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Abstract:



In this paper, we study a new bus communication model, where two transmitters wish to send their corresponding private messages and a common message to a destination, while they also wish to send the common message to another receiver connected to the same wire. From an information-theoretical point of view, we first study a general case of this new model (with discrete memoryless channels). The capacity region composed of all achievable [image: there is no content] triples is determined for this general model, where [image: there is no content] and [image: there is no content] are the transmission rates of the private messages and [image: there is no content] is the transmission rate of the common message. Then, the result is further explained via the Gaussian example. Finally, we give the capacity region for the new bus communication model with additive Gaussian noises and attenuation factors. This new bus communication model captures various communication scenarios, such as the bus systems in vehicles, and the bus type of communication channel in power line communication (PLC) networks.
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1. Introduction


The bus communication model has been widely studied for many years. It captures various communication scenarios, such as the bus systems in vehicles, and the bus type of communication channel in power line communication (PLC) networks (see [1,2,3,4,5]).



Let us consider the bus communication model of Figure 1 from an information-theoretical point of view. Figure 1 can be equivalent to the model of the broadcast channel (see Figure 2). Note that Figure 2 implies that [image: there is no content].


Figure 1. The bus communication model (Gains [image: there is no content] and [image: there is no content], the power of the sender [image: there is no content], and the power of the noise [image: there is no content]).



[image: Entropy 15 00678 g001]





Figure 2. The broadcast presentation of the bus communication model.



[image: Entropy 15 00678 g002]










The model of the boradcast channel was first investigated by Cover [6], and the capacity region of the general case (two private messages and one common message) is still not known. After the publication of Cover’s work, Körner and Marton [7] studied the broadcast channel with degraded message set (one private and one common message), and found its capacity region. For the degraded broadcast channel, the capacity region is totally determined, (see [8,9,10]). In addition, Gamal and Cover [11] showed that the Gaussian broadcast channel is a kind of degraded broadcast channel, and therefore, the capacity region for the Gaussian case can be directly obtained from the result of the degraded broadcast channel.



The following Theorem 1 shows the capacity region of the model of Figure 2, which is a kind of Gaussian broadcast channel.



Theorem 1 

The capacity region of the model of Figure 2 is the set of rate pairs ([image: there is no content],[image: there is no content]), such that


[image: there is no content]≤12ln(1+α[image: there is no content][image: there is no content][image: there is no content])[image: there is no content]≤12ln(1+(1-α)[image: there is no content]f4α[image: there is no content]f4+[image: there is no content])








for some [image: there is no content]. Note that [image: there is no content]is the power constraint of the channel input, X, f and [image: there is no content]are channel gains ([image: there is no content]) and [image: there is no content]is the power of the noise.





Theorem 1 is directly obtained from the capacity region of the Gaussian broadcast channel [11], and therefore, the proof is omitted here.



In this paper, we study a two-sender bus communication model (see Figure 3). Two transmitters wish to send their corresponding private messages and a common message to receiver 1, while they also wish to send the common message to receiver 2.


Figure 3. A new bus communication model with two transmitters.



[image: Entropy 15 00678 g003]








Figure 3 can be equivalent to the following Figure 4. Note that the capacity region of the Gaussian broadcast channel (BC) can be obtained from the capacity region of the discrete memoryless degraded broadcast channel. Therefore, first, we study the discrete memoryless case of the model of Figure 4, where two transmitters wish to send their private messages, [image: there is no content] and [image: there is no content], and a common message, [image: there is no content] to receiver 1, and meanwhile, they also wish to send the common message, [image: there is no content] to receiver 2. Receiver 2 can receive a degraded version of the output of the multiple-access channel (MAC) via a discrete memoryless channel (DMC) (see Figure 5). This model can be viewed as a combination of multiple-access channel and degraded broadcast channel. For convenience, we call it MAC-DBC in this paper.


Figure 4. An equivalent model for the model of Figure 3.



[image: Entropy 15 00678 g004]





Figure 5. A combination of multiple-access channel and degraded broadcast channel (MAC-DBC).



[image: Entropy 15 00678 g005]








Then, we study the model of Figure 4, which is a Gaussian example of the MAC-DBC in Figure 5. The capacity regions of the MAC-DBC and the model of Figure 4 are totally determined.



The study of MAC-DBC from an information-theoretical point of view is due to the fact that the network information theory has recently become an active research area. Both MAC and BC play an important role in the network information theory, and they have been extensively studied separately. However, the cascade of MAC and BC (MAC-BC) has seldom drawn people’s attention. To investigate the capacity region and the capacity-achieving coding scheme for the MAC-BC is the motivation of this work.





In this paper, random variab1es, sample values and alphabets are denoted by capital letters, lower case letters and calligraphic letters, respectively. A similar convention is applied to the random vectors and their sample values. For example, [image: there is no content] denotes a random N-vector [image: there is no content], and [image: there is no content] is a specific vector value in [image: there is no content] that is the Nth Cartesian power of [image: there is no content]. [image: there is no content] denotes a random [image: there is no content]-vector [image: there is no content], and [image: there is no content] is a specific vector value in [image: there is no content]iN. Let [image: there is no content] denote the probability mass function [image: there is no content]. Throughout the paper, the logarithmic function is to the base 2.



The remainder of this paper is organized as follows. In Section 2, we present the basic definitions and the main result on the capacity region of MAC-DBC. In Section 3, we provide the capacity region of the model of Figure 4. Final conclusions are presented in Section 4. The proofs are provided from Section A to Section E.




2. Notations, Definitions and the Main Results of MAC-DBC


In this section, a description of the MAC-DBC is given by Definition 1 to Definition 3. The capacity region, [image: there is no content], composed of all achievable [image: there is no content] triples is given in Theorem 2, where the achievable [image: there is no content] triple is defined in Definition 4.



Definition 1 

(Encoders) The private messages, [image: there is no content] and [image: there is no content], take values in [image: there is no content]and [image: there is no content], respectively. The common message, [image: there is no content], takes values in [image: there is no content]. [image: there is no content], [image: there is no content]and [image: there is no content]are independent and uniformly distributed over their ranges. The channel encoders are two mappings:


f1N:[image: there is no content]×[image: there is no content]→X1N



(1)




where [image: there is no content], w1∈[image: there is no content], and w0∈[image: there is no content].


f2N:[image: there is no content]×[image: there is no content]→X2N



(2)




where [image: there is no content], w2∈[image: there is no content], and w0∈[image: there is no content]. Note that [image: there is no content]and [image: there is no content]are independent, and [image: there is no content]is independent of [image: there is no content].





The transmission rates of the private messages and the common message are log∥[image: there is no content]∥N, log∥[image: there is no content]∥N, and log∥[image: there is no content]∥N, respectively.



Definition 2 

(Channels) The MAC is a DMC with finite input alphabet [image: there is no content], finite output alphabet [image: there is no content]and transition probability [image: there is no content], where x1∈X1,x2∈X2,y∈[image: there is no content]. [image: there is no content]. The inputs of the MAC are [image: there is no content] and [image: there is no content], while the output is [image: there is no content].





Receiver 2 has access to the output of the MAC via a discrete memoryless channel (DMC). The input of this DMC is [image: there is no content], and the output is [image: there is no content]. The transition probability satisfies that


p[image: there is no content]|[image: there is no content](zN|yN)=∏i=1NpZ|Y(zi|yi)



(3)




where [image: there is no content]and yi∈[image: there is no content].



Definition 3 

(Decoders) The decoder for receiver 1 is a mapping, fD1:[image: there is no content]N→[image: there is no content]×[image: there is no content]×[image: there is no content], with input [image: there is no content]and outputs [image: there is no content], [image: there is no content], [image: there is no content]. Let [image: there is no content]be the error probability of the receiver 1 , and it is defined as Pr{([image: there is no content],[image: there is no content],[image: there is no content])≠([image: there is no content],[image: there is no content],[image: there is no content])}.





The decoder for receiver 2 is a mapping, fD2:ZN→[image: there is no content], with input [image: there is no content]and output [image: there is no content]. Let [image: there is no content]be the error probability of the receiver 2 , and it is defined as Pr{[image: there is no content]≠[image: there is no content]}.



Definition 4 

(Achievable [image: there is no content]triple in the model of Figure 5) A triple [image: there is no content](where [image: there is no content],[image: there is no content],[image: there is no content]>0) is called achievable if, for any [image: there is no content](where ϵ is an arbitrary small positive real number and [image: there is no content]), there exists channel encoders-decoders (N,[image: there is no content],[image: there is no content]), such that


log∥[image: there is no content]∥N≥[image: there is no content]-ϵ,log∥[image: there is no content]∥N≥[image: there is no content]-ϵ,log∥[image: there is no content]∥N≥[image: there is no content]-ϵ,[image: there is no content]≤ϵ,[image: there is no content]≤ϵ



(4)









Theorem 2 gives a single-letter characterization of the set [image: there is no content], which is composed of all achievable [image: there is no content] triples in the model of Figure 5, and it is proved in Section A and Section B.



Theorem 2 

A single-letter characterization of the region [image: there is no content]is as follows,


[image: there is no content]=([image: there is no content],[image: there is no content],[image: there is no content]):0≤[image: there is no content]≤I(U;Z)0≤[image: there is no content]≤I([image: there is no content];Y|[image: there is no content],U)0≤[image: there is no content]≤I([image: there is no content];Y|[image: there is no content],U)[image: there is no content]+[image: there is no content]≤I([image: there is no content],[image: there is no content];Y|[image: there is no content])[image: there is no content]+[image: there is no content]≤I([image: there is no content],[image: there is no content];Y|[image: there is no content])[image: there is no content]+[image: there is no content]≤I([image: there is no content],[image: there is no content];Y|U)[image: there is no content]+[image: there is no content]+[image: there is no content]≤I([image: there is no content],[image: there is no content];Y).








where [image: there is no content]





Remark 1 

There are some notes on Theorem 2; see the following.

	
The region [image: there is no content]is convex, and the proof is in Section C.



	
The ranges of the random variables U, [image: there is no content] and [image: there is no content]satisfy


∥[image: there is no content]∥≤∥X1∥∥X2∥+2










[image: there is no content]










[image: there is no content]








The proof is in Section D.



	
The auxiliary random variables U, [image: there is no content]and [image: there is no content], in fact, are corresponding to [image: there is no content], [image: there is no content]and [image: there is no content], respectively.



	
If [image: there is no content]=0, receiver 2 is useless, and the model of Figure 5 reduces to the multiple-access channel (MAC).



Let [image: there is no content]=0, and the corresponding [image: there is no content], the region, [image: there is no content], reduces to


([image: there is no content],[image: there is no content]):0≤[image: there is no content]≤I([image: there is no content];Y|[image: there is no content])0≤[image: there is no content]≤I([image: there is no content];Y|[image: there is no content])[image: there is no content]≤I([image: there is no content],[image: there is no content];Y|[image: there is no content])[image: there is no content]≤I([image: there is no content],[image: there is no content];Y|[image: there is no content])[image: there is no content]+[image: there is no content]≤I([image: there is no content],[image: there is no content];Y).



(5)




Note that the Markov chains, [image: there is no content]→[image: there is no content]→Yand [image: there is no content]→[image: there is no content]→Y, then the inequalities [image: there is no content]≤I([image: there is no content],[image: there is no content];Y|[image: there is no content])and [image: there is no content]≤I([image: there is no content],[image: there is no content];Y|[image: there is no content])are included in [image: there is no content]≤I([image: there is no content];Y|[image: there is no content])and [image: there is no content]≤I([image: there is no content];Y|[image: there is no content]), respectively. Therefore, the above region (5) is simplified as


([image: there is no content],[image: there is no content]):0≤[image: there is no content]≤I([image: there is no content];Y|[image: there is no content])0≤[image: there is no content]≤I([image: there is no content];Y|[image: there is no content])[image: there is no content]+[image: there is no content]≤I([image: there is no content],[image: there is no content];Y).



(6)




, and this is coincident with the capacity region of the MAC [12,13].











3. A Gaussian Example of MAC-DBC and the Capacity Region of the Model of Figure 4


In this section, we first study a Gaussian example of Figure 5, where the channel input-output relationships at each time instant i ([image: there is no content]) are given by


[image: there is no content]



(7)




and


[image: there is no content]



(8)




where [image: there is no content] and [image: there is no content]. The random vectors, [image: there is no content], [image: there is no content] and [image: there is no content], are independent with i.i.d. components. The channel inputs, [image: there is no content] and [image: there is no content], are subject to the average power constraints, [image: there is no content] and [image: there is no content], respectively, i.e.,


1N∑i=1NE[X1,i2]≤[image: there is no content],1N∑i=1NE[X2,i2]≤[image: there is no content]



(9)







Theorem 3 

For the Gaussian case of Figure 5, the capacity-equivocation region, [image: there is no content], is given by


[image: there is no content]=⋃0≤α≤1([image: there is no content],[image: there is no content],[image: there is no content]):0≤[image: there is no content]≤12log(1+α([image: there is no content]+[image: there is no content])(1-α)([image: there is no content]+[image: there is no content])+[image: there is no content]+[image: there is no content])0≤[image: there is no content]≤12log(1+(1-α)[image: there is no content][image: there is no content])0≤[image: there is no content]≤12log(1+(1-α)[image: there is no content][image: there is no content])[image: there is no content]+[image: there is no content]≤12log(1+(1-α)([image: there is no content]+[image: there is no content])[image: there is no content])[image: there is no content]+[image: there is no content]≤12log(1+[image: there is no content]+α[image: there is no content][image: there is no content])[image: there is no content]+[image: there is no content]≤12log(1+[image: there is no content]+α[image: there is no content][image: there is no content])[image: there is no content]+[image: there is no content]+[image: there is no content]≤12log(1+[image: there is no content]+[image: there is no content][image: there is no content]).



(10)




The proof of Theorem 3 is in Section E.





Then, we will show that the capacity region of the model of Figure 4 can be obtained from the above Theorem 3. The channel input-output relationships of Figure 4 at each time instant i ([image: there is no content]) are given by


[image: there is no content]



(11)




and


[image: there is no content]=[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content]+[image: there is no content]



(12)




, where [image: there is no content], [image: there is no content] and [image: there is no content]. The channel inputs [image: there is no content] and [image: there is no content], are subject to the average power constraints [image: there is no content] and [image: there is no content], respectively.



Note that the additive Gaussian noise, [image: there is no content], can be viewed as a cascade of [image: there is no content] and Z2,i′, where [image: there is no content]. Moreover, Equations (11) and (12) are equivalent to Equations (13) and (14), respectively, where


[image: there is no content]=[image: there is no content]+[image: there is no content]+1f[image: there is no content]



(13)




and


[image: there is no content]=[image: there is no content]+[image: there is no content]+1[image: there is no content][image: there is no content]



(14)




Therefore, the model of Figure 4 is analogous to the above Gaussian example of MAC-DBC. The capacity region is as follows.



Theorem 4 

For the model of Figure 4, the capacity region [image: there is no content]is given by


[image: there is no content]=⋃0≤α≤1([image: there is no content],[image: there is no content],[image: there is no content]):0≤[image: there is no content]≤12log(1+αf4([image: there is no content]+[image: there is no content])(1-α)([image: there is no content]+[image: there is no content])f4+[image: there is no content])0≤[image: there is no content]≤12log(1+(1-α)[image: there is no content][image: there is no content][image: there is no content])0≤[image: there is no content]≤12log(1+(1-α)[image: there is no content][image: there is no content][image: there is no content])[image: there is no content]+[image: there is no content]≤12log(1+(1-α)([image: there is no content]+[image: there is no content])[image: there is no content][image: there is no content])[image: there is no content]+[image: there is no content]≤12log(1+([image: there is no content]+α[image: there is no content])[image: there is no content][image: there is no content])[image: there is no content]+[image: there is no content]≤12log(1+([image: there is no content]+α[image: there is no content])[image: there is no content][image: there is no content])[image: there is no content]+[image: there is no content]+[image: there is no content]≤12log(1+([image: there is no content]+[image: there is no content])[image: there is no content][image: there is no content]).



(15)









The proof is directly obtained from Theorem 3, and it is omitted here.



Figure 6, Figure 7, Figure 8, Figure 9 and Figure 10 plot the capacity region, [image: there is no content], with different values of f, [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. It is easy to see that [image: there is no content] reduces to the capacity region of the Gaussian MAC when [image: there is no content]=0. From these figures, we can see that [image: there is no content] enlarges as [image: there is no content] and [image: there is no content] decrease. Moreover, for fixed f, [image: there is no content] and [image: there is no content], [image: there is no content] enlarges as [image: there is no content] and [image: there is no content] increase.


Figure 6. The capacity region of Figure 4 with [image: there is no content]=[image: there is no content]=1, [image: there is no content]=1, [image: there is no content]=2 and [image: there is no content].



[image: Entropy 15 00678 g006]





Figure 7. The capacity region of Figure 4 with [image: there is no content]=[image: there is no content]=1, [image: there is no content]=1, [image: there is no content]=100 and [image: there is no content].



[image: Entropy 15 00678 g007]





Figure 8. The capacity region of Figure 4 with [image: there is no content]=[image: there is no content]=1, [image: there is no content]=1, [image: there is no content]=0.01 and [image: there is no content].



[image: Entropy 15 00678 g008]





Figure 9. The capacity region of Figure 4 with [image: there is no content]=[image: there is no content]=2, [image: there is no content]=0.1, [image: there is no content]=0.01 and [image: there is no content].



[image: Entropy 15 00678 g009]





Figure 10. The capacity region of Figure 4 with [image: there is no content]=[image: there is no content]=1, [image: there is no content]=1, [image: there is no content]=2 and [image: there is no content].



[image: Entropy 15 00678 g010]

















4. Conclusions


In this paper, we first study the discrete memoryless MAC-DBC (the model of Figure 5). The capacity region is totally determined for this new model. Then, we study the model of Figure 4 and show that the capacity region of Figure 4 can be directly obtained from the Gaussian example of the MAC-DBC.
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Appendix



A. Proof of the Converse Part of Theorem 2


In this section, we establish the converse part of Theorem 2: all the achievable [image: there is no content] triples are contained in the set [image: there is no content], i.e., for any achievable triple, there exists random variables U, [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], Y and Z such that the inequalities in Theorem 2 hold, and (U,[image: there is no content],[image: there is no content])→([image: there is no content],[image: there is no content])→Y→(Y1,Y2) forms a Markov chain. We will prove the inequalities of Theorem 2 in the remainder of this section.



(Proof of 0≤[image: there is no content]≤I(U;Z)) The proof of this inequality is as follows:


1NH([image: there is no content])≤(a)1N(I([image: there is no content];[image: there is no content])+δ([image: there is no content]))=1N(H([image: there is no content])-H([image: there is no content]|[image: there is no content])+δ([image: there is no content]))=1N(∑i=1N(H([image: there is no content]|Zi-1)-H([image: there is no content]|[image: there is no content],Zi-1)+δ([image: there is no content]))≤1N(∑i=1N(H([image: there is no content]|Zi-1)-H([image: there is no content]|[image: there is no content],Zi-1,[image: there is no content])+δ([image: there is no content]))=(b)1N(∑i=1N(H([image: there is no content]|Zi-1)-H([image: there is no content]|[image: there is no content],[image: there is no content])+δ([image: there is no content]))≤1N(∑i=1N(H([image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content])+δ([image: there is no content]))=(c)1N(∑i=1N(H([image: there is no content])-H([image: there is no content]|[image: there is no content])+δ([image: there is no content]))=(d)1N(∑i=1N(H([image: there is no content]|J=i)-H([image: there is no content]|[image: there is no content],J=i)+δ([image: there is no content]))=(e)H(ZJ|J)-H(ZJ|UJ,J)+1Nδ([image: there is no content])≤H(ZJ)-H(ZJ|UJ,J)+1Nδ([image: there is no content])=(f)H(Z)-H(Z|U)+1Nδ([image: there is no content])=I(U;Z)+δ([image: there is no content])N



(A1)




where (a) is from the Fano’s inequality, (b) is from Zi-1→([image: there is no content],[image: there is no content])→[image: there is no content], (c) is from the definition that [image: there is no content]≜([image: there is no content],[image: there is no content]), (d) is from J as a random variable (uniformly distributed over [image: there is no content]), and J is independent of [image: there is no content] and [image: there is no content], (e) is from J as uniformly distributed over [image: there is no content], and (f) is from the definitions that [image: there is no content] and [image: there is no content].



Letting [image: there is no content] and note that [image: there is no content]≤ϵ, H([image: there is no content])N≥[image: there is no content]-ϵ, it is easy to see that 0≤[image: there is no content]≤I(U;Z).



(Proof of 0≤[image: there is no content]≤I([image: there is no content];Y|[image: there is no content],U)) The proof of this inequality is as follows:


1NH([image: there is no content])≤(1)1N(H([image: there is no content]|[image: there is no content],[image: there is no content])+δ([image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content],[image: there is no content]))=1N(I([image: there is no content];[image: there is no content]|[image: there is no content],[image: there is no content])+δ([image: there is no content]))=1N(H([image: there is no content]|[image: there is no content],[image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content],[image: there is no content])+δ([image: there is no content]))≤1N(H([image: there is no content]|[image: there is no content],[image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content])+δ([image: there is no content]))=(2)1N(H([image: there is no content]|[image: there is no content],[image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content])+δ([image: there is no content]))=(3)1N(∑i=1N(H([image: there is no content]|[image: there is no content],[image: there is no content],[image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content]))+δ([image: there is no content]))≤1N(∑i=1N(H([image: there is no content]|[image: there is no content],[image: there is no content],[image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content]))+δ([image: there is no content]))=(4)1N(∑i=1N(H([image: there is no content]|[image: there is no content],[image: there is no content],[image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content]))+δ([image: there is no content]))=(5)H(Y|[image: there is no content],U)-H(Y|[image: there is no content],[image: there is no content],U)+1Nδ([image: there is no content])=I([image: there is no content];Y|[image: there is no content],U)+1Nδ([image: there is no content])



(A2)




where (1) is from the Fano’s inequality and the fact that [image: there is no content] is independent of [image: there is no content] and [image: there is no content]; (2) is from ([image: there is no content],[image: there is no content])→([image: there is no content],[image: there is no content])→[image: there is no content]; (3) is from the discrete memoryless property of the channel; (4) is from ([image: there is no content],[image: there is no content])→([image: there is no content],[image: there is no content])→[image: there is no content]; and (5) is from the definitions that [image: there is no content]≜X1,J, [image: there is no content]≜X2,J, [image: there is no content], U≜([image: there is no content],YJ-1,J), where J is a random variable (uniformly distributed over [image: there is no content]), and is independent of [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content].



Letting [image: there is no content] and note that [image: there is no content]≤ϵ, H([image: there is no content])N≥[image: there is no content]-ϵ, it is easy to see that 0≤[image: there is no content]≤I([image: there is no content];Y|[image: there is no content],U).



(Proof of 0≤[image: there is no content]≤I([image: there is no content];Y|[image: there is no content],U)) The proof is similar to the proof of 0≤[image: there is no content]≤I([image: there is no content];Y|[image: there is no content],U), and it is omitted here.



(Proof of 0≤[image: there is no content]+[image: there is no content]≤I([image: there is no content],[image: there is no content];Y|U))


1NH([image: there is no content],[image: there is no content])≤(a)1N(I([image: there is no content],[image: there is no content];[image: there is no content]|[image: there is no content])+δ([image: there is no content]))=1N(H([image: there is no content]|[image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content],[image: there is no content])+δ([image: there is no content]))≤1N(H([image: there is no content]|[image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content])+δ([image: there is no content]))=(b)1N(H([image: there is no content]|[image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content])+δ([image: there is no content]))=(c)1N(∑i=1N(H([image: there is no content]|[image: there is no content],[image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content]))+δ([image: there is no content]))=(d)1N(∑i=1N(H([image: there is no content]|[image: there is no content],[image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content]))+δ([image: there is no content]))=(e)H(Y|U)-H(Y|[image: there is no content],[image: there is no content],U)+1Nδ([image: there is no content]))=I([image: there is no content],[image: there is no content];Y|U)+δ([image: there is no content])N



(A3)




where (a) is from the Fano’s inequality and the fact that [image: there is no content] is independent of [image: there is no content] and [image: there is no content]; (b) is from ([image: there is no content],[image: there is no content],[image: there is no content])→([image: there is no content],[image: there is no content])→[image: there is no content]; (c) is from the discrete memoryless property of the channel; (d) is from ([image: there is no content],[image: there is no content])→([image: there is no content],[image: there is no content])→[image: there is no content]; and (e) is from the definitions that [image: there is no content]≜(X1,J,J), [image: there is no content]≜(X2,J,J), [image: there is no content] and U≜([image: there is no content],YJ-1,J).



Letting [image: there is no content] and note that [image: there is no content]≤ϵ, H([image: there is no content])N≥[image: there is no content]-ϵ, H([image: there is no content])N≥[image: there is no content]-ϵ and [image: there is no content] is independent of [image: there is no content], it is easy to see that 0≤[image: there is no content]+[image: there is no content]≤I([image: there is no content],[image: there is no content];Y|U).



(Proof of [image: there is no content]+[image: there is no content]≤I([image: there is no content],[image: there is no content];Y|[image: there is no content])) The proof is obtained by the following Equation (A4).


1NH([image: there is no content],[image: there is no content])≤(a)1N(I([image: there is no content],[image: there is no content];[image: there is no content]|[image: there is no content])+δ([image: there is no content]))=1N(H([image: there is no content]|[image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content],[image: there is no content])+δ([image: there is no content]))≤1N(H([image: there is no content]|[image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content])+δ([image: there is no content]))=(b)1N(H([image: there is no content]|[image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content])+δ([image: there is no content]))=(c)1N(∑i=1N(H([image: there is no content]|[image: there is no content],[image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content]))+δ([image: there is no content]))=(d)1N(∑i=1N(H([image: there is no content]|[image: there is no content],[image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content]))+δ([image: there is no content]))=(e)H(Y|[image: there is no content])-H(Y|[image: there is no content],[image: there is no content],[image: there is no content])+1Nδ([image: there is no content]))=I([image: there is no content],[image: there is no content];Y|[image: there is no content])+δ([image: there is no content])N



(A4)




where (a) is from the Fano’s inequality and the fact that [image: there is no content] is independent of [image: there is no content] and [image: there is no content]; (b) is from ([image: there is no content],[image: there is no content],[image: there is no content])→([image: there is no content],[image: there is no content])→[image: there is no content]; (c) is from the discrete memoryless property of the channel; (d) is from ([image: there is no content],[image: there is no content])→([image: there is no content],[image: there is no content])→[image: there is no content]; and (e) is from the definitions that [image: there is no content]≜(X1,J,J), [image: there is no content]≜(X2,J,J), [image: there is no content] and [image: there is no content]≜([image: there is no content],YJ-1,J).



Letting [image: there is no content] and note that [image: there is no content]≤ϵ, H([image: there is no content])N≥[image: there is no content]-ϵ, H([image: there is no content])N≥[image: there is no content]-ϵ and [image: there is no content] is independent of [image: there is no content], it is easy to see that [image: there is no content]+[image: there is no content]≤I([image: there is no content],[image: there is no content];Y|[image: there is no content]).



(Proof of [image: there is no content]+[image: there is no content]≤I([image: there is no content],[image: there is no content];Y|[image: there is no content])) The proof is analogous to the proof of [image: there is no content]+[image: there is no content]≤I([image: there is no content],[image: there is no content];Y|[image: there is no content]), and it is omitted here.



(Proof of [image: there is no content]+[image: there is no content]+[image: there is no content]≤I([image: there is no content],[image: there is no content];Y))


1NH([image: there is no content],[image: there is no content],[image: there is no content])≤(a)1N(I([image: there is no content],[image: there is no content],[image: there is no content];[image: there is no content])+δ([image: there is no content]))=1N(H([image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content],[image: there is no content])+δ([image: there is no content]))≤1N(H([image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content])+δ([image: there is no content]))=(b)1N(H([image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content])+δ([image: there is no content]))=(c)1N(∑i=1N(H([image: there is no content]|[image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content]))+δ([image: there is no content]))≤1N(∑i=1N(H([image: there is no content])-H([image: there is no content]|[image: there is no content],[image: there is no content]))+δ([image: there is no content]))≤(d)H(Y)-H(Y|[image: there is no content],[image: there is no content],U)+1Nδ([image: there is no content]))=I([image: there is no content],[image: there is no content];Y)+δ([image: there is no content])N



(A5)




where (a) is from the Fano’s inequality; (b) is from ([image: there is no content],[image: there is no content],[image: there is no content])→([image: there is no content],[image: there is no content])→[image: there is no content]; (c) is from the discrete memoryless property of the channel; and (d) is from the definitions that [image: there is no content]≜(X1,J,J), [image: there is no content]≜(X2,J,J), [image: there is no content].



Letting [image: there is no content] and note that [image: there is no content]≤ϵ, H([image: there is no content])N≥[image: there is no content]-ϵ, H([image: there is no content])N≥[image: there is no content]-ϵ, H([image: there is no content])N≥[image: there is no content]-ϵ, it is easy to see that [image: there is no content]+[image: there is no content]+[image: there is no content]≤I([image: there is no content],[image: there is no content];Y).



The Markov chain, (U,[image: there is no content],[image: there is no content])→([image: there is no content],[image: there is no content])→Y→Z, is directly obtained from the definitions U≜([image: there is no content],YJ-1,J), [image: there is no content]≜([image: there is no content],YJ-1,J), [image: there is no content]≜([image: there is no content],YJ-1,J)[image: there is no content]≜(X1,J,J), [image: there is no content]≜(X2,J,J), [image: there is no content] and [image: there is no content].



The proof of the converse part of Theorem 2 is completed.




B. Proof of the Direct Part of Theorem 2


In this section, we establish the direct part of Theorem 2 (about existence). Suppose [image: there is no content]∈[image: there is no content], we will show that [image: there is no content] is achievable.



The coding scheme for Theorem 2 is in the following Figure A1. Now, the remainder of this section is organized as follows. Some preliminaries about typical sequences are introduced in Subsection B.1. The construction of the code is introduced in Subsection B.2. For any given [image: there is no content], the proofs of log∥[image: there is no content]∥N≥[image: there is no content]-ϵ, log∥[image: there is no content]∥N≥[image: there is no content]-ϵ, log∥[image: there is no content]∥N≥[image: there is no content]-ϵ, [image: there is no content]≤ϵ and [image: there is no content]≤ϵ are given in Subsection B.3.


Figure A1. Coding scheme for MAC-DBC.



[image: Entropy 15 00678 g011]








B.1. Preliminaries




	
Given a probability mass function, [image: there is no content], for any [image: there is no content], let [image: there is no content] be the strong typical set of all [image: there is no content], such that |pV(v)-c[image: there is no content](v)N|<η for all [image: there is no content], where c[image: there is no content](v) is the number of occurences of the letter v in the [image: there is no content]. We say that the sequences, [image: there is no content]∈TVN(η), are V-typical.



	
Analogously, given a joint probability mass function, [image: there is no content], for any [image: there is no content], let [image: there is no content] be the joint strong typical set of all pairs ([image: there is no content],[image: there is no content]), such that |p[image: there is no content][image: there is no content]-c[image: there is no content],[image: there is no content][image: there is no content]N|<η for all [image: there is no content] and [image: there is no content], where c[image: there is no content],[image: there is no content][image: there is no content] is the number of occurences of [image: there is no content] in the pair of sequences ([image: there is no content],[image: there is no content]). We say that the pairs of sequences, ([image: there is no content],[image: there is no content])∈T[image: there is no content]N(η) are [image: there is no content]-typical.



	
Moreover, [image: there is no content] is called [image: there is no content]-generated by [image: there is no content] iff [image: there is no content] is V- typical and ([image: there is no content],[image: there is no content])∈T[image: there is no content]N(η). For any given [image: there is no content]∈TVN(η), define T[image: there is no content]N(η)={[image: there is no content]:[image: there is no content]isW|V-generatedby[image: there is no content]}.



	
Lemma 1 For any [image: there is no content]∈TVN(η),


2-N(H(V)+η*)≤pVN([image: there is no content])≤2-N(H(V)-η*)








where [image: there is no content]as [image: there is no content].








B.2. Coding Construction



Given a triple [image: there is no content], choose a joint probability mass function, pU,[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content],Y,Z(u,v1,v2,x1,x2,y,z), such that


0≤[image: there is no content]≤I([image: there is no content];Y|[image: there is no content],U),0≤[image: there is no content]≤I([image: there is no content];Y|[image: there is no content],U),[image: there is no content]+[image: there is no content]≤I([image: there is no content],[image: there is no content];Y|U),










[image: there is no content]≤I(U;Z),[image: there is no content]+[image: there is no content]≤I([image: there is no content],[image: there is no content];Y|[image: there is no content]),[image: there is no content]+[image: there is no content]≤I([image: there is no content],[image: there is no content];Y|[image: there is no content]),










[image: there is no content]+[image: there is no content]+[image: there is no content]≤I([image: there is no content],[image: there is no content];Y)








The message sets, [image: there is no content], [image: there is no content] and [image: there is no content], satisfy the following conditions:


1Nlog∥[image: there is no content]∥=[image: there is no content],1Nlog∥[image: there is no content]∥=[image: there is no content]1Nlog∥[image: there is no content]∥=[image: there is no content]



(A6)







Code-book generation:

	
For a given w0∈[image: there is no content], generate a corresponding [image: there is no content] i.i.d., according to the probability mass function [image: there is no content].



	
For a given w1∈[image: there is no content], generate a corresponding [image: there is no content] i.i.d., according to the probability mass function p[image: there is no content](v1).



	
For a given w2∈[image: there is no content], generate a corresponding [image: there is no content] i.i.d., according to the probability mass function p[image: there is no content](v2).



	
[image: there is no content] is generated according to a new discrete memoryless channel (DMC), with inputs [image: there is no content] and [image: there is no content], and output [image: there is no content]. The transition probability of this new DMC is p[image: there is no content]|[image: there is no content],U(x1|v1,u).



Similarly, [image: there is no content] is generated according to a new discrete memoryless channel (DMC), with inputs [image: there is no content] and [image: there is no content], and output [image: there is no content]. The transition probability of this new DMC is p[image: there is no content]|[image: there is no content],U(x2|v2,u).








Decoding scheme:

	
(Receiver 1) Receiver 1 declares that messages, [image: there is no content], [image: there is no content] and [image: there is no content], are sent if they are the unique messages, such that (uN([image: there is no content]),v1N([image: there is no content]),v2N([image: there is no content]),x1N([image: there is no content],[image: there is no content]),x2N([image: there is no content],[image: there is no content]),yN)∈TU[image: there is no content][image: there is no content][image: there is no content][image: there is no content]YN(ϵ), otherwise, it declares an error.



	
(Receiver 2) Receiver 2 declares that a message [image: there is no content] is sent if it is the unique message, such that (uN([image: there is no content]),zN)∈TUZN(ϵ); otherwise it declares an error.








B.3. Achievability Proof



By using the above Equation (A6), it is easy to verify that log∥[image: there is no content]∥N≥[image: there is no content]-ϵ, log∥[image: there is no content]∥N≥[image: there is no content]-ϵ and log∥[image: there is no content]∥N≥[image: there is no content]-ϵ. It remains to show that [image: there is no content]≤ϵ and [image: there is no content]≤ϵ; see the following.



Without loss of generality, assume that [image: there is no content], [image: there is no content] and [image: there is no content] are sent.



2.3.1. [image: there is no content]≤ϵ


For receiver 2, define the events:


[image: there is no content]










B2={(uN(w0),zN)∈TUZN(η)}for somew0≠1











The probability of error for receiver 2 is then upper bounded by


[image: there is no content]=Pr{B1∪B2}≤Pr{B1}+Pr{B2}



(A7)







By using LLN, the first term [image: there is no content] as [image: there is no content]. On the other hand, by using the packing lemma [15, p. 53-54], [image: there is no content] as [image: there is no content] if [image: there is no content]≤I(U;Z).



Therefore, by choosing sufficiently large N, we have [image: there is no content]≤ϵ.




2.3.2. [image: there is no content]≤ϵ


The proof of [image: there is no content]≤ϵ is as follows.



Define the sets


A1={(uN(1),v1N(1),v2N(1),x1N(1,1),x2N(1,1),yN)∉TU[image: there is no content][image: there is no content][image: there is no content][image: there is no content]YN(ϵ)}










A2={(uN(1),v1N(1),v2N(w2),x1N(1,1),x2N(1,w2),yN)∈TU[image: there is no content][image: there is no content][image: there is no content][image: there is no content]YN(ϵ)}for somew2≠1










A3={(uN(1),v1N(w1),v2N(1),x1N(1,w1),x2N(1,1),yN)∈TU[image: there is no content][image: there is no content][image: there is no content][image: there is no content]YN(ϵ)}for somew1≠1










A4={(uN(1),v1N(w1),v2N(w2),x1N(1,w1),x2N(1,w2),yN)∈TU[image: there is no content][image: there is no content][image: there is no content][image: there is no content]YN(ϵ)}for somew1≠1,w2≠1










A5={(uN(w0),v1N(1),v2N(1),x1N(w0,1),x2N(w0,1),yN)∈TU[image: there is no content][image: there is no content][image: there is no content][image: there is no content]YN(ϵ)}for somew0≠1










A6={(uN(w0),v1N(1),v2N(w2),x1N(w0,1),x2N(w0,w2),yN)∈TU[image: there is no content][image: there is no content][image: there is no content][image: there is no content]YN(ϵ)}for somew0≠1,w2≠1










A7={(uN(w0),v1N(w1),v2N(1),x1N(w0,w1),x2N(w0,1),yN)∈TU[image: there is no content][image: there is no content][image: there is no content][image: there is no content]YN(ϵ)}for somew0≠1,w1≠1










A8={(uN(w0),v1N(w1),v2N(w2),x1N(w0,w1),x2N(w0,w2),yN)∈TU[image: there is no content][image: there is no content][image: there is no content][image: there is no content]YN(ϵ)}for some(w0,w1,w2)≠1











The probability of error for receiver 1 is then upper bounded by:


[image: there is no content]=Pr{A1∪A2∪A3∪A4∪A5∪A6∪A7∪A8}(A8)≤∑i=18Pr{Ai}











By using LLN, the first term, [image: there is no content] as [image: there is no content].



For the second term, by using the packing lemma ([15][p. 53–54]), [image: there is no content] as [image: there is no content] if


[image: there is no content]≤I([image: there is no content],[image: there is no content];Y|U,[image: there is no content],[image: there is no content])(A9)=(1)H(Y|U,[image: there is no content])-H(Y|[image: there is no content],[image: there is no content],U)=I([image: there is no content];Y|U,[image: there is no content])








where (1) is from [image: there is no content]→(U,[image: there is no content])→Y and ([image: there is no content],[image: there is no content])→([image: there is no content],[image: there is no content],U)→Y.



Analogously, for the third term, by using the packing lemma, [image: there is no content] as [image: there is no content] if [image: there is no content]≤I([image: there is no content];Y|U,[image: there is no content]).



For the fourth term, by using the packing lemma, [image: there is no content] as [image: there is no content] if [image: there is no content]+[image: there is no content]≤I([image: there is no content];Y|U,[image: there is no content]).


[image: there is no content]+[image: there is no content]≤I([image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content];Y|U)(A10)=(2)H(Y|U)-H(Y|[image: there is no content],[image: there is no content],U)=I([image: there is no content],[image: there is no content];Y|U)








where (2) is from ([image: there is no content],[image: there is no content])→([image: there is no content],[image: there is no content],U)→Y.



For the fifth term, [image: there is no content] as [image: there is no content] if [image: there is no content]≤I(U;Y).



For the sixth term, by using the packing lemma, [image: there is no content] as [image: there is no content] if


[image: there is no content]+[image: there is no content]≤I(U,[image: there is no content],[image: there is no content],[image: there is no content];Y|[image: there is no content])(A11)=(3)H(Y|[image: there is no content])-H(Y|[image: there is no content],[image: there is no content],[image: there is no content])=I([image: there is no content],[image: there is no content];Y|[image: there is no content])








where (3) is from (U,[image: there is no content])→([image: there is no content],[image: there is no content],[image: there is no content])→Y.



Analogously, the seventh term, [image: there is no content] as [image: there is no content] if [image: there is no content]+[image: there is no content]≤I([image: there is no content],[image: there is no content];Y|[image: there is no content]).



For the eighth term, by using the packing lemma, [image: there is no content] as [image: there is no content] if [image: there is no content]+[image: there is no content]+[image: there is no content]≤I([image: there is no content],[image: there is no content];Y).



Therefore, by choosing sufficiently large N, we have [image: there is no content]≤ϵ.



The proof of the direct part of Theorem 2 is completed.





C. Proof of the Convexity of [image: there is no content]


Let (R0′,R1′,R2′)∈[image: there is no content], i.e., (R0′,R1′,R2′), satisfy the following conditions:


R1′≤I(X1(1);Y(1)|X2(1),U(1)),R2′≤I(X2(1);Y(1)|X1(1),U(1)),R1′+R2′≤I(X1(1),X2(1);Y(1)|U(1)),










0≤R0′≤I(U(1);Z(1)),R0′+R1′≤I(X1(1),X2(1);Y(1)|V2(1)),R0′+R2′≤I(X1(1),X2(1);Y(1)|V1(1)),










R0′+R1′+R2′≤I(X1(1),X2(1);Y(1))











Let (R0′′,R1′′,R2′′)∈[image: there is no content], i.e., (R0′′,R1′′,R2′′), satisfy the following conditions:


R1′′≤I(X1(2);Y(2)|X2(2),U(2)),R2′′≤I(X2(2);Y(2)|X1(2),U(2)),R1′′+R2′′≤I(X1(2),X2(2);Y(2)|U(2))










0≤R0′′≤I(U(2);Z(2)),R0′′+R1′′≤I(X1(2),X2(2);Y(2)|V2(2)),R0′′+R2′′≤I(X1(2),X2(2);Y(2)|V1(2))










R0′′+R1′′+R2′′≤I(X1(2),X2(2);Y(2))











Let Q be a switch function, such that [image: there is no content] and [image: there is no content], where [image: there is no content]. Q is independent of all the random variables.



Define [image: there is no content]=V1(Q)Q, [image: there is no content]=V2(Q)Q, [image: there is no content], [image: there is no content]=X1(Q)Q, [image: there is no content]=X2(Q)Q, [image: there is no content], [image: there is no content]. Then we have


I([image: there is no content];Y|[image: there is no content],U)=I(X1(Q);Y(Q)|X2(Q),U(Q),Q)=θI(X1(1);Y(1)|X2(1),U(1),Q=1)+(1-θ)I(X1(2);Y(2)|X2(2),U(2),Q=2)(A12)=θI(X1(1);Y(1)|X2(1),U(1))+(1-θ)I(X1(2);Y(2)|X2(2),U(2))










I([image: there is no content];Y|[image: there is no content],U)=I(X2(Q);Y(Q)|X1(Q),U(Q),Q)=θI(X2(1);Y(1)|X1(1),U(1),Q=1)+(1-θ)I(X2(2);Y(2)|X1(2),U(2),Q=2)(A13)=θI(X2(1);Y(1)|X1(1),U(1))+(1-θ)I(X2(2);Y(2)|X1(2),U(2))










I([image: there is no content],[image: there is no content];Y)≥I(X1(Q),X2(Q);Y(Q)|Q)=θI(X1(1),X2(1);Y(1)|Q=1)+(1-θ)I(X1(2),X2(2);Y(2)|Q=2)(A14)=θI(X1(1),X2(1);Y(1))+(1-θ)I(X1(2),X2(2);Y(2))










I([image: there is no content],[image: there is no content];Y|U)=I(X1(Q),X2(Q);Y(Q)|U(Q),Q)=θI(X1(1),X2(1);Y(1)|U(1),Q=1)+(1-θ)I(X1(2),X2(2);Y(2)|U(2),Q=2)(A15)=θI(X1(1),X2(1);Y(1)|U(1))+(1-θ)I(X1(2),X2(2);Y(2)|U(2))










I([image: there is no content],[image: there is no content];Y|[image: there is no content])=I(X1(Q),X2(Q);Y(Q)|V1(Q),Q)=θI(X1(1),X2(1);Y(1)|V1(1),Q=1)+(1-θ)I(X1(2),X2(2);Y(2)|V1(2),Q=2)(A16)=θI(X1(1),X2(1);Y(1)|V1(1))+(1-θ)I(X1(2),X2(2);Y(2)|V1(2))










I([image: there is no content],[image: there is no content];Y|[image: there is no content])=I(X1(Q),X2(Q);Y(Q)|V2(Q),Q)=θI(X1(1),X2(1);Y(1)|V2(1),Q=1)+(1-θ)I(X1(2),X2(2);Y(2)|V2(2),Q=2)(A17)=θI(X1(1),X2(1);Y(1)|V2(1))+(1-θ)I(X1(2),X2(2);Y(2)|V2(2))










I(U(Q);Z(Q))≥I(U(Q);Z(Q)|Q)=θI(U(1);Z(1)|Q=1)+(1-θ)I(U(2);Z(2)|Q=2)(A18)=θI(U(1);Z(1))+(1-θ)I(U(2);Z(2))











From Equations (A12)–(A18), it is easy to see that (θR1′+(1-θ)R1′′,θR2′+(1-θ)R2′′,θR0′+(1-θ)R0′′)∈[image: there is no content], and therefore, [image: there is no content] is convex.




D. Size Constraints of the Auxiliary Random Variables in Theorem 2


By using the support lemma (see [14], p.310), it suffices to show that the random variables U, A and K can be replaced by new ones, preserving the Markovity (U,[image: there is no content],[image: there is no content])→([image: there is no content],[image: there is no content])→Y→Z and the characters [image: there is no content], I([image: there is no content];Y|[image: there is no content],U), I([image: there is no content];Y|[image: there is no content],U), I([image: there is no content],[image: there is no content];Y|U), I([image: there is no content],[image: there is no content];Y|[image: there is no content]), I([image: there is no content],[image: there is no content];Y|[image: there is no content]), and furthermore, the range of the new U, A and K satisfies:


∥[image: there is no content]∥≤∥X1∥∥X2∥+2










[image: there is no content]










[image: there is no content]








The proof of which is in the reminder of this section.



Let


[image: there is no content]=p[image: there is no content][image: there is no content](x1,x2)



(A19)




Define the following continuous scalar functions of [image: there is no content] :


f[image: there is no content][image: there is no content]([image: there is no content])=p[image: there is no content][image: there is no content](x1,x2),fY([image: there is no content])=H(Y),fY|[image: there is no content]([image: there is no content])=H(Y|[image: there is no content]),fY|[image: there is no content]([image: there is no content])=H(Y|[image: there is no content])








Since there are [image: there is no content] functions of f[image: there is no content][image: there is no content]([image: there is no content]), the total number of the continuous scalar functions of [image: there is no content] is [image: there is no content]+2.



Let [image: there is no content][image: there is no content][image: there is no content]|U=Pr{[image: there is no content]=x1,[image: there is no content]=x2|U=u}. With these distributions [image: there is no content][image: there is no content][image: there is no content]|U, we have


p[image: there is no content][image: there is no content](x1,x2)=∑u∈[image: there is no content]p(U=u)f[image: there is no content][image: there is no content]([image: there is no content][image: there is no content][image: there is no content]|U)



(A20)






H(Y|U)=∑u∈[image: there is no content]p(U=u)fY([image: there is no content][image: there is no content][image: there is no content]|U)



(A21)






H(Y|[image: there is no content],U)=∑u∈[image: there is no content]p(U=u)fY|[image: there is no content]([image: there is no content][image: there is no content][image: there is no content]|U)



(A22)






H(Y|[image: there is no content],U)=∑u∈[image: there is no content]p(U=u)fY|[image: there is no content]([image: there is no content][image: there is no content][image: there is no content]|U)



(A23)







According to the support lemma ([14], p.310), the random variable, U, can be replaced by new ones, such that the new U takes at most [image: there is no content] different values and the expressions (A20)–(A23) are preserved.



Similarly, we can prove that [image: there is no content] and [image: there is no content]. The proof is omitted here.




E. Proof of Theorem 3


E.1. Proof of the Achievability


The achievability proof follows by computing the mutual information terms in Theorem 2 with the following joint distributions:


U∼N(0,α(P1+P2)),[image: there is no content]∼N(0,(1-α)P1)and[image: there is no content]∼N(0,(1-α)P2)










[image: there is no content]=P1P1+P2U+[image: there is no content]and[image: there is no content]=P2P1+P2U+[image: there is no content]











U is independent of [image: there is no content] and [image: there is no content].




E.2. Proof of the Converse


The proof of [image: there is no content]≤12log(1+α([image: there is no content]+[image: there is no content])(1-α)([image: there is no content]+[image: there is no content])+[image: there is no content]+[image: there is no content]) and [image: there is no content]+[image: there is no content]≤12log(1+(1-α)([image: there is no content]+[image: there is no content])[image: there is no content]) are from the proof of the Gaussian broadcast channel [15], and it is omitted here.



The proof of [image: there is no content]≤12log(1+(1-α)[image: there is no content][image: there is no content]), [image: there is no content]≤12log(1+(1-α)[image: there is no content][image: there is no content]) and [image: there is no content]+[image: there is no content]+[image: there is no content]≤12log(1+[image: there is no content]+[image: there is no content][image: there is no content]) are from the proof of the Gaussian multiple-access channel [16], and it is omitted here.



Then, it remains to show that [image: there is no content]+[image: there is no content]≤12log(1+[image: there is no content]+α[image: there is no content][image: there is no content]) and [image: there is no content]+[image: there is no content]≤12log(1+[image: there is no content]+α[image: there is no content][image: there is no content]). The proof of these two inequalities are analogous to ([17] [p. 1000–1001]), and therefore, we omit the proof here.



The proof of Theorem 3 is completed.






© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
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