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Abstract:



The many moments model for dense gases and macromolecular fluids is considered here, where the upper order moment is chosen in accordance to the suggestions of the non-relativistic limit of the corresponding relativistic model. The solutions of the restrictions imposed by the entropy principle and that of Galilean relativity were, until now, obtained in the literature by using Taylor expansions around equilibrium and without proving convergence. Here, an exact solution without using expansions is found. The particular case with only 14 moments has already been treated in the literature in a completely different way. Here, it is proven that this particular closure is included in the presently more general one.
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1. Introduction


Extended Thermodynamics takes the first steps from the suggestions of kinetic theory of monatomic gases; here, the state of a gas is described by the phase density, [image: there is no content], such that f([image: there is no content],[image: there is no content],t)d[image: there is no content] are the number density of atoms at the point, [image: there is no content], and at time, t, that have velocities between [image: there is no content] and [image: there is no content]+d[image: there is no content]. The phase density, also called the distribution function, obeys the Boltzmann equation:


∂tf+ck∂kf=q








where external forces have been neglected and q takes into account the effects of collisions between the atoms. After that, the moments are defined by:


[image: there is no content]=∫fmci1⋯cind[image: there is no content]








with m the molecular mass. Multiplication of the Boltzmann equation by [image: there is no content] and integration over all [image: there is no content] gives the balance equations for these moments. Some of these equations, and the corresponding moments, may also be considered only through their suitable traces. A corresponding definition can be formulated in the relativistic framework taking, after that, their non-relativistic limit. In this way, we obtain the following balance equations of the many moments model:


∂t[image: there is no content]+∂k[image: there is no content]=[image: there is no content]forn=0⋯,N∂t[image: there is no content]+∂k[image: there is no content]=[image: there is no content]forR=0⋯,M



(1)




where the infinite hierarchy of moments has been closed by choosing two arbitrary numbers, N and M, such that [image: there is no content] and [image: there is no content] are odd numbers.



Other considerations [1,2] lead one to think that N and M are two subsequent numbers; this aspect does not affect the present work, so that we prefer to maintain their generality.



The quantity, [image: there is no content], is an abbreviation for [image: there is no content], that is, the tensor, [image: there is no content], with [image: there is no content], of which we take the trace [image: there is no content]-times.



Similarly, [image: there is no content]=Gki1⋯iRl1l1⋯l[image: there is no content]l[image: there is no content] and [image: there is no content]=Qi1⋯iRl1l1⋯l[image: there is no content]l[image: there is no content].



The moments, [image: there is no content] and [image: there is no content], can be taken as independent variables, while [image: there is no content] and [image: there is no content] are their fluxes and [image: there is no content] and [image: there is no content] are their production terms. All these quantities are symmetrical with respect to [image: there is no content] and [image: there is no content]; in the particular case of monatomic gases, [image: there is no content] and [image: there is no content] are symmetric with respect to all their indexes, but for dense gases and macromolecular fluids, some evolutive terms appear also in the production terms; by taking them in the lefthand side of Equation (1), they may be included in the terms, ∂k[image: there is no content] and ∂k[image: there is no content], causing the loss of symmetry of [image: there is no content] and [image: there is no content] with respect to all their indexes. We remark that the kinetic theory of monatomic gases has been considered only to draw from it suggestions on the properties of moments and balance equations; it is assumed that these same properties hold also for dense gases and macromolecular fluids, except for the above mentioned symmetries.



Moreover, we have

	
[image: there is no content], [image: there is no content] and [image: there is no content], so that Equation (1)1 for [image: there is no content], [image: there is no content], and the trace of that for [image: there is no content] are the conservation laws of mass, momentum and energy, respectively. The other production terms, [image: there is no content] and [image: there is no content], are functions of the independent variables, which are zero at equilibrium; in the context of the present macroscopic approach, we may write the linear expressions of these functions with respect to equilibrium and find the sign of the coefficients by imposing that the density of entropy production is not negative; but we omit here these considerations for the sake of brevity.



	
The following conditions can be considered:


Fk=Gk,Gki=Gik



(2)









The first one of these conditions surely holds and means that the flux in the conservation law of mass (i.e., Equation (1)1 with [image: there is no content]) is the independent variable in the conservation law of momentum (i.e., Equation (1)1 for [image: there is no content]).



The second condition, (2)2, holds only if there is a conservation of angular momentum.



The balance Equation (1) becomes field equations when the fluxes and the productions are known functions of the independent variables. Restrictions on the generality of these functions are furnished by imposing the entropy principle and that of Galilean relativity.



In the particular case [image: there is no content] and [image: there is no content], we obtain the 14-moments model, which was firstly studied by Kremer [3,4] by imposing, up to the second order with respect to equilibrium, the conditions that come out from the above principles; subsequently, in [5,6], an exact non-approximated solution of these same conditions has been found. This result was achieved by writing firstly a relativistic model, for which it is easy to impose the Einstein relativity principle by using the representation theorems for isotropic functions, which are known with this number of variables [7,8,9,10,11], and then taking its non-relativistic limit.



An extension of this method, to the case with many moments, is not possible, because there are no known representation theorems for this general case.



In the present paper, we have found a different method to solve the above conditions. We describe these conditions in Section 2 and solve them in two different ways, which are reported in Section 3 and Section 4, respectively. Finally, in Section 5, we show that, in the particular case of the 14-moments model, they are equivalent to those of [5,6], even if these were found with a completely different method.



Obviously, all these considerations belong to the general context of Extended Thermodynamics, whose original and most important papers, in our opinion, are [12,13] and whose most important aspects are described in [14].



Some authors avoid considering Equation (1)2 and, sometimes, also some components of Equation (1)1 (see [15,16,17,18,19,20,21], for example); but, this is not physically acceptable, because it has been shown in [22,23] that the form of Equation (1) is suggested by the non-relativistic limit of the relativistic model and that omitting Equation (1)2 is equivalent to omitting the conservation law of mass or that of momentum energy in the corresponding relativistic model.



A similar result, restricted to the 14-moments model, was previously found in [24]. See also [6,25] for other details.



We conclude this section, remarking that this model has been obtained through a macroscopic approach, i.e., based on the entropy principle. Another possible formulation of Extended Thermodynamics for dense gases is based on the kinetic approach; in order to permit a comparison between the two approaches, we cite now some references on the kinetic approach. In [26], Enskog introduced a kinetic theory for dense gases, which yields a very good approximation of the behavior of gases. Later, hydrodynamic-like equations have been derived from the kinetic equation; see, for example, the Chapman-Enskog method [27].



In 1988, Kremer and Rosa [28] obtained hydrodynamic equations from the local equilibrium distribution function, as kernel linearizing the collision integral in Enskog’s equation; in this way, they were able to derive sound dispersion relations for monatomic gases by using normal mode analysis. Based on this last paper, in 1991, Marques and Kremer [29] obtained linearized hydrodynamic equations involving the second order terms of the collision integral; in this way, they improved the results previously known in the literature and, furthermore, they obtained linearized Burnett equations for monatomic gases.



In [30], Ugawa and Cordero obtained extended hydrodynamic equations derived from Enskog’s equation by using Grad’s moment expansion method in the bi-dimensional case; among other results, they discussed the nature of a simple one-dimensional heat conduction problem and were able to show that, not too far from equilibrium, the non-equilibrium pressure in this case depends on the density, temperature and heat flux vector.



Finally, another model in this context can be found in [31], and this will surely be the object of further investigations in the future.




2. The Entropy Principle and the Galilean Relativity Principle


The entropy principle states that the supplementary law:


∂th+∂k[image: there is no content]=σ≥0



(3)




holds for every solution of Equation (1), where h is the entropy density and [image: there is no content] its flux. For Liu’s Theorem [32], this is equivalent to assuming the existence of Lagrange Multipliers, λ[image: there is no content] and λ[image: there is no content]R, such that:


dh=∑[image: there is no content]Nλ[image: there is no content]d[image: there is no content]+∑[image: there is no content]Mλ[image: there is no content]Rd[image: there is no content]d[image: there is no content]=∑[image: there is no content]Nλ[image: there is no content]d[image: there is no content]+∑[image: there is no content]Mλ[image: there is no content]Rd[image: there is no content]



(4)




besides a residual inequality, which we leave out for the sake of brevity and because it does not affect the present results.



It is convenient to write Equation (4) in a more compact form by calling [image: there is no content] the variables, [image: there is no content] and [image: there is no content]; in this way, Equation (4) can be written as:


dh=[image: there is no content]d[image: there is no content],d[image: there is no content]=[image: there is no content]d[image: there is no content]



(5)




with the obvious meaning of [image: there is no content] and [image: there is no content].



In [33], the idea has been conceived of to define the four-potentials, [image: there is no content] and [image: there is no content], as:


[image: there is no content]=−h+[image: there is no content][image: there is no content],[image: there is no content]=−[image: there is no content]+[image: there is no content][image: there is no content]



(6)




so that Equation (5) becomes:


d[image: there is no content]=[image: there is no content]d[image: there is no content],d[image: there is no content]=[image: there is no content]d[image: there is no content]



(7)




Another idea exposed in [33] is to take the Lagrange Multipliers as independent variables and call them “main field"; in this way Equation (7) becomes:


[image: there is no content]=∂[image: there is no content]∂[image: there is no content],[image: there is no content]=∂[image: there is no content]∂[image: there is no content],



(8)




so that everything is determined in terms of [image: there is no content] and [image: there is no content]; moreover, by substituting Equations (8) in (1), we obtain a symmetric system of evolution equations, which is hyperbolic if [image: there is no content] is a convex function of the main field. We observe here that it is not necessary to transform the system Equation (1) in the symmetric form, because if it is equivalent to a symmetric hyperbolic system, it itself is hyperbolic. Consequently, we can consider Equations (5)1 and (7)2 to still be maintaining the moments as independent variables. In this way, Equations (5)1 and (7)2 become:


[image: there is no content]=∂h∂[image: there is no content],∂[image: there is no content]∂[image: there is no content]=[image: there is no content]∂2h∂[image: there is no content]∂[image: there is no content]



(9)




which allows one to determine the unknown constitutive functions, [image: there is no content], because the matrix, ∂2h∂[image: there is no content]∂[image: there is no content], is an invertible matrix; otherwise, we could not invert Equation (9)1 and take the [image: there is no content] as independent variables.



Let us introduce now the Galilean Relativity Principle.



To this end, it is firstly necessary to see how the moments and their fluxes transform under a change of frames moving, one with respect to the other, with a translational rectilinear uniform motion with velocity, [image: there is no content]. For the variables, [image: there is no content] and [image: there is no content], it can be found in [34,35] and reads:


[image: there is no content]=∑[image: there is no content]nSj1⋯js[image: there is no content]([image: there is no content])[image: there is no content][image: there is no content]−FkF[image: there is no content]=∑[image: there is no content]nSj1⋯js[image: there is no content]([image: there is no content])[image: there is no content]−FIk[image: there is no content][image: there is no content]



(10)




where [image: there is no content] and [image: there is no content] are the counterparts of [image: there is no content] and [image: there is no content] in the other reference frame; moreover:


Sj1⋯js[image: there is no content]([image: there is no content])=nsδj1(i1⋯δjsisuis+1⋯uin)



(11)




Regarding the other variables, we use the identity holding for [image: there is no content]:


Sj1⋯jsi1⋯iRl1l1⋯l[image: there is no content]l[image: there is no content]=X(j1⋯jN+M+1−s[image: there is no content]δjN+M+2−sjN+M+3−s⋯δjs−1js)



(12)




with


Xj1⋯jN+M+1−s[image: there is no content]=∑(p,q)∈SRs−q−2p2qN+M+12−R!p!q!N+M+12−R−p−q!(u2)N+M+12−R−p−qu(j1⋯ujqδjq+1jq+2⋯δjq+N+M+2p−2sjq+N+M+2p−2s+1δjq+N+M+2p−2s+2(i1⋯δjN+M+1−s)is−q−2puis−q−2p+1⋯uiR)



(13)




where S is the set of the couples, [image: there is no content], of integer numbers, p and q, such that [image: there is no content], [image: there is no content] and [image: there is no content] and [image: there is no content].



We omit here the proof of this identity, for the sake of brevity (see [36] ). Moreover, we define:


Yj1⋯js[image: there is no content]=Sj1⋯jsi1⋯iRl1l1⋯l[image: there is no content]l[image: there is no content]fors≤N



(14)




Now, we can extend Equation (10) also for the value [image: there is no content] and contract the result with [image: there is no content]; by using Equations (12) and (14) we obtain:


[image: there is no content]=∑[image: there is no content]NYj1⋯js[image: there is no content][image: there is no content]+∑S=RMXj1⋯jS[image: there is no content]FSIj1⋯jS[image: there is no content]−FkF[image: there is no content]=∑[image: there is no content]NYj1⋯js[image: there is no content][image: there is no content]−FIk[image: there is no content][image: there is no content]++∑S=RMXj1⋯jS[image: there is no content]GSIkj1⋯jS−FIk[image: there is no content]FSIj1⋯jS



(15)




where, in the second summation, we have changed the index according to [image: there is no content].



Equations (10) and (15) can be written in a more compact form as:


[image: there is no content]=[image: there is no content]([image: there is no content])FIB,[image: there is no content]−FkF[image: there is no content]=[image: there is no content]([image: there is no content])[image: there is no content]−FIk[image: there is no content]FIB



(16)




with the obvious meaning of [image: there is no content]([image: there is no content]). This matrix satisfies the following properties:


(1)XCA(−[image: there is no content])[image: there is no content]([image: there is no content])=δCB



(17)






(2)∂XAC([image: there is no content])∂[image: there is no content]=[image: there is no content]XBC([image: there is no content])



(18)




where [image: there is no content] is the constant matrix defined in the following way:

	
If the multiindex A is the same appearing in [image: there is no content] with [image: there is no content], then [image: there is no content];



	
If the multiindex A is the same appearing in [image: there is no content] with [image: there is no content], then


Mji1⋯inB=nδj1(i1⋯δjn−1in−1δin)jifB=j1⋯jn−10ifB≠j1⋯jn−1











	
If the multiindex A is the same appearing in [image: there is no content] with [image: there is no content], then


Mji1⋯iMB=(N−M+1)δjM+1jδj1(i1+Mδj(i1δjM+1j1δj2i2⋯δjMiM)··δjM+2jM+3⋯δjN−1jNifB=j1⋯jN0ifB≠j1⋯jN











	
If the multiindex A is the same appearing in [image: there is no content] with [image: there is no content], then


Mji1⋯iRB=(N+M+1−2R)δjR+1jδj1(i1+Rδj(i1δjR+1j1·δj2i2⋯δjRiR)ifB=j1⋯jR+1,R≠0(N+M+1)δj1jifB=j1⋯jR+1,R=00ifB≠j1⋯jR+1













Another property of the matrix, [image: there is no content], is:


(3)[image: there is no content]([image: there is no content])MjBC=[image: there is no content]XBC([image: there is no content])



(19)




The counterparts of these properties when only Equation (1)1 is considered and Equation (1)2 is omitted have been already found in [14]; now, we have found that they hold also for the complete system Equation (1), but we have reported their proofs in a separate paper [36], for the sake of brevity.



Now, we are ready to impose the Galilean relativity principle for our system. It can be subdivided in two parts:

	
If we substitute Equation (16)1 in h and [image: there is no content]−hFkF, we obtain composite functions; the principle states that they are non-convective quantities in the sense that they do not depend on [image: there is no content]. In other words, they do not depend on the reference frame. To impose this restriction, we have simply to say that their derivatives with respect to [image: there is no content] are zero. By using Equations (16)1, (18) and then, again, Equation (16)1, we obtain:


∂h∂[image: there is no content][image: there is no content][image: there is no content]=0,∂[image: there is no content]∂[image: there is no content][image: there is no content][image: there is no content]−hδkj=0



(20)




where we have used [image: there is no content] and the subsequent property for [image: there is no content], reported after Equation (18).



We note that, as a consequence of Equation (20)1, also [image: there is no content] is a non-convective quantity; in fact, from Equation (9)1 and Equation (6)1, it follows:


[image: there is no content]=−h+∂h∂[image: there is no content][image: there is no content]=−h+∂h∂FIB∂FIB∂[image: there is no content][image: there is no content]=−h+∂h∂FIBXBA(−[image: there is no content])[image: there is no content]==−h+∂h∂FIBFIB



(21)




where, in the last two passages, we have used the inverse of Equation (16)1, with the use of Equation (17).



	
The second requirement imposed by the Galilean relativity principle is that the decomposition Equation (16)2 holds for the fluxes.



As a consequence of this condition, it follows that also [image: there is no content]−[image: there is no content]FkF is a non-convective quantity. In fact, from Equation (6), we have:


[image: there is no content]−[image: there is no content]FkF=−[image: there is no content]−hFkF+[image: there is no content][image: there is no content]−FkF[image: there is no content]==−[image: there is no content]−hFkF+∂h∂[image: there is no content][image: there is no content]−FkF[image: there is no content]==−[image: there is no content]−hFkF+∂h∂FIBXBA(−[image: there is no content])[image: there is no content]−FkF[image: there is no content]==−[image: there is no content]−hFkF+∂h∂FIB[image: there is no content]−FIk[image: there is no content]FIB



(22)




where, in the second passage, we have used Equation (9)1, in the third passage, we have used the inverse of Equation (16)1 with the use of Equation (17) and, in the last passage, we have used the inverse of Equation (16)2 with the use of Equation (17).



Consequently, Equation (20) has to be satisfied also with [image: there is no content] and [image: there is no content] instead of h and [image: there is no content], respectively, that is:


∂[image: there is no content]∂[image: there is no content][image: there is no content][image: there is no content]=0,∂[image: there is no content]∂[image: there is no content][image: there is no content][image: there is no content]−[image: there is no content]δkj=0



(23)









Vice versa, if we assume that h and [image: there is no content]−[image: there is no content]FkF are non-convective quantities, then Equation (16)2 will follow as a consequence and, also, the non-convectivity of [image: there is no content]−hFkF. In fact, from Equation (9)2, it follows:


∂[image: there is no content]∂FIB=[image: there is no content]∂2h∂FIB∂[image: there is no content]=[image: there is no content][image: there is no content]XCA(−[image: there is no content])



(24)




where, in the last passage, we have used the inverse of Equation (16)1. Similarly, always with the use of the inverse of Equation (16)1, we obtain:


−FkF[image: there is no content]XCA(−[image: there is no content])=−FkFFICfrom which it follows−FkF[image: there is no content]XCA(−[image: there is no content])[image: there is no content]=−FkFFIC[image: there is no content]








Thanks to this equation and to Equation (24), we obtain:


[image: there is no content]−FkF[image: there is no content]XCA(−[image: there is no content])[image: there is no content]=∂[image: there is no content]∂FIB−FkFFIC[image: there is no content]



(25)




But, from the first equality in Equation (21) written in the new reference frame, we have:


∂h∂FICFIC=[image: there is no content]+h,whose derivative with respect toFIBis[image: there is no content]FIC+∂h∂FIB=∂[image: there is no content]∂FIB+∂h∂FIB








This result allows one to rewrite Equation (25) as:


[image: there is no content]−FkF[image: there is no content]XCA(−[image: there is no content])[image: there is no content]=∂[image: there is no content]∂FIB−FkF∂[image: there is no content]∂FIB



(26)




Now, the hypothesis that [image: there is no content]−[image: there is no content]FkF is a non-convective quantity means that:


[image: there is no content]−[image: there is no content]FkF=[image: there is no content]−[image: there is no content]FIk[image: there is no content],from which[image: there is no content]=[image: there is no content]+uk[image: there is no content]



(27)




(Because [image: there is no content], [image: there is no content]). By using this equation, we can write Equation (26) as:


[image: there is no content]−FkF[image: there is no content]XCA(−[image: there is no content])[image: there is no content]=∂[image: there is no content]∂FIB−FIk[image: there is no content]∂[image: there is no content]∂FIB








Now, [image: there is no content] is a non-convective invertible matrix, so it follows that [image: there is no content]−FkF[image: there is no content]XCA(−[image: there is no content]) is a non-convective quantity, and this proves Equation (16)2.



After that, we note that Equation (22) was deduced without using the non-convectivity of [image: there is no content]−huk. In other words, we assumed that [image: there is no content]−huk is a non-convective quantity and proved with Equation (22) that also [image: there is no content]−[image: there is no content]uk has this property; similarly, we assume now that [image: there is no content]−[image: there is no content]uk is a non-convective quantity and prove through Equation (22) that also [image: there is no content]−huk satisfies this property.



We conclude that the Galilean relativity principle amounts simply in the conditions (20)1 and (23)2.



2.1. The Galilean Relativity Principle in Terms of the Main Field


A more simple result holds when we take the Lagrange multipliers as independent variables; in fact, from Equations (5) and (16)1 it follows:


dh=[image: there is no content]dFIBwith[image: there is no content]=[image: there is no content]([image: there is no content])[image: there is no content]



(28)




from which, by using Equation (17), it follows:


λC=XBC(−[image: there is no content])[image: there is no content]



(29)




that is, the equation corresponding to Equation (16)1, but for the Lagrange multipliers. From Equation (29), it follows:


∂λC∂[image: there is no content]=−MjECλE



(30)




where Equations (18) and (19) and, again, Equation (29) have been used.



If we start now from the hypothesis that [image: there is no content] and [image: there is no content]−[image: there is no content]FkF are non-convective quantities, then the decomposition Equation (16)1 follows as its consequence and of Equations (24)2 and (8).



Similarly, with the use also of Equation (27), we have:


[image: there is no content]=∂[image: there is no content]∂[image: there is no content][image: there is no content]([image: there is no content])=∂[image: there is no content]∂[image: there is no content]+uk∂[image: there is no content]∂[image: there is no content][image: there is no content]([image: there is no content]);−FkF[image: there is no content]=−FIk[image: there is no content]+uk[image: there is no content]=−FIk[image: there is no content]+uk[image: there is no content]([image: there is no content])FIB==−FIk[image: there is no content]FIB+uk∂[image: there is no content]∂[image: there is no content][image: there is no content]([image: there is no content])








The sum of these two equations gives Equation (16)2.



Consequently, if we take the Lagrange multipliers as independent variables, the Galilean relativity principle amounts simply in imposing that [image: there is no content] and [image: there is no content]−[image: there is no content]FkF are non-convective quantities, that is. ∂[image: there is no content]∂[image: there is no content]=0 and ∂[image: there is no content]∂[image: there is no content]=0 with [image: there is no content] deduced from Equation (27).



In other words, it is expressed by:


λD[image: there is no content]∂[image: there is no content]∂[image: there is no content]=0,λD[image: there is no content]∂[image: there is no content]∂[image: there is no content]+[image: there is no content]δkj=0



(31)




where we have used Equation (30).



In the next section, we will find the general solution of Equations (20)1 and (23)2 in the independent variables [image: there is no content], while in Section 4, we will find the general solution of Equation (31) in the independent variables [image: there is no content].



Before ending this section, we note that in the earlier papers on Extended Thermodynamics, the independent variables, [image: there is no content] and [image: there is no content], were used, which are defined by Equation (16)1 with [image: there is no content] instead of [image: there is no content], [image: there is no content] and [image: there is no content] for [image: there is no content].



Similarly, the dependent variables, [image: there is no content], were defined by Equation (16)2 with [image: there is no content] instead of [image: there is no content] and [image: there is no content] and [image: there is no content] instead of [image: there is no content].



If we want to express the present results in terms of these other variables, we note that

	
Equations (8)1 with [image: there is no content]=[image: there is no content](v→)[image: there is no content] are still a system of implicit equations for the determination of the Lagrange multipliers in terms of [image: there is no content] (velocity) and [image: there is no content]. After that, Equation (31) means that the composite functions, [image: there is no content] and [image: there is no content]−vk[image: there is no content], do not depend on [image: there is no content].



	
By substituting [image: there is no content]=[image: there is no content]([image: there is no content],[image: there is no content]) into Equation (8)2, the resulting function, [image: there is no content], satisfy the relation, [image: there is no content]−FkF[image: there is no content]=[image: there is no content](v→)[image: there is no content]. In fact, we have:


∂∂vjXCA(−v→)([image: there is no content]−vk[image: there is no content])[image: there is no content]−MjCBXBA(−v→)([image: there is no content]−vk[image: there is no content])++XCA(−v→)−δkj[image: there is no content]+∂[image: there is no content]∂λB−vk∂[image: there is no content]∂λB∂λB∂vj[image: there is no content]=−MjCBXBA(−v→)∂[image: there is no content]∂[image: there is no content]−vk∂[image: there is no content]∂[image: there is no content]+XCA(−v→)−δkj∂[image: there is no content]∂[image: there is no content]++∂2[image: there is no content]∂[image: there is no content]∂λB−vk∂2[image: there is no content]∂[image: there is no content]∂λB∂λB∂vj[image: there is no content]=−XCB(−v→)MjBA∂[image: there is no content]∂[image: there is no content]−vk∂[image: there is no content]∂[image: there is no content]+XCA(−v→)−δkj∂[image: there is no content]∂[image: there is no content]+−∂2[image: there is no content]∂[image: there is no content]∂λB−vk∂2[image: there is no content]∂[image: there is no content]∂λBMjEBλE==−XCA(−v→)MjAE∂[image: there is no content]∂λE−vk∂[image: there is no content]∂λE++δkj∂[image: there is no content]∂[image: there is no content]+∂2[image: there is no content]∂[image: there is no content]∂λB−vk∂2[image: there is no content]∂[image: there is no content]∂λBMjEBλE[image: there is no content]0













where, in the passage denoted with [image: there is no content], we have used Equation (18), in the passage denoted with [image: there is no content], we have used Equation (8) and in the passage denoted with [image: there is no content], we have used Equation (19) and also Equation (30); this last one can be used, because it was deduced, taking into account only the fact that Equation (28) and Equation (29) are invertible relations between [image: there is no content] and [image: there is no content], without worrying if these are independent variables or not.



Finally, in the passage denoted with [image: there is no content], we have taken into account the fact that the coefficient of [image: there is no content] inside the square brackets is Equation (31)1 written with E instead of A and, after that, derivated with respect to [image: there is no content]; the remaining part is the derivative with respect to [image: there is no content] of Equation (31)2, written with E instead of A and, after that, derived with respect to [image: there is no content].



So, we have proven that the usual decomposition in terms of [image: there is no content], [image: there is no content]≠mi and [image: there is no content] is a consequence of our Equation (31). In this way, the only unknowns are the functions, [image: there is no content], [image: there is no content]−[image: there is no content]vk and [image: there is no content], depending on the variables, [image: there is no content]≠mi.



To find these unknowns, we can use Equation (8) to obtain [image: there is no content] as functions of [image: there is no content], substitute them in [image: there is no content], [image: there is no content]−[image: there is no content]vk and [image: there is no content] and, after that, calculate this in [image: there is no content]=0, so obtaining [image: there is no content], [image: there is no content]−[image: there is no content]vk and [image: there is no content]. However, this is equivalent to calculate Equation (8) in [image: there is no content]=0, so that they become:


[image: there is no content]=∂[image: there is no content]∂[image: there is no content]forA≠i,0=∂[image: there is no content]∂[image: there is no content],[image: there is no content]=∂[image: there is no content]∂[image: there is no content]



(32)




After that, we use Equation (32)1,2 to obtain [image: there is no content] and [image: there is no content] in terms of [image: there is no content]≠mi and substitute them in Equation (32)3 and in the expressions of [image: there is no content] and [image: there is no content], calculated in [image: there is no content]=0. This is the essence of the method explained in [37,38] and which was already been used in [39,40].





3. The General Solution in Terms of the Moments, [image: there is no content], as Independent Variables


We find now the general solution of Equations (20)1 and (23)2 in the independent variables, the moments, [image: there is no content]. Let us begin with Equation (20)1.



To this end, let us call [image: there is no content] the variables, [image: there is no content], different from F and [image: there is no content]. With this notation, Equation (20)1 becomes:


∂h∂[image: there is no content]F+∂h∂[image: there is no content]MjA*B[image: there is no content]=0



(33)




It is not restrictive to consider h a composite function of:


H(F,Fi,ηB*)and ofηB*=XB*A−FiF[image: there is no content],that ish=HF,Fi,XA*A−FiF[image: there is no content]



(34)




By using this expression and Equation (18), the Equation (33) becomes:


F∂H∂[image: there is no content]+∂H∂ηB*−1FMjB*DXDA−FiF[image: there is no content]+XB*j−FiF++∂H∂ηB*XB*A*−FiFMjA*B[image: there is no content]=0



(35)




However, for Equation (19), the first term in the square brackets of Equation (35) becomes:


−1FMjB*DXDA−FiF[image: there is no content]=−1FXB*D−FiF[image: there is no content][image: there is no content]==−1FXB*0−FiFMj0A[image: there is no content]+XB*i1−FiFMji1A[image: there is no content]++XB*D*−FiFMjD*A[image: there is no content]



(36)




This allows one to rewrite Equation (35) as:


F∂H∂[image: there is no content]+∂H∂ηB*−XB*0−FiFMj0A[image: there is no content]−XB*i1−FiFMji1A[image: there is no content]+FXB*j−FiF=0








By using the expression of [image: there is no content] reported after Equation (18), our condition becomes ∂H∂[image: there is no content]=0, that is, H does not depend on [image: there is no content]. In other words, the general solution of Equation (20)1 is:


h=HF,XA*A−FiF[image: there is no content].



(37)




Let us find now the general solution of Equation (23)2.



To this end, it will be useful to know firstly the expression of [image: there is no content] deduced from the first equality in Equation (21) and from Equation (37), that is:


[image: there is no content]=−h+∂h∂FF+∂h∂[image: there is no content][image: there is no content]+∂h∂FB*FB*=−HF,XA*A−FiF[image: there is no content]++F∂H∂F+∂H∂ηA*MjA*BXBA−FiF[image: there is no content]1F2[image: there is no content]+∂H∂ηA*XA*0−FiF̲++[image: there is no content]−1F∂H∂ηA*MjA*BXBA−FiF[image: there is no content]+∂H∂ηA*XA*j−FiF̲++FB*∂H∂ηA*XA*B*−FiF̲



(38)




where we have used Equation (18). Moreover, from Equation (34)2, we see that the underlined terms contribute with [image: there is no content]. Two other terms in Equation (38) are opposite, and there remains:


[image: there is no content]=−H+F∂H∂F+∂H∂ηA*ηA*



(39)




In other words, also [image: there is no content] has an expression like Equation (37), and this is not strange, because we have already said that Equation (23)1 holds as a consequence of Equation (20)1; moreover, Equation (23)1 is the same Equation (20)1, but with [image: there is no content] instead of h.



Let us find now the general solution of Equation (23)2, that is ∂[image: there is no content]∂[image: there is no content]F+∂[image: there is no content]∂[image: there is no content]MjA*B[image: there is no content]−[image: there is no content]δkj=0; It is not restrictive to write


[image: there is no content]=[image: there is no content]FkF+[image: there is no content]F,Fi,XA*A−FiF[image: there is no content]








which allows one to rewrite our equation as:


F[image: there is no content]Fδkj+∂[image: there is no content]∂[image: there is no content]+∂[image: there is no content]∂ηB*−1FMjB*DXDA−FiF[image: there is no content]+XB*j−FiF++∂[image: there is no content]∂ηB*XB*A*−FiFMjA*B[image: there is no content]−[image: there is no content]δkj=0








where we have taken into account that [image: there is no content] satisfies Equation (23)1. By using Equation (36), there remains


F∂[image: there is no content]∂[image: there is no content]+∂[image: there is no content]∂ηB*−XB*0−FiFMj0A[image: there is no content]−XB*i1−FiFMji1A[image: there is no content]+FXB*j−FiF=0








which, by using the expression of [image: there is no content] reported after Equation (18), becomes ∂[image: there is no content]∂[image: there is no content]=0, that is, [image: there is no content] does not depend on [image: there is no content]. In other words, the general solution of Equation (23)2 is:


[image: there is no content]=[image: there is no content]FkF+[image: there is no content]F,XA*A−FiF[image: there is no content]



(40)




We note now that Equation (20) looks like Equation (23), but with (h,[image: there is no content]) instead of ([image: there is no content],[image: there is no content]); this allows one to write the most general solution of Equation (20)2 like Equation (40), that is,


[image: there is no content]=hFkF+HkF,XA*A−FiF[image: there is no content]



(41)







It is interesting to test our general solution in the particular case, [image: there is no content] and [image: there is no content], that is, the 14-moments case, where Equations (20)1 and (23)2 are:


F∂h∂[image: there is no content]+2Fi∂h∂Fji+(2Fij+Fllδij)∂h∂Fill+4Fjll∂h∂Faabb=0F∂[image: there is no content]∂[image: there is no content]+2Fi∂[image: there is no content]∂Fji+(2Fij+Fllδij)∂[image: there is no content]∂Fill+4Fjll∂[image: there is no content]∂Faabb−[image: there is no content]δkj=0



(42)




In this case, the variable Equation (34)2 is:


ηij=Fij−1FFi[image: there is no content]ηill=Fill−2FFilFl−1FFllFi+2F2FiFlFlηaabb=Faabb−4FFaabFb+2F2FllFaFa+4F2FabFaFb−3F3(FaFa)2



(43)




and it is easy to verify that,


h=HF,ηij,ηill,ηaabb[image: there is no content]=FkF[image: there is no content]F,ηij,ηill,ηaabb+[image: there is no content]F,ηij,ηill,ηaabb



(44)




in composite with Equation (43), are solutions of Equation (42).




4. The General Solution in Terms of the Lagrange Multipliers as Independent Variables


Let us now describe the general solution of Equation (31), using [image: there is no content] as independent variables. It holds only in the subdomain with [image: there is no content], like Equations (20)1 and (23)2 were solved in the previous section, in the subdomain [image: there is no content]. However, F is the mass density, so that it is obvious that it is different from zero. The same thing cannot be said for [image: there is no content], which is zero, quite in equilibrium!



However, if we assume that [image: there is no content] in equilibrium is an infinitesimal of a higher order with respect to [image: there is no content], then our solution will be acceptable also at equilibrium. This assumption has been already adopted in [6,25] for the 14-moments model and was based on the requirement of the convexity of entropy, which, in turns, assures the hyperbolicity of the resulting system.



Let us call [image: there is no content] the variables [image: there is no content], different from [image: there is no content] and [image: there is no content]. With this notation, Equation (31) becomes:


λDMjDA˜∂[image: there is no content]∂[image: there is no content]+λD[image: there is no content]∂[image: there is no content]∂[image: there is no content]=0,λDMjDA˜∂[image: there is no content]∂[image: there is no content]+λD[image: there is no content]∂[image: there is no content]∂[image: there is no content]+[image: there is no content]δkj=0



(45)




where we have taken into account that [image: there is no content] when A is the same index of [image: there is no content] and [image: there is no content]; this fact is evident from the description of [image: there is no content], reported above, after Equation (18).



It is now not restrictive to consider [image: there is no content] a composite function of


[image: there is no content](μA˜,[image: there is no content],[image: there is no content])and of[image: there is no content]=[image: there is no content]XAB˜−1N+M+1[image: there is no content][image: there is no content]



(46)




In this way, Equation (45)1, by using Equation (18), becomes:


λDMjDA˜∂[image: there is no content]∂[image: there is no content]XA˜B˜−1N+M+1[image: there is no content][image: there is no content]+λD[image: there is no content]∂[image: there is no content]∂[image: there is no content]++∂[image: there is no content]∂[image: there is no content]XB˜il1l1⋯lN+M−12lN+M−12+[image: there is no content]MiACXCB˜−1N+M+1[image: there is no content][image: there is no content]·−1N+M+11[image: there is no content]=0



(47)




where we have substituted [image: there is no content] with [image: there is no content] in order not to lose sight the fact that i is the same index of [image: there is no content].



Now, from the description of [image: there is no content] reported above, after Equation (18), we have:


MjAl1l1⋯lN+M+12lN+M+12=0,[image: there is no content]=0forD≠l1l1⋯lN+M+12lN+M+12,Mjl1l1⋯lN+M+12lN+M+12il1l1⋯lN+M−12lN+M−12=(N+M+1)δij



(48)




By using these equations, the relation, Equation (47), becomes:


λDMjDA˜∂[image: there is no content]∂[image: there is no content]XA˜B˜+[image: there is no content](N+M+1)∂[image: there is no content]∂[image: there is no content]++[image: there is no content](N+M+1)∂[image: there is no content]∂[image: there is no content]XB˜jl1l1⋯lN+M−12lN+M−12−[image: there is no content]MjACXCB˜∂[image: there is no content]∂[image: there is no content]=0



(49)




Now, we see that, from the first and last term, in this equation, there remains:


−[image: there is no content]MjAi1l1l1⋯lN+M−12lN+M−12XB˜i1l1l1⋯lN+M−12lN+M−12∂[image: there is no content]∂[image: there is no content]==−[image: there is no content](N+M+1)XB˜jl1l1⋯lN+M−12lN+M−12∂[image: there is no content]∂[image: there is no content]








where we have used Equation (48)2,3. It is now evident that from Equation (49), it remains [image: there is no content](N+M+1)∂[image: there is no content]∂[image: there is no content]=0, that is, [image: there is no content] does not depend on [image: there is no content]. In other words, the general solution of Equation (31)1 is:


[image: there is no content]=[image: there is no content][image: there is no content]XAB˜−1N+M+1[image: there is no content][image: there is no content],[image: there is no content]



(50)




It remains now to find the general solution of Equation (31)2. By defining [image: there is no content] from [image: there is no content]=[image: there is no content]−1N+M+1λk1[image: there is no content][image: there is no content], it becomes:


λD[image: there is no content]∂[image: there is no content]∂[image: there is no content]=0



(51)




where we have used the fact that [image: there is no content] already satisfies Equation (31)1 and taken into account Equation (48). Now, Equation (51) looks like Equation (31)1, but with [image: there is no content] instead of [image: there is no content]; by operating in the same way, we obtain that [image: there is no content] is a composite function of [image: there is no content] and [image: there is no content]XAB˜−1N+M+1[image: there is no content][image: there is no content]. In other words, the general solution of Equation (31)2 is:


[image: there is no content]=−1N+M+1λk1[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content]XAB˜−1N+M+1[image: there is no content][image: there is no content],[image: there is no content]



(52)




Let us now see how the conditions (2) can be solved in terms of the functions, [image: there is no content] and [image: there is no content], appearing in Equations (50) and (52), respectively.



4.1. On the Condition [image: there is no content]


Let us consider now the condition (2)1, which means that the flux in the conservation law of mass is the momentum density, that is, the independent variable in the subsequent conservation law of momentum. By using Equation (8), it can be expressed as:


∂[image: there is no content]∂λ=∂[image: there is no content]∂λk



(53)




However, we note that λ appears in [image: there is no content], as expressed by Equation (46)2, only for [image: there is no content], that is, in [image: there is no content]; moreover, we have:


∂[image: there is no content]∂λ=1



(54)




Similarly, [image: there is no content] appears in [image: there is no content] only in [image: there is no content] and [image: there is no content]j; moreover, we have:


∂[image: there is no content]∂[image: there is no content]=−1N+M+1[image: there is no content][image: there is no content],∂[image: there is no content]j∂λ=0,∂[image: there is no content]j∂[image: there is no content]=δij



(55)




In order to prove these properties, we note that from Equation (16)1, it follows [image: there is no content][image: there is no content]=[image: there is no content][image: there is no content]([image: there is no content])FIB; by comparing this with the definition (46)2 of [image: there is no content], we find that [image: there is no content] is the coefficient of [image: there is no content] in [image: there is no content][image: there is no content], calculated in [image: there is no content]=−1N+M+1[image: there is no content][image: there is no content] and [image: there is no content]j is the coefficient of [image: there is no content] in [image: there is no content][image: there is no content], calculated in the previous value of [image: there is no content] (in effect, this value of [image: there is no content] was introduced above when we considered [image: there is no content] a composite function of Equation (46). This was inspired by the fact that, from Equation (28)2 with [image: there is no content], this value [image: there is no content] corresponds to the condition [image: there is no content], exactly as for the corresponding passage used in terms of the moments.)



By using Equations (10)1 and (15)1, we find:


[image: there is no content][image: there is no content]=∑[image: there is no content]Nλ[image: there is no content]∑[image: there is no content]nSj1⋯js[image: there is no content]([image: there is no content])[image: there is no content]++∑[image: there is no content]Mλ[image: there is no content]R∑[image: there is no content]NYj1⋯js[image: there is no content]([image: there is no content])[image: there is no content]+∑S=RMXj1⋯jS[image: there is no content]([image: there is no content])FSIj1⋯jS



(56)




It follows that the coefficient of [image: there is no content] is:


∑[image: there is no content]Nλ[image: there is no content]S[image: there is no content]([image: there is no content])+∑[image: there is no content]Mλ[image: there is no content]RY[image: there is no content]([image: there is no content])








and the coefficient of [image: there is no content] is:


∑[image: there is no content]Nλ[image: there is no content]Sj[image: there is no content]([image: there is no content])+∑[image: there is no content]Mλ[image: there is no content]RYj[image: there is no content]([image: there is no content])








where we have omitted the value for [image: there is no content], because, in the other summation, the index, s, goes from 0 to n; consequently, for [image: there is no content], there is not the value [image: there is no content].



By using Equations (11) and (14), the coefficient of [image: there is no content] becomes:


∑[image: there is no content]Nλ[image: there is no content]ui1⋯uin+∑[image: there is no content]Mλ[image: there is no content]Rui1⋯uiR(u2)[image: there is no content]








while the coefficient of [image: there is no content] becomes:


∑[image: there is no content]Nnλi1⋯in−1jui1⋯uin−1++∑[image: there is no content]MRλji2⋯iRRui2⋯uiR(u2)[image: there is no content]+(N+M+1−2R)ujλ[image: there is no content]Rui1⋯uiR(u2)N+M−12−R








By calculating these expressions in [image: there is no content]=−1N+M+1[image: there is no content][image: there is no content], we find [image: there is no content] and [image: there is no content]j, respectively, from which Equations (54) and (55) easily follow.



With the same passages, we find the other properties, that is, λ appears in [image: there is no content] only for [image: there is no content] and [image: there is no content] appears in [image: there is no content] only for [image: there is no content] or [image: there is no content].



More precisely, [image: there is no content] is the coefficient of [image: there is no content] in [image: there is no content][image: there is no content], calculated in [image: there is no content]=−1N+M+1[image: there is no content][image: there is no content]; but, λ appears in Equation (56) only for [image: there is no content], so that the other summation may assume only the value, [image: there is no content], giving only the coefficient of [image: there is no content] and not of the others, [image: there is no content]. Similarly, [image: there is no content] appears in Equation (56) only for [image: there is no content], so that the other summation may assume only the value [image: there is no content] and [image: there is no content], giving only the coefficients of [image: there is no content] and [image: there is no content] and not of the others, [image: there is no content].



By using Equations (54) and (55), we can rewrite Equation (53) as:


∂[image: there is no content]∂[image: there is no content]=−1N+M+1λk1[image: there is no content]∂[image: there is no content]∂[image: there is no content]+∂[image: there is no content]∂[image: there is no content]k



(57)




which, by using Equations (50) and (52) becomes:


∂[image: there is no content]∂[image: there is no content]=∂[image: there is no content]∂[image: there is no content]k



(58)




This equation may be easily integrated; in fact, there exists surely a function, ψ, such that:


[image: there is no content]=∂ψ∂[image: there is no content]



(59)




After that, Equation (58) says that:


[image: there is no content]=∂ψ∂[image: there is no content]k+[image: there is no content]



(60)




where [image: there is no content] is an arbitrary function that does not depend on [image: there is no content] and arises from the integration with respect to [image: there is no content].




4.2. On the Eventual Condition [image: there is no content]


This symmetry condition (2)2 has to be imposed only if there is a conservation of angular momentum, differently from Equation (2)1, which holds surely, for physical reasons.



By using Equation (8), it becomes:


∂h′[k∂λi]=0



(61)




Now, thanks to Equations (54) and (55), we have:


∂[image: there is no content]∂[image: there is no content]=−1N+M+1∂[image: there is no content]∂[image: there is no content][image: there is no content][image: there is no content]+∂[image: there is no content]∂[image: there is no content]i








which, by using Equation (57) becomes:


∂[image: there is no content]∂[image: there is no content]=1(N+M+1)2∂[image: there is no content]∂[image: there is no content][image: there is no content]λk1([image: there is no content])2−1N+M+1[image: there is no content][image: there is no content]∂[image: there is no content]∂[image: there is no content]k+∂[image: there is no content]∂[image: there is no content]i








It follows that:


∂h′[k∂λi]=−1N+M+11[image: there is no content]∂[image: there is no content]∂[image: there is no content][kλi]1+∂h′[k∂[image: there is no content]i]==1N+M+11[image: there is no content]∂[image: there is no content]∂[image: there is no content][iλk]1+∂h′[k∂[image: there is no content]i]=∂H′[k∂[image: there is no content]i]








where in the last passage, Equation (52) has been used.



Consequently, the condition (61) becomes:


∂H′[k∂[image: there is no content]i]=0



(62)




This equation, together with Equation (58), is nothing else than the integrability conditions, which allow one to obtain the scalar function, ψ, such that:


[image: there is no content]=∂ψ∂[image: there is no content],[image: there is no content]=∂ψ∂[image: there is no content]k



(63)




Vice versa, from Equation (63), the conditions (58) and (62) easily follow. We may conclude that the four-potentials, [image: there is no content] and [image: there is no content], are determined, except for an arbitrary scalar function, ψ, depending on [image: there is no content] and [image: there is no content].



Let us now test the results of the present paper, by comparing their restriction to the 14-moments model with those found, for this particular case and in a completely different way, in [5,6].





5. The Particular Case with 14-Moments


A comparison of the definition (46)2 of [image: there is no content] with Equation (28)2 shows that [image: there is no content] is equal to [image: there is no content] calculated in [image: there is no content]=−1N+M+1[image: there is no content][image: there is no content]. Now, in Equation (16)2 of [5], we find the expressions of [image: there is no content] (which in that paper, were called [image: there is no content]) in the 14-moments case; so, they allow one to obtain:


[image: there is no content]=λ−14[image: there is no content]λill[image: there is no content]+116λijλillλjll([image: there is no content])2−3256([image: there is no content])−3(λillλill)2[image: there is no content]i=[image: there is no content]−12λijλjll[image: there is no content]+18([image: there is no content])−2(λpllλpll)λill[image: there is no content]rs=λrs−18λillλill[image: there is no content]δrs−14λrllλsll([image: there is no content])−1



(64)




where, in the present notation, λill=[image: there is no content] and [image: there is no content]=[image: there is no content].



Now, let us assume that [image: there is no content] depends on [image: there is no content] as a composite function of [image: there is no content], [image: there is no content], [image: there is no content]i and [image: there is no content]rs and of Equation (64); if we substitute it in (4)1 of [5], we find that it is identically satisfied, as we expected for what was said above in the present paper.



Similarly, if we assume that:


[image: there is no content]=−14λkll[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content],[image: there is no content],[image: there is no content]i,[image: there is no content]rs



(65)




with [image: there is no content], [image: there is no content]i and [image: there is no content]rs given by Equation (64), we obtain that (4)2 of [5] is identically satisfied, as we expected.



Regarding the expression of [image: there is no content], we know from the representation theorems [7,8,10] that


[image: there is no content]=[image: there is no content][image: there is no content]k+[image: there is no content][image: there is no content]ki[image: there is no content]i+[image: there is no content]([image: there is no content]2)ki[image: there is no content]i



(66)




with [image: there is no content], [image: there is no content] and [image: there is no content] arbitrary scalar functions. Moreover, from the same representation theorems, we know that [image: there is no content] and [image: there is no content] are arbitrary functions of [image: there is no content], [image: there is no content], [image: there is no content]ll, [image: there is no content]li[image: there is no content]li, [image: there is no content]li[image: there is no content]ij[image: there is no content]jl, [image: there is no content]i[image: there is no content]i, [image: there is no content]i[image: there is no content]ij[image: there is no content]j and [image: there is no content]i[image: there is no content]il[image: there is no content]lj[image: there is no content]j.



Now we expect that there is a correspondence between the solution found in the present paper and that found in [5], with a completely different method. This is true; in fact, in [5] it has been found that [image: there is no content] is an arbitrary function of eight scalar variables [image: there is no content]-[image: there is no content]. By comparing their expressions (see Equation 6 of [5]), with the solution here found, we see that the correspondence between the scalars is the following one:


[image: there is no content]=[image: there is no content]=[image: there is no content][image: there is no content]ll=−516[image: there is no content][image: there is no content][image: there is no content]li[image: there is no content]li=−14X3[image: there is no content]+11256[image: there is no content][image: there is no content]2[image: there is no content]li[image: there is no content]ij[image: there is no content]jl=−38X4[image: there is no content]+332X3[image: there is no content]·[image: there is no content][image: there is no content]−2984[image: there is no content][image: there is no content]3[image: there is no content]=116X5[image: there is no content]+132X3([image: there is no content])2−31024([image: there is no content])2([image: there is no content])3[image: there is no content]i[image: there is no content]i=14X6[image: there is no content]−132X5[image: there is no content]([image: there is no content])2+18X4([image: there is no content])2−132X3[image: there is no content]([image: there is no content])3+1512([image: there is no content])3([image: there is no content])4[image: there is no content]i[image: there is no content]ij[image: there is no content]j=14X7[image: there is no content]−364[image: there is no content]X6([image: there is no content])2−1418X3−3128([image: there is no content])2[image: there is no content]X5([image: there is no content])2−5128[image: there is no content]X4([image: there is no content])3−164(X3)2([image: there is no content])3++1128X3([image: there is no content])2([image: there is no content])4−3213([image: there is no content])4([image: there is no content])5[image: there is no content]i[image: there is no content]il[image: there is no content]lj[image: there is no content]j=14[image: there is no content][image: there is no content]−116[image: there is no content]X7([image: there is no content])2+X6[image: there is no content]916·64[image: there is no content][image: there is no content]2−132X3[image: there is no content]++X5[image: there is no content]3128[image: there is no content][image: there is no content]12X3[image: there is no content]−364[image: there is no content][image: there is no content]2−132X4[image: there is no content]++132X4([image: there is no content])2−X3[image: there is no content]+2164[image: there is no content][image: there is no content]2+1128X3[image: there is no content]2[image: there is no content]([image: there is no content])2+−16415128X3([image: there is no content])2[image: there is no content][image: there is no content]3+92171[image: there is no content][image: there is no content][image: there is no content]5



(67)




In order to verify these relations, it suffices to substitute Equation (64) in the lefthand sides and the expressions of [image: there is no content]-[image: there is no content] (reported in Equation 7 of [5]) in the righthand sides; after that, we have simply to note that identities are obtained, thanks also to the Hamilton-Cayley theorem (see also on page 32 of [7]).



We note also that Equation (67) is invertible. In fact, the righthand side of Equation (67)i is a linear function in the variable [image: there is no content]; moreover, the coefficient of [image: there is no content] and the term of zero degree in [image: there is no content] are functions, depending only on [image: there is no content], [image: there is no content] and ⋯ and [image: there is no content]. This fact proves that Equation (67) is easily invertible.



For what concerns [image: there is no content], let us analyze firstly the result of [5]. Equation 5 of this paper gives [image: there is no content] and [image: there is no content] in terms of four arbitrary functions, [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], depending on the variables, [image: there is no content]-[image: there is no content]. By deducing from (5)2 the function [image: there is no content] in terms of [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] and by substituting it in (5)1, we find:


[image: there is no content]=−14λkll[image: there is no content][image: there is no content]+[image: there is no content]V1k−[image: there is no content]8[image: there is no content]V0k+[image: there is no content]V2k−X38[image: there is no content]V0k+[image: there is no content]V3k−X48[image: there is no content]V0k



(68)




where we have used Equation (6)1 of [5].



After that, by using also Equations 6 and 7 of [5] and the Equation (64) of the present paper, we find the following identities:


V1k−[image: there is no content]8[image: there is no content]V0k=4[image: there is no content][image: there is no content]kV2k−X38[image: there is no content]V0k=4[image: there is no content][image: there is no content]ki[image: there is no content]i+34[image: there is no content][image: there is no content]kV3k−X48[image: there is no content]V0k=4[image: there is no content][image: there is no content]kl[image: there is no content]li[image: there is no content]i+[image: there is no content][image: there is no content]ki[image: there is no content]i+12X3+364([image: there is no content])2[image: there is no content]k



(69)




by substituting these values in Equation (68), we find:


[image: there is no content]+14λkll[image: there is no content][image: there is no content]=[image: there is no content][image: there is no content]k+[image: there is no content][image: there is no content]ki[image: there is no content]i+[image: there is no content][image: there is no content]kl[image: there is no content]li[image: there is no content]i



(70)




with


[image: there is no content]=4[image: there is no content][image: there is no content]+34[image: there is no content][image: there is no content]+12X3+364([image: there is no content])2[image: there is no content][image: there is no content]=4[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content][image: there is no content]=4[image: there is no content][image: there is no content]








From the arbitrariness of [image: there is no content], [image: there is no content] and [image: there is no content], that of [image: there is no content], [image: there is no content] and [image: there is no content] follows, and vice versa.



We note now that Equation (70) is equivalent to Equations (65) and (66) of the present article. So, we have found a complete proof that as the result of the present work, restricted to the 14 moments case, is the same of that known in the literature and found with a completely different method.




6. Conclusions


We consider very interesting the results here obtained, because until now, nobody has found exact solutions in Extended Thermodynamics with an arbitrary number of moments. This allows one to review the procedures previously used and which were based on Taylor’s expansions. Moreover, it opens up the possibility for many other further deepening considerations; for example, one could try to extend this procedure to the case with additional symmetry conditions. We hope that this will be a great spur also for other researchers.
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