholding [9], rule-based region growing [10], connected component labeling [11], graph-cut
algorithm [12], and hybrid segmentation [13] have generally been used. After initial segmentation, lung
volume has been extracted using several methods, and the extracted lung volume needed to be refined
to include juxta-pleural nodules. For these purposes, morphological approaches [8,14], a rolling ball
algorithm [5,15], and a chain code representation-based method [9] have been presented.

The nodule candidates in the segmented lung volume have been detected and segmented before
nodule detection. In the literature, various methods have been proposed for detecting nodule
candidates. Multiple gray-level thresholding [5,6,15] is one of the most popular methods. Moreover,
template-matching-based methods [7], shape-based methods [9,16], filtering-based methods [8], and
morphological approaches with convexity models [17] have been used to detect nodule candidates. In
this step, there were many false positives which were reduced through false positive reduction.

For over a decade, several feature extraction methods and nodule detection methods have been
proposed to reduce false positives. Usually, the reported CAD systems segmented the detected
nodule candidates, and then features were extracted from the segmented nodule candidates. The
popular features are geometric feature (volume, sphericity, radius of the equivalent sphere, maximum
compactness, maximum circularity, and maximum eccentricity), gray level features (mean gray level
with in the segmented object, standard deviation of gray level, and moments of gray level), and
gradient features [5,6]. Finally, nodules were detected through various classifiers using the extracted
feature vectors with a small amount of false positives. The rule-based filtering method [7] and linear
discriminant analysis classifier [5,8] have been generally used. In addition, machine learning-based
classification methods have been also used for false positive reduction. These methods are based on
genetic algorithm [9], genetic programming [6], neural network [18], and support vector machine [11].
There are many CAD systems for detecting nodules which have different strengths and weaknesses. In
order to increase the strength of CAD systems, Niemeijer et al. presented generic methods to combine
multiple CAD systems [19].

In this paper, we propose a novel pulmonary nodule detection method based on hierarchical
three-dimensional (3-D) block classification. In the following sections, each stage of the proposed CAD
system is described in detail. The remainder of the paper is organized as follows. In Section 2, we briefly
describe the methods used in this work. Section 3 presents a 3-D block image selection method based
on entropy analysis. Section 4 describes a 3-D block analysis to detect nodule candidates. In Section 5,
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support vector machine (SVM) classifiers are described to detect pulmonary nodules. In Section 6,
we discuss the experimental results obtained with the proposed method, and finally, in Section 7, we
provide conclusions.

2. Proposed Method

In this paper, a hierarchical 3-D block analysis method is proposed to detect pulmonary nodules
on CT images. A block diagram of the proposed CAD system is shown in Figure 1. The proposed
CAD system consists of three steps. In the first step, we split input CT images into block images and
non-informative blocks are filtered out. In the second step, nodule candidates are detected. We segment
objects in the selected block images and adjust their location to detect the nodule candidates. In the last
step, we classify the nodule candidates into nodules and non-nodules. Feature vectors are extracted from
the object in the nodule candidate blocks. SVM classifiers are applied to the extracted feature vectors
to detect nodules. The proposed method provides improved accuracy and reduces the false positive rate.
It is evaluated on the Lung Image Database Consortium (LIDC) database [20]. The LIDC is a publicly
available database of thoracic CT scans as a medical imaging research resource. The proposed method
extremely reduced the false positives in the nodule candidates with high sensitivity.

Figure 1. Flow chart of the proposed nodule detection system.
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3. Three-Dimensional Block Image Selection Based on Entropy Analysis

In order to analysis block images, we split a 3-D CT scan into 3-D block images, and we filter out
the non-informative blocks. Five different sizes (32, 24, 16, 12, and 8) of 3-D block images are applied
to detect different sizes of nodules. The split block images are shown in Figure 2. Moreover, this
hierarchical multi-scale approach gives advantages of the computational efficiency and robustness. The
proposed block analysis is performed hierarchically from rough form to detail, and it is employed in
order of decreasing block size. We can detect proper size of nodules in each size of blocks and all the
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parts of target object should be in the selected block image. For example, the inner part of the big object
at the small block image is a uniform region and its entropy is very small. In this case, we do not need
to analyze the small block image because the big object can be detected at the larger-sized block image.

Figure 2. Result images after block splitting with respect to various block sizes, (a) 32;
(b) 24; (c) 16; (d) 12; and (e) 8.
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In order to efficiently analyze, we need to filter out non-informative block images. If non-informative
blocks are removed from a larger-sized block, we do not need to analyze that area on smaller-sized
blocks. For this task, we propose the entropy-based block selection method. In information theory,
entropy is a measure of the uncertainty associated with a random variable [21]. We can measure image
information content using entropy [22,23]. Therefore, we can classify block images into informative and
non-informative categories using image entropy.

First, we calculate entropy values on every block image to select informative blocks. Entropy of block
image is calculated by follows:

E = −
n∑
i=0

p(i)log2(p(i)) (1)

where p(i) is the probability of pixel intensity in block image corresponding to intensity i. We can simply
select the informative block images using entropy value.{

(informative), if Tl ≤ E ≤ Th

(non− informative), Otherwise
. (2)
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where Tl is lower threshold and Th is higher threshold for entropy value. If entropy E is lower than Tl,
the input block image has no content. On the other hand, if entropy E is higher than Th, the block image
is noise.

We select the thresholds of entropy using histogram which is obtained from the informative regions on
the selected CT images. The informative regions are defined by using the location of the nodules which
are annotated by radiologists. As shown in Figure 3, the informative blocks have the specific entropy
values on every block size. The thresholds of entropy selecting the informative blocks are ranged four to
eight which can cover almost every informative region. The informative blocks are selected by using the
proposed block image selection method based on entropy analysis. These block images will be analyzed
for detecting nodules.

Figure 3. The entropy histograms of block images using five different block sizes, left:
non-informative blocks, right: informative blocks; (a) 32; (b) 24; (c) 16; (d) 12; and (e) 8.

4. Nodule Candidates Selection Based on Block Analysis

The nodule candidate block images are selected in this step. The informative block images are
enhanced before segmentation. We segment the objects in the selected block images and adjust the
location of block image.
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4.1. Block Image Enhancement

We propose the block image enhancement method for more accurate analysis. Several filtering
methods have been used for image enhancement. The Gaussian and median filters are general methods
for smoothing, however, these filters cannot preserve edge and structure. For edge-preserving filtering,
bilateral filters have been used, though the bilateral filter is able to enhance only plate-like structures
in 3-D images. We apply 3-D coherence-enhancing diffusion (CED) filter to remove noise in the
block image I . 3-D CED filter can preserves small spherical structures and enhance tubular structures.
Therefore, 3-D CED is more suitable for pulmonary nodule detection than bilateral filter [24]. The basis
for a 3-D CED filter is introduced by Weickert et al. [25].

First of all, we need to calculate the Hessian H from every pixel of the Gaussian smoothed input
image G. The Hessian matrix of 3-D image (eg. medical image (x,y,z)) is represented as follows:

H =

Gxx Gxy Gxz

Gxy Gyy Gyz

Gxz Gyz Gzz

 (3)

Gaussian image smoothing is performed prior to the calculation of the gradient to reduce the effect of
the noise,

G(I(x, y, z), σ) =
1

2πσ2
e−

x2+y2+z2

2σ2 (4)

where I(x, y, z) is the input block image and σ is the noise reduction parameter. Next, we calculate
eigenvalue decomposition of Hessian H. Image edges give large eigenvalues, and the eigenvectors
corresponding to those eigenvalues describe the direction of the edge. The eigenvectors are used as
diffusion tensor directions. The amplitude of the diffusion in those three directions is based on the
eigenvalues and determined by Weickerts equation [25]. A finite difference scheme is used to do the
diffusion. This process is repeated until a certain diffusion time is reached. Figure 4 shows before and
after applying the 3-D CED filtering on the input block image. The enhanced block image B will be
analyzed to detect nodule candidates in the following section.

Figure 4. (a) Input image and (b) the result image after enhancement.
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4.2. Block Segmentation and Location Adjustment

To segment object in the enhanced block image B, we applied a optimal thresholding method. In
CT scans, air has an attenuation of −1000 Hounsfield Units (HU). Nodules are dense objects and their
intensity is above −500 HU [26]. Therefore, we set −500 HU as the initial threshold T (0) for iteratively
computing the threshold to start the iteration. For this task, let T (i) be the threshold after the ith step; to
choose a new threshold, we apply T (i) to the block image. Let µo and µb be the mean intensities of the
object and background in the block image, respectively, and the new threshold becomes

T (i+1) =
µo + µb

2
(5)

Note that this iterative approach continues until the threshold converges, and the optimal threshold
Top is obtained. As such, an initial segmented block image O can be obtained by thresholding all of the
non-object voxels as follows:

O(x, y, z) =

{
1 (object), if B(x , y , z ) > Top

0 (non− object), Otherwise
(6)

After segmentation, we adjust the location of the block because the segmented object is not located
in the center of the block image. The block location is iteratively updated by using the centroid of the
segmented object O. The iteration of the adjustment continues until the center position of the block
image converges, and the distance between the adjusted location and the original location of the block
image is larger than half of the block size. In this case, the object in the block image is a part of the vessel,
or is too big. The iterations of block location adjustment are shown in Figure 5. Nodule candidate block
images are selected after iterative adjustment of block location.

Figure 5. Iterations of automatic block location adjustment, upper: 3-D shapes, lower: the
median slices of 3-D block; (a) the first; (b) the fifth; and (c) the last iterations of adjustment.
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5. Nodule Detection

In order to detect the nodules, we extract feature vectors from the detected nodule candidates. Next,
the feature vectors become the input for classifier and classified into nodules and non-nodules.

5.1. Feature Extraction

The nodule candidate block images are selected from the previous step. We extract three different
types of features from a nodule candidate block image INC , namely, 2-D geometric, 3-D geometric, and
2-D texture features. Moreover, in the literature, a similar type of feature has been extracted by different
researchers for this application [5,15]. The 2-D features are extracted from a median slice INC,m of
nodule candidates because the area of the segmented object at the median slice is the largest.

Nodules have their own shapes which are important characteristics for distinguishing from the other
objects in lung. 2-D and 3-D geometric features describe the shapes of the nodule candidates. The
2-D geometric features consist of an area (x1), diameter (x2) and circularity (x3), which are based on
cross-sectional images of nodule candidates. The area is obtained as follows:

A =
∑
o∈Om

o (7)

where Om is a median slice of the segmented object O. Diameter D is a maximum bounding box length
of Om. The circularity is computed by dividing the area by the squared perimeter of the circumscribed
circle as follows:

Circ =
A

4πr2
(8)

where r is the radius of the circumscribed circle and it is equal to D
2

. 3-D geometric features comprise
the volume (x4), compactness (x5), and elongation (x6). The volume of the segmented object O is
computed as:

V ol =
∑
o∈O

o (9)

and compactness is calculated as follows:

Cmp =
V ol
4
3
πr3

(10)

Elongation is the ratio between the first principal axis length PAL1 and the second principal axis length
PAL2 as follows:

El =
PAL1

PAL2

(11)

where the three principal axis lengths are the lengths of all of the principal axes of the segmented object
volume O.

In order to increase accuracy of classification, we also use 2-D texture features which consist of mean
(x7), variance (x8), skewness (x9) and kurtosis (x10) of the median slice INC,m of the nodule candidates
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block image INC . Moreover, the eight largest eigenvalues (x11 ∼ x18) of INC,m are obtained. Mean (µ),
variance (σ2), skewness (γ1) and kurtosis (γ2) are calculated as follows:

µ =
1

N

∑
i∈INC,m

i (12)

σ2 =
1

N

∑
i∈INC,m

(i− µ)2 (13)

γ1 =
1

N

∑
i∈INC,m

(
i− µ
σ

)3

(14)

and

γ2 =
1

N

∑
i∈INC,m

(
i− µ
σ

)4

− 3 (15)

where N is the number of pixels in INC,m.
In this way, we extract 18 features x = {x1, ..., x18} from the nodule candidates. The summary of

the extracted features is shown in Table 1. The feature vector x is provided as the input vector for the
training of the classifier.

Table 1. Feature list for nodule detection.

Index Feature Description

2-D geometric feature vectors
x1 Area Number of pixels in the median slice Om of the

segmented object O
x2 Diameter Maximum bounding box length of Om

x3 Circularity Area x1 divided by squared perimeter of the
circumscribed circle 4πr2 where r = x2

2

3-D geometric feature vectors
x4 Volume Total count of voxels in the segmented object O
x5 Compactness Volume x4 divided by volume of the circum-

scribed sphere 4
3
πr3

x6 Elongation Ratio between maximum principal axis length
and minimum principal axis length

2-D texture feature vectors
x7 Mean Mean intensity of the median slice INC,m of

nodule candidates block image INC
x8 Variance Variance intensity of INC,m
x9 Skewness Skewness intensity of INC,m
x10 Kurtosis Kurtosis intensity of INC,m

x11 ∼ x18 Eigenvalues Eight largest eigenvalues of INC,m
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5.2. Support Vector Machine Classifier

In order to detect the nodule and to reduce false positives, the feature vector is analyzed by a
classifier. SVMs are a useful technique for data classification [27]. In addition, SVMs are supervised
learning models with associated learning algorithms that analyze data and recognize patterns, used for
classification and regression analysis. The basic SVM takes a set of input data and predicts two possible
classes for each given input.

5.2.1. Classifier Training

For training the SVM, the first step is to construct a training dataset comprised of the feature vectors.
In this study, the feature vector x is extracted and selected as explained in Section 5.1. Typically, the
number of non-nodules is larger than the number of nodules in nodule candidates. This unbalance in the
amount of data may affect the training of the classifier. Therefore, we need to select a balanced number of
nodules and non-nodules. To balance the dataset, we randomly selectK/2 nodules andK/2 non-nodules
from nodule candidates. The balanced dataset is then randomly split into training and testing datasets in
validation of the classifier. The training dataset, X = {(xi, yi)}Ni=1, is constructed by selecting N nodule
candidates, with each training data pair consisting of an input feature vector and its corresponding known
target class. The SVM requires the solution of the following optimization problem:

min
w,ξ,b

{
1

2
wTw + C

n∑
i=1

ξi

}
(16)

subject to (for any i = 1, . . . N )

f(xi) = yi(w
Tφ (xi)− b) ≥ 1− ξi (17)

where ξi ≥ 0 and f(xi) is the decision function. Here, training vectors xi are mapped into a higher
dimensional space by the function φ. SVM finds a linear separating hyper plane (w, b) with the maximal
margin in this higher dimensional space. C > 0 is the penalty parameter of the error term.

Furthermore, SVMs can efficiently perform non-linear classification using what is called the kernel
trick, implicitly mapping their inputs into high-dimensional feature spaces. K(xi,xj) ≡ φ (xi)

T φ (xj)

is called the kernel function. In this paper, we use radial basis function Kr(xi,xj), polynomial
functionKp(xi,xj), and Minkowski distance functionKm(xi,xj) as kernel functions. The mathematical
descriptions of these kernel functions are as follows:

Kr(xi,xj) = exp(
−‖xi − xj‖2

p2
) (18)

Kp(xi,xj) = ‖xi · xj + 1‖p (19)

and

Km(xi,xj) =

(
M∑
k=1

‖xi,k − xj,k‖p
) 1

p

(20)
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where p > 0 and xi,k is the kth element of feature vector xi.
For a SVM training, the non-linear separating hyper plane with the maximal margin in this higher

dimensional space is automatically adapted by using the kernel trick. In this manner, the solution space
is refined and converges to the optimal/near optimal solution. The training is stopped if the optimized
maximal margin hyper plane is obtained for all input training vectors.

5.2.2. Nodule Detection and Classifier Validation

Nodules and non-nodules can be classified effectively by the trained classifier. To obtain the class
predicted from the testing data, we need to provide an input feature vector for each nodule candidate. It
is important to note that the input data is now different from the training data. The testing data consists
of only the input feature vectors, and the target values are unknown. In this case, the trained classifier
will predict a class by only taking into account the input feature vectors. The input feature vector x
is obtained as described in Section 5.1. In brief, the lexicographically arranged input feature vectors
are first represented in a matrix X = {x(n)}Nn=1 of size N ×M , where x represents an M -dimensional
feature vector, andN indicates the total number of feature vectors. SVM finds the maximal margin hyper
plane in the higher dimensional space of input feature vector in training process. The nodules are then
separated from non-nodules by the maximal margin hyper plane in the feature space.

In this paper, we apply k-fold cross-validation to evaluate the proposed classifier. The original sample
is randomly partitioned into k equal size sub-samples in k-fold cross-validation. Of the k sub-samples,
a single sub-sample is selected as the validation data for testing the model. The remaining k − 1 sub-
samples are used as training data. The cross-validation process is then repeated k times (the folds), with
each of the k sub-samples. The k results from the folds are then averaged to produce a single estimation.
The advantage of this method over repeated random sub-sampling is that all observations are used for
both training and validation, and each observation is used for validation exactly once.

The performance of a classifier could be estimated in terms of the number of true positives and
false positives. The performance validation measures are accuracy, sensitivity, specificity, negative
predictive value (NPV), Matthews correlation coefficient (MCC) and area under the receiver operating
characteristic (ROC) curve. When the graph between the sensitivity and false positive rate is plotted for
different threshold values, the resultant curve is called the ROC curve. The ROC curve summarizes how
well a classifier performs under different operating conditions for a particular problem. As such, the area
under the ROC curve (AUC) is a common index that summarizes the information contained in the curve.

6. Experimental Results and Discussion

Performance of the proposed CAD system is evaluated using the LIDC database [20]. It is publicly
available in the National Biomedical Imaging Archive (NBIA), and its nodules have been fully annotated
by multiple radiologists. Four expert chest radiologists drew outlines for the nodules with effective sizes
of 3 mm or greater. The ground truth has been established by a blinded reading and a subsequent
unblinded reading. The LIDC database consists of 84 CT scans, but only 58 CT scans contain nodules.
We used 58 CT scans to evaluate the proposed system. All of the annotated nodule segmentations are
used in the evaluation of the proposed method. The overlapped manual nodule segmentations from four
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different radiologists are merged to a single segmentation. This dataset consists of 151 nodules and
10,531 slices. The diameters of the nodules range from 3 to 30 mm. The number of slices per scan is
about 200, and each slice has 512 × 512 pixels and 4096 gray level values in HU. The pixel size in the
database ranges from 0.5 to 0.76 mm, and the reconstruction interval ranges from 1 to 3 mm.

The nodule candidates are considered as nodules or non-nodules using annotation provided by chest
radiologists. In the evaluation, each detected nodule candidate is determined to be a nodule if its distance
to any nodule in the database is smaller than 1.5 times the radius of that nodule or if its radius is greater
than 0.8 times or smaller than 1.5 times the radius of the target nodule. We denote this classification as
a hit. We allow a ”near hit” by using these 0.8 and 1.5 factors, which were obtained by experiments. If a
hit on a detected nodule candidate is produced, it will be counted as a true positive. However, if no hit is
produced, it will be considered to be a false positive.

The input CT images were divided into block images, and we filtered out the non-informative blocks
by using entropy analysis. Next, the nodule candidates were detected from the selected informative block
images by using proposed block segmentation method. We segmented the objects in the selected block
images and adjust the locations of the blocks. We detected 147 nodules and 3492 non-nodules (false
positives) as nodule candidates; sensitivity is 97.35% with 60.21 false positives per scan.

In the last step, we classified the nodule candidates into nodules and non-nodules. We extracted the
feature vector of the object in the nodule candidate block images. SVMs were applied to the extracted
feature vectors to detect nodules. The proposed SVMs were evaluated by k-fold cross validation where
5, 7, or 10 is typically used as a k. In this paper, 7-fold cross validation is used for evaluation because it
provides a more suitable balance between training and testing data for evaluating the proposed method
than 5-fold and 10-fold cross validation. Table 2 shows the performance of SVMs for different k values.
As shown in Table 2, 7-fold cross validation shows the best results, and there are small differences of
performance measures with respect to different k values.

Table 2. The k-fold cross validation results of SVM classifiers with radial basis function
kernel for different k values.

k p AUC MCC NPV Accuracy Sensitivity Specificity

5 0.25 0.9738 0.8312 88.20% 91.52% 87.16% 95.88%
7 0.25 0.9784 0.8816 91.61% 93.97% 91.02% 96.92%
10 0.25 0.9736 0.8548 90.16% 92.43% 88.97% 95.88%

Table 3 shows the performance of SVMs using different kernel functions, SVM-r: radial basis
function, SVM-p: polynomial function, and SVM-m: Minkowski distance function. Figure 6 shows
the ROC curves of the SVM classifiers with respect to three different kernel functions ((a) p = 0.25

and (b) p = 1). The SVM-r shows more accurate and robust results with various kernel parameters.
The SVM-p shows quite accurate results when parameter p is 0.5 ∼ 2, whereas it is not stable. The
performance of classification is generally not strong on the SVM-m.
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Table 3. The 7-fold cross validation results of SVM classifiers with three diffrent kernel
functions, SVM-r: radial basis function, SVM-p: polynomial function, and SVM-m:
Minkowski distance function.

p AUC MCC NPV Accuracy Sensitivity Specificity

SVM-r 0.1 0.9727 0.7322 76.96% 84.72% 69.44% 100.00%
0.125 0.9746 0.7990 82.65% 88.96% 78.70% 99.23%
0.25 0.9784 0.8816 91.61% 93.97% 91.02% 96.92%
0.5 0.9754 0.8545 91.77% 92.82% 91.54% 94.10%
1 0.9712 0.8364 91.63% 91.79% 91.53% 92.05%
2 0.9673 0.8443 93.01% 92.30% 93.08% 91.53%

SVM-p 0.1 0.4660 -0.1486 16.14% 47.40% 0.00% 94.81%
0.125 0.4632 -0.1095 17.07% 44.81% 0.26% 89.35%
0.25 0.6876 0.4019 81.78% 68.26% 86.13% 50.39%
0.5 0.9462 0.8058 92.02% 89.85% 91.52% 88.18%
1 0.9463 0.8188 92.77% 90.74% 92.78% 88.69%
2 0.9646 0.8514 92.17% 92.29% 91.25% 93.32%

SVM-m 0.1 0.8706 0.6524 85.72% 82.55% 86.91% 78.19%
0.125 0.7051 0.4154 75.49% 69.71% 78.46% 60.95%
0.25 0.5706 0.2300 64.25% 60.68% 68.69% 52.68%
0.5 0.5469 0.1911 62.02% 59.02% 66.63% 51.41%
1 0.5420 0.1749 60.93% 58.11% 66.11% 50.12%
2 0.5527 0.1673 60.56% 57.60% 65.85% 49.36%

Figure 6. ROC curves of the SVM classifiers with respect to three different kernel functions,
SVM-r: radial basis function, SVM-p: polynomial function, and SVM-m: Minkowski
distance function; (a) p = 0.25 and (b) p = 1.
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Table 4. The overall performance of CAD system for different parameters p of SVM-r
classifiers.

p AUC MCC NPV Accuracy Specificity Sensitivity false positives/scan

Nodule Candidates Detection 97.35% 60.21
0.1 0.9931 0.9594 99.11% 95.89% 99.62% 92.67% 0.23
0.125 0.9934 0.9509 99.35% 96.92% 99.11% 93.95% 0.54
0.25 0.9929 0.8785 99.59% 97.61% 96.23% 95.28% 2.27
0.5 0.9835 0.8082 99.10% 95.15% 93.93% 92.85% 3.65
1 0.9727 0.7602 98.66% 92.98% 92.33% 90.63% 4.62
2 0.9584 0.7101 98.58% 92.41% 89.74% 90.45% 6.18

Figure 7. FROC curves of the proposed CAD system with respect to three different kernel
parameters of SVM-r classifiers.
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The overall system performance was then evaluated for all detected nodule candidates. The false
positives, which remained after nodule candidate detection, were extremely reduced after applying SVM
classification. The overall performance of the proposed CAD system is shown in Table 4. We multiplied
sensitivity of SVM classifier by sensitivity of nodule candidate detection to obtain the overall sensitivity
of the proposed CAD system. The proposed method shows excellent classification results. Accuracies of
classification are more than 90% and their sensitivities are also over 90%. The best accuracy is 97.61%
when the parameter p is 0.25. In Figure 7, the overall performance of the proposed CAD system is
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represented by the free-response ROC (FROC) curves. The proposed methods show robust and accurate
performance in detecting nodules.

It is difficult to compare previously published CAD systems due to different datasets, nodule types,
sizes, and validation methods. However, it is important to compare the performance of the proposed
system. We selected recently reported CAD systems to compare their performances. Half of them used
the LIDC database [5,6,28]. The other half of the papers used their own databases. Table 5 shows the
comparison of the proposed CAD system with previously reported CAD systems. The different CAD
systems have shown reasonable sensitivity values in pulmonary nodule detection. Our proposed method
shows significantly high sensitivity with reduced false positives.

Table 5. Performance comparison of reported CAD system.

CAD systems Nodule size Sensitivity Avg. false positives /scan

Dehmeshki et al.(2007) [7] 3-20 mm 90% 14.6
SuarezCuenca et al.(2009) [8] 4-27 mm 80% 7.7
Opfer and Wiemeker(2007)[28] ≥4 mm 74% 4
Messay et al.(2010) [5] 3-30 mm 82.66% 3
Choi et al.(2012) [6] 3-30mm 94.1% 5.45
Proposed method 3-30 mm 95.28% 2.27

7. Conclusions

In order to detect defective nodules, we have proposed a novel CAD system based on hierarchical
3-D block image analysis. Firstly, we hierarchically split the input CT images into 3-D block images,
and the block images were classified into informative and non-informative by using the entropy analysis.
Next, the selected informative block images were analyzed to detect nodule candidates. Finally, we
detected nodules from the detected nodule candidates using the proposed classification method. We
extracted feature vectors from the detected nodule candidates, and the feature vectors were classified
into nodule and non-nodule by using the SVM classifier. The performance of the proposed system
was evaluated on the LIDC database. The proposed method has reduced the false positives in nodule
candidates significantly. It achieved 95.28% sensitivity with only 2.27 false positives per scan and its
accuracy was 97.61%. The results have shown the superiority of the proposed method.
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8. Suárez-Cuenca, J.; Tahoces, P.; Souto, M.; Lado, M.; Remy-Jardin, M.; Remy, J.; José Vidal, J.
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