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Abstract: In this paper, we study a new bus communication model, where two transmitters
wish to send their corresponding private messages and a common message to a destination,
while they also wish to send the common message to another receiver connected to the
same wire. From an information-theoretical point of view, we first study a general case of
this new model (with discrete memoryless channels). The capacity region composed of all
achievable (R0, R1, R2) triples is determined for this general model, where R1 and R2 are
the transmission rates of the private messages and R0 is the transmission rate of the common
message. Then, the result is further explained via the Gaussian example. Finally, we give
the capacity region for the new bus communication model with additive Gaussian noises and
attenuation factors. This new bus communication model captures various communication
scenarios, such as the bus systems in vehicles, and the bus type of communication channel
in power line communication (PLC) networks.

Keywords: bus communication system; capacity region; multiple-access channel; degraded
broadcast channel; Gaussian broadcast channel; power line communication networks
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1. Introduction

The bus communication model has been widely studied for many years. It captures various
communication scenarios, such as the bus systems in vehicles, and the bus type of communication
channel in power line communication (PLC) networks (see [1–5]).

Let us consider the bus communication model of Figure 1 from an information-theoretical point of
view. Figure 1 can be equivalent to the model of the broadcast channel (see Figure 2). Note that Figure 2
implies that f1 = f2 = f .

Figure 1. The bus communication model (Gains f1 and f2, the power of the sender σ2
x and

the power of the noise σ2
n).

Figure 2. The broadcast presentation of the bus communication model.

The model of the broadcast channel was first investigated by Cover [6], and the capacity region of the
general case (two private messages and one common message) is still not known. After the publication
of Cover’s work, Körner and Marton [7] studied the broadcast channel with a degraded message set (one
private and one common message) and found its capacity region. For the degraded broadcast channel,
the capacity region is totally determined (see [8–10]). In addition, Gamal and Cover [11] showed that the
Gaussian broadcast channel is a kind of degraded broadcast channel, and therefore, the capacity region
for the Gaussian case can be directly obtained from the result of the degraded broadcast channel.

The following theorem 1 shows the capacity region of the model of Figure 2, which is a kind of
Gaussian broadcast channel.

Theorem 1 The capacity region of the model of Figure 2 is the set of rate pairs (R1, R2), such that
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for some α ∈ [0, 1]. Note that σ2
x is the power constraint of the channel input, X , f and f 2 are channel

gains (0 < f ≤ 1) and σ2
n is the power of the noise.

Theorem 1 is directly obtained from the capacity region of the Gaussian broadcast channel [11], and
therefore, the proof is omitted here.

In this paper, we study a two-sender bus communication model (see Figure 3). Two transmitters wish
to send their corresponding private messages and a common message to receiver 1, while they also wish
to send the common message to receiver 2.

Figure 3. A new bus communication model with two transmitters.

Figure 3 can be equivalent to the following Figure 4. Note that the capacity region of the Gaussian
broadcast channel (BC) can be obtained from the capacity region of the discrete memoryless degraded
broadcast channel. Therefore, first, we study the discrete memoryless case of the model of Figure 4,
where two transmitters wish to send their private messages, W1 and W2, and a common message, W0, to
receiver 1, and meanwhile, they also wish to send the common message,W0, to receiver 2. Receiver 2 can
receive a degraded version of the output of the multiple-access channel (MAC) via a discrete memoryless
channel (DMC) (see Figure 5). This model can be viewed as a combination of multiple-access channel
and degraded broadcast channel. For convenience, we call it MAC-DBC in this paper.

Figure 4. An equivalent model for the model of Figure 3.

Then, we study the model of Figure 4, which is a Gaussian example of the MAC-DBC in Figure 5.
The capacity regions of the MAC-DBC and the model of Figure 4 are totally determined.

The study of MAC-DBC from an information-theoretical point of view is due to the fact that the
network information theory has recently become an active research area. Both MAC and BC play an
important role in the network information theory, and they have been extensively studied separately.
However, the cascade of MAC and BC (MAC-BC) has seldom drawn people’s attention. To investigate
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the capacity region and the capacity-achieving coding scheme for the MAC-BC is the motivation of
this work.

Figure 5. A combination of multiple-access channel and degraded broadcast channel
(MAC-DBC).

In this paper, random variab1es, sample values and alphabets are denoted by capital letters, lower case
letters and calligraphic letters, respectively. A similar convention is applied to the random vectors and
their sample values. For example, UN denotes a randomN -vector (U1, ..., UN), and uN = (u1, ..., uN) is
a specific vector value in UN that is theN th Cartesian power of U . UN

i denotes a randomN−i+1-vector
(Ui, ..., UN), and uNi = (ui, ..., uN) is a specific vector value in UNi . Let pV (v) denote the probability
mass function Pr{V = v}. Throughout the paper, the logarithmic function is to the base 2.

The remainder of this paper is organized as follows. In Section 2, we present the basic definitions and
the main result on the capacity region of MAC-DBC. In Section 3, we provide the capacity region of the
model of Figure 4. Final conclusions are presented in Section 4. The proofs are provided from Section
A to Section E.

2. Notations, Definitions and the Main Results of MAC-DBC

In this section, a description of the MAC-DBC is given by Definition 1 to Definition 3. The capacity
region,R(A), composed of all achievable (R0, R1, R2) triples is given in Theorem 2, where the achievable
(R0, R1, R2) triple is defined in Definition 4.

Definition 1 (Encoders) The private messages,W1 andW2, take values inW1 andW2, respectively. The
common message, W0, takes values inW0. W0, W1 and W2 are independent and uniformly distributed
over their ranges. The channel encoders are two mappings:

fN1 :W0 ×W1 → XN
1 (1)

where fN1 (w0, w1) = xN1 ∈ XN
1 , w1 ∈ W1, and w0 ∈ W0.

fN2 :W0 ×W2 → XN
2 (2)

where fN2 (w0, w2) = xN2 ∈ XN
2 , w2 ∈ W2, and w0 ∈ W0. Note that W1 and XN

2 are independent, and
W2 is independent of XN

1 .
The transmission rates of the private messages and the common message are log‖W1‖

N
, log‖W2‖

N
and

log‖W0‖
N

, respectively.

Definition 2 (Channels) The MAC is a DMC with finite input alphabet X1 × X2, finite output alphabet
Y and transition probability Q1(y|x1, x2), where x1 ∈ X1, x2 ∈ X2, y ∈ Y . Q1(y

N |xN1 , xN2 ) =∏N
n=1Q1(yn|x1,n, x2,n). The inputs of the MAC are XN

1 and XN
2 , while the output is Y N .
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Receiver 2 has access to the output of the MAC via a discrete memoryless channel (DMC). The input
of this DMC is Y N , and the output is ZN . The transition probability satisfies that

pZN |Y N (zN |yN) =
N∏
i=1

pZ|Y (zi|yi) (3)

where zi ∈ Z and yi ∈ Y .

Definition 3 (Decoders) The decoder for receiver 1 is a mapping, fD1 : YN → W1 ×W2 ×W0, with
input Y N and outputs Ŵ1, Ŵ2 and Ŵ0. Let Pe1 be the error probability of the receiver 1 , and it is
defined as Pr{(W0,W1,W2) 6= (Ŵ0, Ŵ1, Ŵ2)}.

The decoder for receiver 2 is a mapping, fD2 : ZN →W0, with input ZN and output Ŵ0. Let Pe2 be
the error probability of the receiver 2 , and it is defined as Pr{W0 6= Ŵ0}.

Definition 4 (Achievable (R0, R1, R2) triple in the model of Figure 5) A triple (R0, R1, R2) (where
R0, R1, R2 > 0) is called achievable if, for any ε > 0 (where ε is an arbitrary small positive real number
and ε→ 0), there exists channel encoders-decoders (N,Pe1andPe2), such that

log ‖W0‖
N

≥ R0 − ε,
log ‖W1‖

N
≥ R1 − ε,

log ‖W2‖
N

≥ R2 − ε, Pe1 ≤ ε, Pe2 ≤ ε (4)

Theorem 2 gives a single-letter characterization of the set R(A), which is composed of all achievable
(R0, R1, R2) triples in the model of Figure 5, and it is proved in Section A and Section B.

Theorem 2 A single-letter characterization of the regionR(A) is as follows,

R(A) =



(R0, R1, R2) :

0 ≤ R0 ≤ I(U ;Z)

0 ≤ R1 ≤ I(X1;Y |X2, U)

0 ≤ R2 ≤ I(X2;Y |X1, U)

R0 +R1 ≤ I(X1, X2;Y |V2)
R0 +R2 ≤ I(X1, X2;Y |V1)
R1 +R2 ≤ I(X1, X2;Y |U)

R0 +R1 +R2 ≤ I(X1, X2;Y ).


where (U, V1, V2)→ (X1, X2)→ Y → Z.

Remark 1 There are some notes on Theorem 2; see the following:

• The regionR(A) is convex, and the proof is in Section C.
• The ranges of the random variables U , V1 and V2 satisfy

‖U‖ ≤ ‖X1‖‖X2‖+ 2

‖V1‖ ≤ ‖X1‖‖X2‖

‖V2‖ ≤ ‖X1‖‖X2‖

The proof is in Section D.
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• The auxiliary random variables U , V1 and V2, in fact, are corresponding to W0, W1 and
W2, respectively.
• If R0 = 0, receiver 2 is useless, and the model of Figure 5 reduces to the multiple-access

channel (MAC).
Let R0 = 0 and the corresponding U = const, the region,R(A), reduces to

(R1, R2) :

0 ≤ R1 ≤ I(X1;Y |X2)

0 ≤ R2 ≤ I(X2;Y |X1)

R1 ≤ I(X1, X2;Y |V2)
R2 ≤ I(X1, X2;Y |V1)
R1 +R2 ≤ I(X1, X2;Y ).


(5)

Note that the Markov chains, V1 → X1 → Y and V2 → X2 → Y , then the inequalities
R1 ≤ I(X1, X2;Y |V2) and R2 ≤ I(X1, X2;Y |V1) are included in R1 ≤ I(X1;Y |X2) and
R2 ≤ I(X2;Y |X1), respectively. Therefore, the above region (5) is simplified as

(R1, R2) :

0 ≤ R1 ≤ I(X1;Y |X2)

0 ≤ R2 ≤ I(X2;Y |X1)

R1 +R2 ≤ I(X1, X2;Y ).

 (6)

, and this is coincident with the capacity region of the MAC [12,13].

3. A Gaussian Example of MAC-DBC and the Capacity Region of the Model of Figure 4

In this section, we first study a Gaussian example of Figure 5, where the channel input-output
relationships at each time instant i (1 ≤ i ≤ N ) are given by

Yi = X1,i +X2,i + Z1,i (7)

and
Zi = X1,i +X2,i + Z1,i + Z2,i (8)

where Z1,i ∼ N (0, σ2
n,1) and Z2,i ∼ N (0, σ2

n,2). The random vectors, ZN , ZN
1 and ZN

2 , are independent
with i.i.d. components. The channel inputs, XN

1 and XN
2 , are subject to the average power constraints,

σ2
x,1 and σ2

x,2, respectively, i.e.,

1

N

N∑
i=1

E[X2
1,i] ≤ σ2

x,1,
1

N

N∑
i=1

E[X2
2,i] ≤ σ2

x,2 (9)
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Theorem 3 For the Gaussian case of Figure 5, the capacity-equivocation region,R(B), is given by

R(B) =
⋃

0≤α≤1



(R0, R1, R2) :

0 ≤ R0 ≤ 1
2

log(1 +
α(σ2

x,1+σ
2
x,2)

(1−α)(σ2
x,1+σ

2
x,2)+σ

2
n,1+σ

2
n,2

)

0 ≤ R1 ≤ 1
2

log(1 +
(1−α)σ2

x,1

σ2
n,1

)

0 ≤ R2 ≤ 1
2

log(1 +
(1−α)σ2

x,2

σ2
n,1

)

R1 +R2 ≤ 1
2

log(1 +
(1−α)(σ2

x,1+σ
2
x,2)

σ2
n,1

)

R0 +R1 ≤ 1
2

log(1 +
σ2
x,1+ασ

2
x,2

σ2
n,1

)

R0 +R2 ≤ 1
2

log(1 +
σ2
x,2+ασ

2
x,1

σ2
n,1

)

R0 +R1 +R2 ≤ 1
2

log(1 +
σ2
x,1+σ

2
x,2

σ2
n,1

).



(10)

The proof of Theorem 3 is in Section E.
Then, we will show that the capacity region of the model of Figure 4 can be obtained from the above

Theorem 3. The channel input-output relationships of Figure 4 at each time instant i (1 ≤ i ≤ N ) are
given by

Yi = fX1,i + fX2,i + Z1,i (11)

and
Zi = f 2X1,i + f 2X2,i + Z2,i (12)

, where Z1,i ∼ N (0, σ2
n,1), Z2,i ∼ N (0, σ2

n,2) and σ2
n,1 ≤ σ2

n,2. The channel inputs, XN
1 and XN

2 , are
subject to the average power constraints, σ2

x,1 and σ2
x,2, respectively.

Note that the additive Gaussian noise, Z2,i, can be viewed as a cascade of Z1,i and Z
′
2,i, where

Z
′
2,i ∼ N (0, σ2

n,2 − σ2
n,1). Moreover, Equations (11) and (12) are equivalent to Equations (13) and

(14), respectively, where

Yi = X1,i +X2,i +
1

f
Z1,i (13)

and
Zi = X1,i +X2,i +

1

f 2
Z2,i (14)

Therefore, the model of Figure 4 is analogous to the above Gaussian example of MAC-DBC. The
capacity region is as follows.

Theorem 4 For the model of Figure 4, the capacity regionR(C) is given by

R(C) =
⋃

0≤α≤1



(R0, R1, R2) :

0 ≤ R0 ≤ 1
2

log(1 +
αf4(σ2

x,1+σ
2
x,2)

(1−α)(σ2
x,1+σ

2
x,2)f

4+σ2
n,2

)

0 ≤ R1 ≤ 1
2

log(1 +
(1−α)σ2

x,1f
2

σ2
n,1

)

0 ≤ R2 ≤ 1
2

log(1 +
(1−α)σ2

x,2f
2

σ2
n,1

)

R1 +R2 ≤ 1
2

log(1 +
(1−α)(σ2

x,1+σ
2
x,2)f

2

σ2
n,1

)

R0 +R1 ≤ 1
2

log(1 +
(σ2

x,1+ασ
2
x,2)f

2

σ2
n,1

)

R0 +R2 ≤ 1
2

log(1 +
(σ2

x,2+ασ
2
x,1)f

2

σ2
n,1

)

R0 +R1 +R2 ≤ 1
2

log(1 +
(σ2

x,1+σ
2
x,2)f

2

σ2
n,1

).



(15)



Entropy 2013, 15 685

The proof is directly obtained from Theorem 3, and it is omitted here.
Figures 6 to 10 plot the capacity region, R(C), with different values of f , σ2

x,1, σ2
x,2, σ

2
n,1 and σ2

n,2. It
is easy to see that R(C) reduces to the capacity region of the Gaussian MAC when R0 = 0. From these
figures, we can see that R(C) enlarges as σ1

n,2 and σ2
n,2 decrease. Moreover, for fixed f , σ2

n,1 and σ2
n,2,

R(C) enlarges as σ2
x,1 and σ2

x,2 increase.

Figure 6. The capacity region of Figure 4 with σ2
x,1 = σ2

x,2 = 1, σ2
n,1 = 1, σ2

n,2 = 2 and
f = 1.

Figure 7. The capacity region of Figure 4 with σ2
x,1 = σ2

x,2 = 1, σ2
n,1 = 1, σ2

n,2 = 100 and
f = 1.
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Figure 8. The capacity region of Figure 4 with σ2
x,1 = σ2

x,2 = 1, σ2
n,1 = 1, σ2

n,2 = 0.01 and
f = 1.

Figure 9. The capacity region of Figure 4 with σ2
x,1 = σ2

x,2 = 2, σ2
n,1 = 0.1, σ2

n,2 = 0.01 and
f = 1.

Figure 10. The capacity region of Figure 4 with σ2
x,1 = σ2

x,2 = 1, σ2
n,1 = 1, σ2

n,2 = 2 and
f = 0.5.
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4. Conclusions

In this paper, we first study the discrete memoryless MAC-DBC (the model of Figure 5). The capacity
region is totally determined for this new model. Then, we study the model of Figure 4 and show that the
capacity region of Figure 4 can be directly obtained from the Gaussian example of the MAC-DBC.
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Appendix

A. Proof of the Converse Part of Theorem 2

In this section, we establish the converse part of Theorem 2: all the achievable (R0, R1, R2) triples
are contained in the setR(A), i.e., for any achievable triple, there exists random variables U , V1, V2, X1,
X2, Y and Z, such that the inequalities in Theorem 2 hold, and (U, V1, V2)→ (X1, X2)→ Y → (Y1, Y2)

forms a Markov chain. We will prove the inequalities of Theorem 2 in the remainder of this section.
(Proof of 0 ≤ R0 ≤ I(U ;Z)) The proof of this inequality is as follows:

1

N
H(W0)

(a)

≤ 1

N
(I(W0;Z

N) + δ(Pe2))

=
1

N
(H(ZN)−H(ZN |W0) + δ(Pe2))

=
1

N
(
N∑
i=1

(H(Zi|Zi−1)−H(Zi|W0, Z
i−1) + δ(Pe2))

≤ 1

N
(
N∑
i=1

(H(Zi|Zi−1)−H(Zi|W0, Z
i−1, Y i−1) + δ(Pe2))

(b)
=

1

N
(
N∑
i=1

(H(Zi|Zi−1)−H(Zi|W0, Y
i−1) + δ(Pe2))

≤ 1

N
(
N∑
i=1

(H(Zi)−H(Zi|W0, Y
i−1) + δ(Pe2))

(c)
=

1

N
(
N∑
i=1

(H(Zi)−H(Zi|Ui) + δ(Pe2))

(d)
=

1

N
(
N∑
i=1

(H(Zi|J = i)−H(Zi|Ui, J = i) + δ(Pe2))

(e)
= H(ZJ |J)−H(ZJ |UJ , J) +

1

N
δ(Pe2)

≤ H(ZJ)−H(ZJ |UJ , J) +
1

N
δ(Pe2)

(f)
= H(Z)−H(Z|U) +

1

N
δ(Pe2)

= I(U ;Z) +
δ(Pe2)

N
(A1)

where (a) is from the Fano’s inequality, (b) is from Zi−1 → (Y i−1,W0)→ Zi, (c) is from the definition
that Ui , (W0, Y

i−1), (d) is from J as a random variable (uniformly distributed over {1, 2, ..., N}), and
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J is independent of Zi and Ui, (e) is from J as uniformly distributed over {1, 2, ..., N} and (f) is from
the definitions that Z , ZJ and U , (UJ , J).

Letting ε→ 0 and noting that Pe2 ≤ ε, H(W0)
N
≥ R0 − ε, it is easy to see that 0 ≤ R0 ≤ I(U ;Z).

(Proof of 0 ≤ R1 ≤ I(X1;Y |X2, U)) The proof of this inequality is as follows:

1

N
H(W1)

(1)

≤ 1

N
(H(W1|XN

2 ,W0) + δ(Pe1)−H(W1|Y N , XN
2 ,W0))

=
1

N
(I(W1;Y

N |XN
2 ,W0) + δ(Pe1))

=
1

N
(H(Y N |XN

2 ,W0)−H(Y N |XN
2 ,W0,W1) + δ(Pe1))

≤ 1

N
(H(Y N |XN

2 ,W0)−H(Y N |XN
2 ,W0,W1, X

N
1 ) + δ(Pe1))

(2)
=

1

N
(H(Y N |XN

2 ,W0)−H(Y N |XN
2 , X

N
1 ) + δ(Pe1))

(3)
=

1

N
(
N∑
i=1

(H(Yi|XN
2 ,W0, Y

i−1)−H(Yi|X1,i, X2,i)) + δ(Pe1))

≤ 1

N
(
N∑
i=1

(H(Yi|X2,i,W0, Y
i−1)−H(Yi|X1,i, X2,i)) + δ(Pe1))

(4)
=

1

N
(
N∑
i=1

(H(Yi|X2,i,W0, Y
i−1)−H(Yi|X1,i, X2,i,W0, Y

i−1)) + δ(Pe1))

(5)
= H(Y |X2, U)−H(Y |X1, X2, U) +

1

N
δ(Pe1)

= I(X1;Y |X2, U) +
1

N
δ(Pe1) (A2)

where (1) is from the Fano’s inequality and the fact that W1 is independent of XN
2 and W0; (2) is from

(W0,W1) → (XN
2 , X

N
1 ) → Y N ; (3) is from the discrete memoryless property of the channel; (4) is

from (W0, Y
i−1) → (X1,i, X2,i) → Yi; and (5) is from the definitions that X1 , X1,J , X2 , X2,J ,

Y , YJ , U , (W0, Y
J−1, J), where J is a random variable (uniformly distributed over {1, 2, ..., N})

and is independent of X1,i, X2,i, W0, Y i−1 and Yi.
Letting ε → 0 and noting that Pe1 ≤ ε, H(W1)

N
≥ R1 − ε, it is easy to see that 0 ≤ R1 ≤

I(X1;Y |X2, U).
(Proof of 0 ≤ R2 ≤ I(X2;Y |X1, U)) The proof is similar to the proof of 0 ≤ R1 ≤ I(X1;Y |X2, U),

and it is omitted here.
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(Proof of 0 ≤ R1 +R2 ≤ I(X1, X2;Y |U))

1

N
H(W1,W2)

(a)

≤ 1

N
(I(W1,W2;Y

N |W0) + δ(Pe1))

=
1

N
(H(Y N |W0)−H(Y N |W0,W1,W2) + δ(Pe1))

≤ 1

N
(H(Y N |W0)−H(Y N |W0,W1,W2, X

N
1 , X

N
2 ) + δ(Pe1))

(b)
=

1

N
(H(Y N |W0)−H(Y N |XN

1 , X
N
2 ) + δ(Pe1))

(c)
=

1

N
(
N∑
i=1

(H(Yi|W0, Y
i−1)−H(Yi|X1,i, X2,i)) + δ(Pe1))

(d)
=

1

N
(
N∑
i=1

(H(Yi|W0, Y
i−1)−H(Yi|X1,i, X2,i,W0, Y

i−1)) + δ(Pe1))

(e)
= H(Y |U)−H(Y |X1, X2, U) +

1

N
δ(Pe1))

= I(X1, X2;Y |U) +
δ(Pe1)

N
(A3)

where (a) is from the Fano’s inequality and the fact that W0 is independent of W1 and W2; (b) is from
(W0,W1,W2) → (XN

1 , X
N
2 ) → Y N ; (c) is from the discrete memoryless property of the channel;

(d) is from (W0, Y
i−1) → (X1,i, X2,i) → Yi; and (e) is from the definitions that X1 , (X1,J , J),

X2 , (X2,J , J), Y , YJ and U , (W0, Y
J−1, J).

Letting ε → 0 and noting that Pe1 ≤ ε, H(W1)
N
≥ R1 − ε, H(W2)

N
≥ R2 − ε and W1 is independent of

W2, it is easy to see that 0 ≤ R1 +R2 ≤ I(X1, X2;Y |U).
(Proof of R0 +R1 ≤ I(X1, X2;Y |V2)) The proof is obtained by the following Equation (A4).

1

N
H(W0,W1)

(a)

≤ 1

N
(I(W0,W1;Y

N |W2) + δ(Pe1))

=
1

N
(H(Y N |W2)−H(Y N |W0,W1,W2) + δ(Pe1))

≤ 1

N
(H(Y N |W2)−H(Y N |W0,W1,W2, X

N
1 , X

N
2 ) + δ(Pe1))

(b)
=

1

N
(H(Y N |W2)−H(Y N |XN

1 , X
N
2 ) + δ(Pe1))

(c)
=

1

N
(
N∑
i=1

(H(Yi|W2, Y
i−1)−H(Yi|X1,i, X2,i)) + δ(Pe1))

(d)
=

1

N
(
N∑
i=1

(H(Yi|W2, Y
i−1)−H(Yi|X1,i, X2,i,W2, Y

i−1)) + δ(Pe1))

(e)
= H(Y |V2)−H(Y |X1, X2, V2) +

1

N
δ(Pe1))

= I(X1, X2;Y |V2) +
δ(Pe1)

N
(A4)

where (a) is from the Fano’s inequality and the fact that W2 is independent of W0 and W1; (b) is from
(W0,W1,W2) → (XN

1 , X
N
2 ) → Y N ; (c) is from the discrete memoryless property of the channel;
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(d) is from (W2, Y
i−1) → (X1,i, X2,i) → Yi; and (e) is from the definitions that X1 , (X1,J , J),

X2 , (X2,J , J), Y , YJ and V2 , (W2, Y
J−1, J).

Letting ε → 0 and noting that Pe1 ≤ ε, H(W1)
N
≥ R1 − ε, H(W0)

N
≥ R0 − ε and W0 is independent of

W1, it is easy to see that R0 +R1 ≤ I(X1, X2;Y |V2).
(Proof of R0 + R2 ≤ I(X1, X2;Y |V1)) The proof is analogous to the proof of R0 + R1 ≤

I(X1, X2;Y |V2), and it is omitted here.
(Proof of R0 +R1 +R2 ≤ I(X1, X2;Y ))

1

N
H(W0,W1,W2)

(a)

≤ 1

N
(I(W0,W1,W2;Y

N) + δ(Pe1))

=
1

N
(H(Y N)−H(Y N |W0,W1,W2) + δ(Pe1))

≤ 1

N
(H(Y N)−H(Y N |W0,W1,W2, X

N
1 , X

N
2 ) + δ(Pe1))

(b)
=

1

N
(H(Y N)−H(Y N |XN

1 , X
N
2 ) + δ(Pe1))

(c)
=

1

N
(
N∑
i=1

(H(Yi|Y i−1)−H(Yi|X1,i, X2,i)) + δ(Pe1))

≤ 1

N
(
N∑
i=1

(H(Yi)−H(Yi|X1,i, X2,i)) + δ(Pe1))

(d)

≤ H(Y )−H(Y |X1, X2, U) +
1

N
δ(Pe1))

= I(X1, X2;Y ) +
δ(Pe1)

N
(A5)

where (a) is from the Fano’s inequality; (b) is from (W0,W1,W2) → (XN
1 , X

N
2 ) → Y N ; (c) is from

the discrete memoryless property of the channel; and (d) is from the definitions that X1 , (X1,J , J),
X2 , (X2,J , J), Y , YJ .

Letting ε→ 0 and noting that Pe1 ≤ ε, H(W0)
N
≥ R0 − ε, H(W1)

N
≥ R1 − ε, H(W2)

N
≥ R2 − ε, it is easy

to see that R0 +R1 +R2 ≤ I(X1, X2;Y ).
The Markov chain, (U, V1, V2) → (X1, X2) → Y → Z, is directly obtained from the definitions

U , (W0, Y
J−1, J), V1 , (W1, Y

J−1, J), V2 , (W2, Y
J−1, J) X1 , (X1,J , J), X2 , (X2,J , J),

Y , YJ and Z , ZJ .
The proof of the converse part of Theorem 2 is completed.

B. Proof of the Direct Part of Theorem 2

In this section, we establish the direct part of Theorem 2 (about existence). Suppose (R0, R1, R2) ∈
RA, we will show that (R0, R1, R2) is achievable.

The coding scheme for Theorem 2 is in the following Figure A1. Now, the remainder of this section
is organized as follows. Some preliminaries about typical sequences are introduced in Subsection B.1.
The construction of the code is introduced in Subsection B.2. For any given ε > 0, the proofs of
log‖W1‖

N
≥ R1− ε, log‖W2‖

N
≥ R2− ε, log‖W0‖

N
≥ R0− ε, Pe1 ≤ ε and Pe2 ≤ ε are given in Subsection B.3.
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Figure A1. Coding scheme for MAC-DBC.

B.1. Preliminaries

• Given a probability mass function, pV (v), for any η > 0, let TNV (η) be the strong typical set of all
vN , such that |pV (v)− c

vN
(v)

N
| < η for all v ∈ V , where cvN (v) is the number of occurences of the

letter v in the vN . We say that the sequences, vN ∈ TNV (η), are V -typical.
• Analogously, given a joint probability mass function, pVW (v, w), for any η > 0, let TNVW (η) be the

joint strong typical set of all pairs (vN , wN), such that |pVW (v, w)− c
vN ,wN (v,w)

N
| < η for all v ∈ V

and w ∈ W , where cvN ,wN (v, w) is the number of occurences of (v, w) in the pair of sequences
(vN , wN). We say that the pairs of sequences, (vN , wN) ∈ TNVW (η), are VW -typical.
• Moreover, wN is called W |V -generated by vN if vN is V - typical and (vN , wN) ∈ TNVW (η). For

any given vN ∈ TNV (η), define TNW |V (η) = {wN : wN is W |V -generated by vN}.
• Lemma 1 For any vN ∈ TNV (η),

2−N(H(V )+η∗) ≤ pV N (vN) ≤ 2−N(H(V )−η∗)

where η∗ → 0 as η → 0.

B.2. Coding Construction

Given a triple (R0, R1, R2), choose a joint probability mass function,
pU,V1,V2,X1,X2,Y,Z(u, v1, v2, x1, x2, y, z), such that

0 ≤ R1 ≤ I(X1;Y |X2, U), 0 ≤ R2 ≤ I(X2;Y |X1, U), R1 +R2 ≤ I(X1, X2;Y |U),

R0 ≤ I(U ;Z), R0 +R1 ≤ I(X1, X2;Y |V2), R0 +R2 ≤ I(X1, X2;Y |V1),

R0 +R1 +R2 ≤ I(X1, X2;Y )

The message sets,W0,W1 andW2, satisfy the following conditions:

1

N
log ‖ W0 ‖= R0,

1

N
log ‖ W1 ‖= R1

1

N
log ‖ W2 ‖= R2 (A6)

Code-book generation:
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• For a given w0 ∈ W0, generate a corresponding uN(w0) i.i.d., according to the probability mass
function pU(u).
• For a given w1 ∈ W1, generate a corresponding vN1 (w1) i.i.d., according to the probability mass

function pV1(v1).
• For a given w2 ∈ W2, generate a corresponding vN2 (w2) i.i.d., according to the probability mass

function pV2(v2).
• xN1 (w0, w1) is generated according to a new discrete memoryless channel (DMC), with inputs
vN1 (w1) and uN(w0) and output xN1 (w0, w1). The transition probability of this new DMC is
pX1|V1,U(x1|v1, u).
Similarly, xN2 (w0, w2) is generated according to a new discrete memoryless channel (DMC), with
inputs vN2 (w2) and uN(w0) and output xN2 (w0, w2). The transition probability of this new DMC is
pX2|V2,U(x2|v2, u).

Decoding scheme:

• (Receiver 1) Receiver 1 declares that messages, ŵ0, ŵ1 and ŵ2, are sent if they are the unique
messages, such that (uN(ŵ0), v

N
1 (ŵ1), v

N
2 (ŵ2), x

N
1 (ŵ0, ŵ1), x

N
2 (ŵ0, ŵ2), y

N) ∈ TNUV1V2X1X2Y
(ε);

otherwise, it declares an error.
• (Receiver 2) Receiver 2 declares that a message ŵ0 is sent if it is the unique message, such that

(uN(ŵ0), z
N) ∈ TNUZ(ε); otherwise it declares an error.

B.3. Achievability Proof

By using the above Equation (A6), it is easy to verify that log‖W0‖
N

≥ R0 − ε, log‖W1‖
N

≥ R1 − ε and
log‖W2‖

N
≥ R2 − ε. It remains to show that Pe1 ≤ ε and Pe2 ≤ ε; see the following.

Without loss of generality, assume that w0 = 1, w1 = 1 and w2 = 1 are sent.

2.3.1. Pe2 ≤ ε

For receiver 2, define the events:

B1 = {(uN(1), zN) /∈ TNUZ(η)}

B2 = {(uN(w0), z
N) ∈ TNUZ(η)} for some w0 6= 1

The probability of error for receiver 2 is then upper bounded by:

Pe2 = Pr{B1 ∪B2} ≤ Pr{B1}+ Pr{B2} (A7)

By using LLN, the first term, Pr{B1} → 0 as N → ∞. On the other hand, by using the packing
lemma [15, p. 53-54], Pr{B2} → 0 as N →∞ if R0 ≤ I(U ;Z).

Therefore, by choosing sufficiently large N , we have Pe2 ≤ ε.

2.3.2. Pe1 ≤ ε

The proof of Pe1 ≤ ε is as follows.
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Define the sets:

A1 = {(uN(1), vN1 (1), vN2 (1), xN1 (1, 1), xN2 (1, 1), yN) /∈ TNUV1V2X1X2Y
(ε)}

A2 = {(uN(1), vN1 (1), vN2 (w2), x
N
1 (1, 1), xN2 (1, w2), y

N) ∈ TNUV1V2X1X2Y
(ε)} for some w2 6= 1

A3 = {(uN(1), vN1 (w1), v
N
2 (1), xN1 (1, w1), x

N
2 (1, 1), yN) ∈ TNUV1V2X1X2Y

(ε)} for some w1 6= 1

A4 = {(uN(1), vN1 (w1), v
N
2 (w2), x

N
1 (1, w1), x

N
2 (1, w2), y

N) ∈ TNUV1V2X1X2Y
(ε)} for somew1 6= 1, w2 6= 1

A5 = {(uN(w0), v
N
1 (1), vN2 (1), xN1 (w0, 1), xN2 (w0, 1), yN) ∈ TNUV1V2X1X2Y

(ε)} for some w0 6= 1

A6 = {(uN(w0), v
N
1 (1), vN2 (w2), x

N
1 (w0, 1), xN2 (w0, w2), y

N) ∈ TNUV1V2X1X2Y
(ε)} for somew0 6= 1, w2 6= 1

A7 = {(uN(w0), v
N
1 (w1), v

N
2 (1), xN1 (w0, w1), x

N
2 (w0, 1), yN) ∈ TNUV1V2X1X2Y

(ε)} for somew0 6= 1, w1 6= 1

A8 = {(uN(w0), v
N
1 (w1), v

N
2 (w2), x

N
1 (w0, w1), x

N
2 (w0, w2), y

N) ∈ TNUV1V2X1X2Y
(ε)} for some (w0, w1, w2) 6= 1

The probability of error for receiver 1 is then upper bounded by:

Pe2 = Pr{A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5 ∪ A6 ∪ A7 ∪ A8}

≤
8∑
i=1

Pr{Ai} (A8)

By using LLN, the first term, Pr{A1} → 0 as N →∞.
For the second term, by using the packing lemma ([15][p. 53–54]), Pr{A2} → 0 as N →∞ if

R2 ≤ I(V2, X2;Y |U, V1, X1)
(1)
= H(Y |U,X1)−H(Y |X1, X2, U) = I(X2;Y |U,X1) (A9)

where (1) is from V1 → (U,X1)→ Y and (V1, V2)→ (X1, X2, U)→ Y .
Analogously, for the third term, by using the packing lemma, Pr{A3} → 0 as N → ∞ if

R1 ≤ I(X1;Y |U,X2).
For the fourth term, by using the packing lemma, Pr{A4} → 0 as N → ∞ if R1 + R2 ≤

I(X1;Y |U,X2).

R1 +R2 ≤ I(V1, V2, X1, X2;Y |U)
(2)
= H(Y |U)−H(Y |X1, X2, U) = I(X1, X2;Y |U) (A10)

where (2) is from (V1, V2)→ (X1, X2, U)→ Y .
For the fifth term, Pr{A5} → 0 as N →∞ if R0 ≤ I(U ;Y ).
For the sixth term, by using the packing lemma, Pr{A6} → 0 as N →∞ if

R0 +R2 ≤ I(U, V2, X1, X2;Y |V1)
(3)
= H(Y |V1)−H(Y |X1, X2, V1) = I(X1, X2;Y |V1) (A11)
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where (3) is from (U, V2)→ (X1, X2, V1)→ Y .
Analogously, the seventh term, Pr{A7} → 0 as N →∞ if R0 +R1 ≤ I(X1, X2;Y |V2).
For the eighth term, by using the packing lemma, Pr{A8} → 0 as N → ∞ if R0 + R1 + R2 ≤

I(X1, X2;Y ).
Therefore, by choosing sufficiently large N , we have Pe1 ≤ ε.
The proof of the direct part of Theorem 2 is completed.

C. Proof of the Convexity ofRA

Let (R
′
0, R

′
1, R

′
2) ∈ R(A), i.e., (R

′
0, R

′
1, R

′
2), satisfy the following conditions:

R
′

1 ≤ I(X
(1)
1 ;Y (1)|X(1)

2 , U (1)), R
′

2 ≤ I(X
(1)
2 ;Y (1)|X(1)

1 , U (1)), R
′

1 +R
′

2 ≤ I(X
(1)
1 , X

(1)
2 ;Y (1)|U (1)),

0 ≤ R
′

0 ≤ I(U (1);Z(1)), R
′

0 +R
′

1 ≤ I(X
(1)
1 , X

(1)
2 ;Y (1)|V (1)

2 ), R
′

0 +R
′

2 ≤ I(X
(1)
1 , X

(1)
2 ;Y (1)|V (1)

1 ),

R
′

0 +R
′

1 +R
′

2 ≤ I(X
(1)
1 , X

(1)
2 ;Y (1))

Let (R
′′
0 , R

′′
1 , R

′′
2) ∈ R(A), i.e., (R

′′
0 , R

′′
1 , R

′′
2), satisfy the following conditions:

R
′′

1 ≤ I(X
(2)
1 ;Y (2)|X(2)

2 , U (2)), R
′′

2 ≤ I(X
(2)
2 ;Y (2)|X(2)

1 , U (2)), R
′′

1 +R
′′

2 ≤ I(X
(2)
1 , X

(2)
2 ;Y (2)|U (2))

0 ≤ R
′′

0 ≤ I(U (2);Z(2)), R
′′

0 +R
′′

1 ≤ I(X
(2)
1 , X

(2)
2 ;Y (2)|V (2)

2 ), R
′′

0 +R
′′

2 ≤ I(X
(2)
1 , X

(2)
2 ;Y (2)|V (2)

1 )

R
′′

0 +R
′′

1 +R
′′

2 ≤ I(X
(2)
1 , X

(2)
2 ;Y (2))

Let Q be a switch function, such that Pr{Q = 1} = θ and Pr{Q = 2} = 1 − θ, where 0 ≤ θ ≤ 1.
Q is independent of all the random variables.

Define V1 = V
(Q)
1 Q, V2 = V

(Q)
2 Q, U = U (Q)Q, X1 = X

(Q)
1 Q, X2 = X

(Q)
2 Q, Y = Y (Q), Z = Z(Q).

Then we have:

I(X1;Y |X2, U) = I(X
(Q)
1 ;Y (Q)|X(Q)

2 , U (Q), Q)

= θI(X
(1)
1 ;Y (1)|X(1)

2 , U (1), Q = 1) + (1− θ)I(X
(2)
1 ;Y (2)|X(2)

2 , U (2), Q = 2)

= θI(X
(1)
1 ;Y (1)|X(1)

2 , U (1)) + (1− θ)I(X
(2)
1 ;Y (2)|X(2)

2 , U (2)) (A12)

I(X2;Y |X1, U) = I(X
(Q)
2 ;Y (Q)|X(Q)

1 , U (Q), Q)

= θI(X
(1)
2 ;Y (1)|X(1)

1 , U (1), Q = 1) + (1− θ)I(X
(2)
2 ;Y (2)|X(2)

1 , U (2), Q = 2)

= θI(X
(1)
2 ;Y (1)|X(1)

1 , U (1)) + (1− θ)I(X
(2)
2 ;Y (2)|X(2)

1 , U (2)) (A13)

I(X1, X2;Y ) ≥ I(X
(Q)
1 , X

(Q)
2 ;Y (Q)|Q)

= θI(X
(1)
1 , X

(1)
2 ;Y (1)|Q = 1) + (1− θ)I(X

(2)
1 , X

(2)
2 ;Y (2)|Q = 2)

= θI(X
(1)
1 , X

(1)
2 ;Y (1)) + (1− θ)I(X

(2)
1 , X

(2)
2 ;Y (2)) (A14)

I(X1, X2;Y |U) = I(X
(Q)
1 , X

(Q)
2 ;Y (Q)|U (Q), Q)

= θI(X
(1)
1 , X

(1)
2 ;Y (1)|U (1), Q = 1) + (1− θ)I(X

(2)
1 , X

(2)
2 ;Y (2)|U (2), Q = 2)

= θI(X
(1)
1 , X

(1)
2 ;Y (1)|U (1)) + (1− θ)I(X

(2)
1 , X

(2)
2 ;Y (2)|U (2)) (A15)
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I(X1, X2;Y |V1) = I(X
(Q)
1 , X

(Q)
2 ;Y (Q)|V (Q)

1 , Q)

= θI(X
(1)
1 , X

(1)
2 ;Y (1)|V (1)

1 , Q = 1) + (1− θ)I(X
(2)
1 , X

(2)
2 ;Y (2)|V (2)

1 , Q = 2)

= θI(X
(1)
1 , X

(1)
2 ;Y (1)|V (1)

1 ) + (1− θ)I(X
(2)
1 , X

(2)
2 ;Y (2)|V (2)

1 ) (A16)

I(X1, X2;Y |V2) = I(X
(Q)
1 , X

(Q)
2 ;Y (Q)|V (Q)

2 , Q)

= θI(X
(1)
1 , X

(1)
2 ;Y (1)|V (1)

2 , Q = 1) + (1− θ)I(X
(2)
1 , X

(2)
2 ;Y (2)|V (2)

2 , Q = 2)

= θI(X
(1)
1 , X

(1)
2 ;Y (1)|V (1)

2 ) + (1− θ)I(X
(2)
1 , X

(2)
2 ;Y (2)|V (2)

2 ) (A17)

I(U (Q);Z(Q)) ≥ I(U (Q);Z(Q)|Q)

= θI(U (1);Z(1)|Q = 1) + (1− θ)I(U (2);Z(2)|Q = 2)

= θI(U (1);Z(1)) + (1− θ)I(U (2);Z(2)) (A18)

From Equations (A12)–(A18), it is easy to see that (θR
′
1 + (1− θ)R′′1 , θR

′
2 + (1− θ)R′′2 , θR

′
0 + (1−

θ)R
′′
0) ∈ R(A), and therefore,R(A) is convex.

D. Size Constraints of the Auxiliary Random Variables in Theorem 2

By using the support lemma (see [14], p.310), it suffices to show that the random variables U , A
and K can be replaced by new ones, preserving the Markovity (U, V1, V2) → (X1, X2) → Y →
Z and the characters I(U ;Z), I(X2;Y |X1, U), I(X1;Y |X2, U), I(X1, X2;Y |U), I(X1, X2;Y |V2),
I(X1, X2;Y |V1), and furthermore, the range of the new U , A and K satisfies:

‖U‖ ≤ ‖X1‖‖X2‖+ 2

‖V1‖ ≤ ‖X1‖‖X2‖

‖V2‖ ≤ ‖X1‖‖X2‖

The proof of which is in the reminder of this section.
Let

p̄ = pX1X2(x1, x2) (A19)

Define the following continuous scalar functions of p̄ :

fX1X2(p̄) = pX1X2(x1, x2), fY (p̄) = H(Y ), fY |X1(p̄) = H(Y |X1), fY |X2(p̄) = H(Y |X2)

Since there are ‖X1‖‖X2‖− 1 functions of fX1X2(p̄), the total number of the continuous scalar functions
of p̄ is ‖X1‖‖X2‖+2.

Let p̄X1X2|U = Pr{X1 = x1, X2 = x2|U = u}. With these distributions p̄X1X2|U , we have

pX1X2(x1, x2) =
∑
u∈U

p(U = u)fX1X2(p̄X1X2|U) (A20)

H(Y |U) =
∑
u∈U

p(U = u)fY (p̄X1X2|U) (A21)
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H(Y |X1, U) =
∑
u∈U

p(U = u)fY |X1(p̄X1X2|U) (A22)

H(Y |X2, U) =
∑
u∈U

p(U = u)fY |X2(p̄X1X2|U) (A23)

According to the support lemma ([14], p.310), the random variable, U , can be replaced by new ones,
such that the new U takes at most ‖X1‖‖X2‖ + 2 different values and the expressions (A20)–(A23)
are preserved.

Similarly, we can prove that ‖V1‖ ≤ ‖X1‖‖X2‖ and ‖V2‖ ≤ ‖X1‖‖X2‖. The proof is omitted here.

E. Proof of Theorem 3

E.1. Proof of the Achievability The achievability proof follows by computing the mutual information

terms in Theorem 2 with the following joint distributions:

U ∼ N (0, α(P1 + P2)), V1 ∼ N (0, (1− α)P1) and V2 ∼ N (0, (1− α)P2)

X1 =

√
P1

P1 + P2

U + V1 and X2 =

√
P2

P1 + P2

U + V2

U is independent of V1 and V2.

E.2. Proof of the Converse

The proof of R0 ≤ 1
2

log(1 +
α(σ2

x,1+σ
2
x,2)

(1−α)(σ2
x,1+σ

2
x,2)+σ

2
n,1+σ

2
n,2

) and R1 + R2 ≤ 1
2

log(1 +
(1−α)(σ2

x,1+σ
2
x,2)

σ2
n,1

) are
from the proof of the Gaussian broadcast channel [15], and it is omitted here.

The proof of R1 ≤ 1
2

log(1 +
(1−α)σ2

x,1

σ2
n,1

) ,R2 ≤ 1
2

log(1 +
(1−α)σ2

x,2

σ2
n,1

) and R0 + R1 + R2 ≤ 1
2

log(1 +

σ2
x,1+σ

2
x,2

σ2
n,1

) are from the proof of the Gaussian multiple-access channel [16], and it is omitted here.

Then, it remains to show that R0 + R1 ≤ 1
2

log(1 +
σ2
x,1+ασ

2
x,2

σ2
n,1

) and R0 + R2 ≤ 1
2

log(1 +
σ2
x,2+ασ

2
x,1

σ2
n,1

).
The proof of these two inequalities are analogous to ([17] [p. 1000–1001]), and therefore, we omit the
proof here.

The proof of Theorem 3 is completed.

c© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
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