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Abstract: The many moments model for dense gases and macromolecular fluids is
considered here, where the upper order moment is chosen in accordance to the suggestions
of the non-relativistic limit of the corresponding relativistic model. The solutions of the
restrictions imposed by the entropy principle and that of Galilean relativity were, until now,
obtained in the literature by using Taylor expansions around equilibrium and without proving
convergence. Here, an exact solution without using expansions is found. The particular case
with only 14 moments has already been treated in the literature in a completely different
way. Here, it is proven that this particular closure is included in the presently more
general one.
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1. Introduction

Extended Thermodynamics takes the first steps from the suggestions of kinetic theory of monatomic
gases; here, the state of a gas is described by the phase density, f(x⃗, c⃗, t), such that f(x⃗, c⃗, t)d c⃗ are the
number density of atoms at the point, x⃗, and at time, t, that have velocities between c⃗ and c⃗ + d c⃗. The
phase density, also called the distribution function, obeys the Boltzmann equation:

∂tf + ck∂kf = q
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where external forces have been neglected and q takes into account the effects of collisions between the
atoms. After that, the moments are defined by:

F i1···in =
∫
fmci1 · · · cin d c⃗

with m the molecular mass. Multiplication of the Boltzmann equation by mci1 · · · cin and integration
over all c⃗ gives the balance equations for these moments. Some of these equations, and the corresponding
moments, may also be considered only through their suitable traces. A corresponding definition can be
formulated in the relativistic framework taking, after that, their non-relativistic limit. In this way, we
obtain the following balance equations of the many moments model:

∂tF
i1···in + ∂kG

ki1···in = Qi1···in forn = 0 · · · , N (1)

∂tF
i1···iR
R + ∂kG

ki1···iR
R = Qi1···iR

R forR = 0 · · · , M

where the infinite hierarchy of moments has been closed by choosing two arbitrary numbers, N and M ,
such that M < N and M +N are odd numbers.

Other considerations [1,2] lead one to think that N and M are two subsequent numbers; this aspect
does not affect the present work, so that we prefer to maintain their generality.

The quantity, F i1···iR
R , is an abbreviation for F

i1···iRl1l1···lN+M+1
2 −R

lN+M+1
2 −R , that is, the tensor, F i1···in ,

with n = N +M + 1−R, of which we take the trace N+M+1
2

−R-times.

Similarly, Gki1···iR
R = G

ki1···iRl1l1···lN+M+1
2 −R

lN+M+1
2 −R and Qi1···iR

R = Q
i1···iRl1l1···lN+M+1

2 −R
lN+M+1

2 −R .
The moments, F i1···in and F i1···iR

R , can be taken as independent variables, while Gki1···in and Gki1···iR
R

are their fluxes and Qi1···in and Qi1···iR
R are their production terms. All these quantities are symmetrical

with respect to i1 · · · in and i1 · · · iR; in the particular case of monatomic gases, Gki1···in and Gki1···iR
R

are symmetric with respect to all their indexes, but for dense gases and macromolecular fluids, some
evolutive terms appear also in the production terms; by taking them in the lefthand side of Equation (1),
they may be included in the terms, ∂kGki1···in and ∂kG

ki1···iR
R , causing the loss of symmetry of Gki1···in

and Gki1···iR
R with respect to all their indexes. We remark that the kinetic theory of monatomic gases has

been considered only to draw from it suggestions on the properties of moments and balance equations;
it is assumed that these same properties hold also for dense gases and macromolecular fluids, except for
the above mentioned symmetries.

Moreover, we have

• Q = 0, Qi = 0 and Qll = 0, so that Equation (1)1 for n = 0, n = 1, and the trace of that for n = 2

are the conservation laws of mass, momentum and energy, respectively. The other production
terms,Qi1···in andQi1···iR

R , are functions of the independent variables, which are zero at equilibrium;
in the context of the present macroscopic approach, we may write the linear expressions of these
functions with respect to equilibrium and find the sign of the coefficients by imposing that the
density of entropy production is not negative; but we omit here these considerations for the sake
of brevity.

• The following conditions can be considered:

F k = Gk , Gki = Gik (2)
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The first one of these conditions surely holds and means that the flux in the conservation law of mass
(i.e., Equation (1)1 with n = 0) is the independent variable in the conservation law of momentum
(i.e., Equation (1)1 for n = 1).

The second condition, (2)2, holds only if there is a conservation of angular momentum.
The balance Equation (1) becomes field equations when the fluxes and the productions are known

functions of the independent variables. Restrictions on the generality of these functions are furnished by
imposing the entropy principle and that of Galilean relativity.

In the particular case N = 2 and M = 1, we obtain the 14-moments model, which was firstly
studied by Kremer [3,4] by imposing, up to the second order with respect to equilibrium, the conditions
that come out from the above principles; subsequently, in [5,6], an exact non-approximated solution of
these same conditions has been found. This result was achieved by writing firstly a relativistic model,
for which it is easy to impose the Einstein relativity principle by using the representation theorems
for isotropic functions, which are known with this number of variables [7–11], and then taking its
non-relativistic limit.

An extension of this method, to the case with many moments, is not possible, because there are no
known representation theorems for this general case.

In the present paper, we have found a different method to solve the above conditions. We describe
these conditions in Section 2 and solve them in two different ways, which are reported in Section 3
and Section 4, respectively. Finally, in Section 5, we show that, in the particular case of the 14-moments
model, they are equivalent to those of [5,6], even if these were found with a completely different method.

Obviously, all these considerations belong to the general context of Extended Thermodynamics,
whose original and most important papers, in our opinion, are [12,13] and whose most important aspects
are described in [14].

Some authors avoid considering Equation (1)2 and, sometimes, also some components of
Equation (1)1 (see [15–21], for example); but, this is not physically acceptable, because it has been
shown in [22,23] that the form of Equation (1) is suggested by the non-relativistic limit of the relativistic
model and that omitting Equation (1)2 is equivalent to omitting the conservation law of mass or that of
momentum energy in the corresponding relativistic model.

A similar result, restricted to the 14-moments model, was previously found in [24]. See also [6,25]
for other details.

We conclude this section, remarking that this model has been obtained through a macroscopic
approach, i.e., based on the entropy principle. Another possible formulation of Extended
Thermodynamics for dense gases is based on the kinetic approach; in order to permit a comparison
between the two approaches, we cite now some references on the kinetic approach. In [26], Enskog
introduced a kinetic theory for dense gases, which yields a very good approximation of the behavior of
gases. Later, hydrodynamic-like equations have been derived from the kinetic equation; see, for example,
the Chapman-Enskog method [27].

In 1988, Kremer and Rosa [28] obtained hydrodynamic equations from the local equilibrium
distribution function, as kernel linearizing the collision integral in Enskog’s equation; in this way, they
were able to derive sound dispersion relations for monatomic gases by using normal mode analysis.
Based on this last paper, in 1991, Marques and Kremer [29] obtained linearized hydrodynamic equations
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involving the second order terms of the collision integral; in this way, they improved the results
previously known in the literature and, furthermore, they obtained linearized Burnett equations for
monatomic gases.

In [30], Ugawa and Cordero obtained extended hydrodynamic equations derived from Enskog’s
equation by using Grad’s moment expansion method in the bi-dimensional case; among other results,
they discussed the nature of a simple one-dimensional heat conduction problem and were able to show
that, not too far from equilibrium, the non-equilibrium pressure in this case depends on the density,
temperature and heat flux vector.

Finally, another model in this context can be found in [31], and this will surely be the object of further
investigations in the future.

2. The Entropy Principle and the Galilean Relativity Principle

The entropy principle states that the supplementary law:

∂th+ ∂kh
k = σ ≥ 0 (3)

holds for every solution of Equation (1), where h is the entropy density and hk its flux. For Liu’s
Theorem [32], this is equivalent to assuming the existence of Lagrange Multipliers, λi1···in and λRi1···iR ,
such that:

d h =
N∑

n=0

λi1···in dF
i1···in +

M∑
R=0

λRi1···iR dF
i1···iR
R (4)

d hk =
N∑

n=0

λi1···in dG
ki1···in +

M∑
R=0

λRi1···iR dG
ki1···iR
R

besides a residual inequality, which we leave out for the sake of brevity and because it does not affect
the present results.

It is convenient to write Equation (4) in a more compact form by calling FA the variables, F i1···in and
F i1···iR
R ; in this way, Equation (4) can be written as:

d h = λA dF
A , d hk = λA dG

kA (5)

with the obvious meaning of λA and GkA.
In [33], the idea has been conceived of to define the four-potentials, h′ and h′k, as:

h′ = −h+ λAF
A , h′k = −hk + λAG

kA (6)

so that Equation (5) becomes:

d h′ = FAd λA , d h
′k = GkAd λA (7)

Another idea exposed in [33] is to take the Lagrange Multipliers as independent variables and call them
“main field”; in this way Equation (7) becomes:

FA =
∂h′

∂λA
, GkA =

∂h′k

∂λA
, (8)



Entropy 2013, 15 1039

so that everything is determined in terms of h′ and h′k; moreover, by substituting Equations (8) in (1), we
obtain a symmetric system of evolution equations, which is hyperbolic if h′ is a convex function of the
main field. We observe here that it is not necessary to transform the system Equation (1) in the symmetric
form, because if it is equivalent to a symmetric hyperbolic system, it itself is hyperbolic. Consequently,
we can consider Equations (5)1 and (7)2 to still be maintaining the moments as independent variables.
In this way, Equations (5)1 and (7)2 become:

λA =
∂h

∂FA
,

∂h′k

∂FB
= GkA ∂2h

∂FB∂FA
(9)

which allows one to determine the unknown constitutive functions, GkA, because the matrix, ∂2h
∂FB∂FA ,

is an invertible matrix; otherwise, we could not invert Equation (9)1 and take the λA as independent
variables.

Let us introduce now the Galilean Relativity Principle.
To this end, it is firstly necessary to see how the moments and their fluxes transform under a change

of frames moving, one with respect to the other, with a translational rectilinear uniform motion with
velocity, u⃗. For the variables, F i1···in and Gki1···in , it can be found in [34,35] and reads:

F i1···in =
n∑

s=0

Si1···in
j1···js (u⃗)F

Ij1···js (10)

Gki1···in − F k

F
F i1···in =

n∑
s=0

Si1···in
j1···js (u⃗)

(
GIkj1···js − F Ik

F I
F Ij1···js

)

where F Ij1···js and GIkj1···js are the counterparts of F j1···js and Gkj1···js in the other reference frame;
moreover:

Si1···in
j1···js (u⃗) =

 n

s

 δ(i1j1 · · · δisjsu
is+1 · · · uin) (11)

Regarding the other variables, we use the identity holding for s ≥ N + 1:

S
i1···iRl1l1···lN+M+1

2 −R
lN+M+1

2 −R

j1···js = X i1···iR
(j1···jN+M+1−s

δjN+M+2−sjN+M+3−s
· · · δjs−1js) (12)

with

X i1···iR
j1···jN+M+1−s

=
∑

(p,q)∈S

 R

s− q − 2p

 2q

(
N+M+1

2
−R

)
!

p! q!
(
N+M+1

2
−R− p− q

)
!
(u2)

N+M+1
2

−R−p−q (13)

u(j1 · · ·ujqδjq+1jq+2 · · · δjq+N+M+2p−2sjq+N+M+2p−2s+1
δ
(i1
jq+N+M+2p−2s+2

· · · δis−q−2p

jN+M+1−s)
uis−q−2p+1 · · ·uiR)

where S is the set of the couples, (p, q), of integer numbers, p and q, such that p ≥ 0, q ≥ 0 and
p+ q ≤ N+M+1

2
−R and s−R ≤ q + 2p ≤ s.

We omit here the proof of this identity, for the sake of brevity (see [36] ). Moreover, we define:

Y i1···iR
j1···js = S

i1···iRl1l1···lN+M+1
2 −R

lN+M+1
2 −R

j1···js for s ≤ N (14)
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Now, we can extend Equation (10) also for the value n = N +M + 1− R and contract the result with
δiR+1iR+2

· · · δiN+M−RiN+M+1−R
; by using Equations (12) and (14) we obtain:

F i1···iR
R =

N∑
s=0

Y i1···iR
j1···js F

Ij1···js +
M∑

S=R

X i1···iR
j1···jSF

Ij1···jS
S (15)

Gki1···iR
R − F k

F
F i1···iR
R =

N∑
s=0

Y i1···iR
j1···js

(
GIkj1···js − F Ik

F I
F Ij1···js

)
+

+
M∑

S=R

X i1···iR
j1···jS

(
GIkj1···jS

S − F Ik

F I
F Ij1···jS
S

)

where, in the second summation, we have changed the index according to S = N +M + 1− s.
Equations (10) and (15) can be written in a more compact form as:

FA = XA
B(u⃗)F

IB , GkA − F k

F
FA = XA

B(u⃗)

(
GIkB − F Ik

F I
F IB

)
(16)

with the obvious meaning of XA
B(u⃗). This matrix satisfies the following properties:

(1) XC
A(−u⃗)XA

B(u⃗) = δCB (17)

(2)
∂XA

C(u⃗)

∂uj
=M jA

BX
B
C(u⃗) (18)

where M jA
B is the constant matrix defined in the following way:

• If the multiindex A is the same appearing in F i1···in with n = 0, then M j0
B = 0;

• If the multiindex A is the same appearing in F i1···in with 1 ≤ n ≤ N , then

M ji1···in
B =

 n δ
(i1
j1 · · · δin−1

jn−1
δin)j if B = j1 · · · jn−1

0 if B ̸= j1 · · · jn−1

• If the multiindex A is the same appearing in F i1···iR
R with R =M , then

M ji1···iM
B =


[
(N −M + 1)δjjM+1

δ
(i1
j1 +Mδj(i1δjM+1j1

]
δi2j2 · · · δ

iM )
jM

·
·δjM+2jM+3

· · · δjN−1jN if B = j1 · · · jN
0 if B ̸= j1 · · · jN

• If the multiindex A is the same appearing in F i1···iR
R with 0 ≤ R ≤M − 1, then

M ji1···iR
B =



[
(N +M + 1− 2R)δjjR+1

δ
(i1
j1 +Rδj(i1δjR+1j1

]
·δi2j2 · · · δ

iR)
jR

if B = j1 · · · jR+1 , R ̸= 0

(N +M + 1)δjj1 if B = j1 · · · jR+1 , R = 0

0 if B ̸= j1 · · · jR+1

Another property of the matrix, XA
B, is:

(3) XA
B(u⃗)M

jB
C =M jA

BX
B
C(u⃗) (19)
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The counterparts of these properties when only Equation (1)1 is considered and Equation (1)2 is omitted
have been already found in [14]; now, we have found that they hold also for the complete system
Equation (1), but we have reported their proofs in a separate paper [36], for the sake of brevity.

Now, we are ready to impose the Galilean relativity principle for our system. It can be subdivided in
two parts:

• If we substitute Equation (16)1 in h and hk − hFk

F
, we obtain composite functions; the principle

states that they are non-convective quantities in the sense that they do not depend on uj . In other
words, they do not depend on the reference frame. To impose this restriction, we have simply to
say that their derivatives with respect to uj are zero. By using Equations (16)1, (18) and then,
again, Equation (16)1, we obtain:

∂h

∂FA
M jA

BF
B = 0 ,

∂hk

∂FA
M jA

BF
B − hδkj = 0 (20)

where we have used M j
B = 0 and the subsequent property for M ji1

B, reported
after Equation (18).
We note that, as a consequence of Equation (20)1, also h′ is a non-convective quantity; in fact,
from Equation (9)1 and Equation (6)1, it follows:

h′=−h+ ∂h

∂FA
FA = −h+ ∂h

∂F IB

∂F IB

∂FA
FA=−h+ ∂h

∂F IB
XB

A(−u⃗)FA= =−h+ ∂h

∂F IB
F IB (21)

where, in the last two passages, we have used the inverse of Equation (16)1, with the use of
Equation (17).

• The second requirement imposed by the Galilean relativity principle is that the decomposition
Equation (16)2 holds for the fluxes.
As a consequence of this condition, it follows that also h′k − h′ F

k

F
is a non-convective quantity. In

fact, from Equation (6), we have:

h′k − h′
F k

F
= −

(
hk − h

F k

F

)
+ λA

(
GkA − F k

F
FA

)
= (22)

= −
(
hk − h

F k

F

)
+

∂h

∂FA

(
GkA − F k

F
FA

)
=

= −
(
hk − h

F k

F

)
+

∂h

∂F IB
XB

A(−u⃗)
(
GkA − F k

F
FA

)
=

= −
(
hk − h

F k

F

)
+

∂h

∂F IB

(
GIkB − F Ik

F I
F IB

)

where, in the second passage, we have used Equation (9)1, in the third passage, we have used the
inverse of Equation (16)1 with the use of Equation (17) and, in the last passage, we have used the
inverse of Equation (16)2 with the use of Equation (17).
Consequently, Equation (20) has to be satisfied also with h′ and h′k instead of h and hk,
respectively, that is:

∂h′

∂FA
M jA

BF
B = 0 ,

∂h′k

∂FA
M jA

BF
B − h′δkj = 0 (23)
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Vice versa, if we assume that h and h′k − h′ F
k

F
are non-convective quantities, then Equation (16)2 will

follow as a consequence and, also, the non-convectivity of hk − hFk

F
. In fact, from Equation (9)2,

it follows:

∂h′k

∂F IB
= GkA ∂2h

∂F IB∂FA
= GkA ∂2h

∂F IB∂F IC
XC

A(−u⃗) (24)

where, in the last passage, we have used the inverse of Equation (16)1. Similarly, always with the use of
the inverse of Equation (16)1, we obtain:

−F
k

F
FAXC

A(−u⃗) = −F
k

F
F IC from which it follows

−F
k

F
FAXC

A(−u⃗)
∂2h

∂F IB∂F IC
= −F

k

F
F IC ∂2h

∂F IB∂F IC

Thanks to this equation and to Equation (24), we obtain:(
GkA − F k

F
FA

)
XC

A(−u⃗)
∂2h

∂F IB∂F IC
=

∂h′k

∂F IB
− F k

F
F IC ∂2h

∂F IB∂F IC
(25)

But, from the first equality in Equation (21) written in the new reference frame, we have:

∂h

∂F IC
F IC = h′ + h , whose derivative with respect to F IB is

∂2h

∂F IB∂F IC
F IC +

∂h

∂F IB
=

∂h′

∂F IB
+

∂h

∂F IB

This result allows one to rewrite Equation (25) as:(
GkA − F k

F
FA

)
XC

A(−u⃗)
∂2h

∂F IB∂F IC
=

∂h′k

∂F IB
− F k

F

∂h′

∂F IB
(26)

Now, the hypothesis that h′k − h′ F
k

F
is a non-convective quantity means that:

h′k − h′
F k

F
= h′Ik − h′

F Ik

F I
, from which h′k = h′Ik + ukh′ (27)

(Because F = F I , F k = F Ik + F Iuk). By using this equation, we can write Equation (26) as:(
GkA − F k

F
FA

)
XC

A(−u⃗)
∂2h

∂F IB∂F IC
=
∂h′Ik

∂F IB
− F Ik

F I

∂h′

∂F IB

Now, ∂2h
∂F IB∂F IC is a non-convective invertible matrix, so it follows that

(
GkA − Fk

F
FA

)
XC

A(−u⃗) is a
non-convective quantity, and this proves Equation (16)2.

After that, we note that Equation (22) was deduced without using the non-convectivity of hk−huk. In
other words, we assumed that hk − huk is a non-convective quantity and proved with Equation (22) that
also h′k − h′uk has this property; similarly, we assume now that h′k − h′uk is a non-convective quantity
and prove through Equation (22) that also hk − huk satisfies this property.

We conclude that the Galilean relativity principle amounts simply in the conditions (20)1 and (23)2.
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2.1. The Galilean Relativity Principle in Terms of the Main Field

A more simple result holds when we take the Lagrange multipliers as independent variables; in fact,
from Equations (5) and (16)1 it follows:

d h = λIB dF
IB with λIB = XA

B(u⃗)λA (28)

from which, by using Equation (17), it follows:

λC = XB
C(−u⃗)λIB (29)

that is, the equation corresponding to Equation (16)1, but for the Lagrange multipliers. ¿From
Equation (29), it follows:

∂λC
∂uj

= −M jE
CλE (30)

where Equations (18) and (19) and, again, Equation (29) have been used.
If we start now from the hypothesis that h′ and h′k − h′ F

k

F
are non-convective quantities, then the

decomposition Equation (16)1 follows as its consequence and of Equations (24)2 and (8).
Similarly, with the use also of Equation (27), we have:

GkA =
∂h′k

∂λIB
XA

B(u⃗) =

(
∂h′Ik

∂λIB
+ uk

∂h′

∂λIB

)
XA

B(u⃗) ;

−F
k

F
FA = −

(
F Ik

F I
+ uk

)
FA = −

(
F Ik

F I
+ uk

)
XA

B(u⃗)F
IB =

= −
(
F Ik

F I
F IB + uk

∂h′

∂λIB

)
XA

B(u⃗)

The sum of these two equations gives Equation (16)2.
Consequently, if we take the Lagrange multipliers as independent variables, the Galilean relativity

principle amounts simply in imposing that h′ and h′k − h′ F
k

F
are non-convective quantities, that is.

∂h′

∂uj = 0 and ∂h′Ik

∂uj = 0 with h′Ik deduced from Equation (27).
In other words, it is expressed by:

λDM
jD

A
∂h′

∂λA
= 0 , λDM

jD
A
∂h′k

∂λA
+ h′δkj = 0 (31)

where we have used Equation (30).
In the next section, we will find the general solution of Equations (20)1 and (23)2 in the independent

variables FA, while in Section 4, we will find the general solution of Equation (31) in the independent
variables λA.

Before ending this section, we note that in the earlier papers on Extended Thermodynamics, the
independent variables, vi and mA, were used, which are defined by Equation (16)1 with vi instead of ui,
F Ii = 0 and F IB = mB for B ̸= i.

Similarly, the dependent variables, mkA, were defined by Equation (16)2 with vi instead of ui and
F Ik = 0 and mkB instead of GIkB.

If we want to express the present results in terms of these other variables, we note that
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• Equations (8)1 with FA = XA
B(v⃗)m

B are still a system of implicit equations for the determination
of the Lagrange multipliers in terms of vi (velocity) and mA. After that, Equation (31) means that
the composite functions, h′ and h′k − vkh′, do not depend on vi.

• By substituting λA = λA(v
i , mB) into Equation (8)2, the resulting function, GkA, satisfy the

relation, GkA − Fk

F
FA = XA

B(v⃗)m
kB . In fact, we have:

∂

∂vj

[
XC

A(−v⃗)(GkA − vkFA)
]

1
= −M jC

BX
B
A(−v⃗)(GkA − vkFA) +

+XC
A(−v⃗)

[
−δkjFA +

(
∂GkA

∂λB
− vk

∂FA

∂λB

)
∂λB
∂vj

]
2
=

= −M jC
BX

B
A(−v⃗)

(
∂h′k

∂λA
− vk

∂h′

∂λA

)
+XC

A(−v⃗)
[
−δkj ∂h

′

∂λA
+

+

(
∂2h′k

∂λA∂λB
− vk

∂2h′

∂λA∂λB

)
∂λB
∂vj

]
3
=

= −XC
B(−v⃗)M jB

A

(
∂h′k

∂λA
− vk

∂h′

∂λA

)
+XC

A(−v⃗)
[
−δkj ∂h

′

∂λA
+

−
(

∂2h′k

∂λA∂λB
− vk

∂2h′

∂λA∂λB

)
M jE

BλE

]
=

= −XC
A(−v⃗)

[
M jA

E

(
∂h′k

∂λE
− vk

∂h′

∂λE

)
+

+δkj
∂h′

∂λA
+

(
∂2h′k

∂λA∂λB
− vk

∂2h′

∂λA∂λB

)
M jE

BλE

]
4
= 0

where, in the passage denoted with 1
=, we have used Equation (18), in the passage denoted with 2

=,
we have used Equation (8) and in the passage denoted with 3

=, we have used Equation (19) and also
Equation (30); this last one can be used, because it was deduced, taking into account only the fact that
Equation (28) and Equation (29) are invertible relations between λA and λIB, without worrying if these
are independent variables or not.

Finally, in the passage denoted with 4
=, we have taken into account the fact that the coefficient of −vk

inside the square brackets is Equation (31)1 written with E instead of A and, after that, derivated with
respect to λA; the remaining part is the derivative with respect to λA of Equation (31)2, written with E
instead of A and, after that, derived with respect to λA.

So, we have proven that the usual decomposition in terms of vi, mA ̸= mi and mkA is a consequence
of our Equation (31). In this way, the only unknowns are the functions, h′, h′k−h′vk andmkA, depending
on the variables, mA ̸= mi.

To find these unknowns, we can use Equation (8) to obtain λA as functions of FB, substitute them
in h′, h′k − h′vk and GkA and, after that, calculate this in vi = 0, so obtaining h′, h′k − h′vk and mkA.
However, this is equivalent to calculate Equation (8) in vi = 0, so that they become:

mA =
∂h′

∂λA
forA ̸= i , 0 =

∂h′

∂λi
, mkA =

∂h′k

∂λA
(32)

After that, we use Equation (32)1,2 to obtain λA and λi in terms of mA ̸= mi and substitute them in
Equation (32)3 and in the expressions of h′ and h′k, calculated in vi = 0. This is the essence of the
method explained in [37,38] and which was already been used in [39,40].
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3. The General Solution in Terms of the Moments, FA, as Independent Variables

We find now the general solution of Equations (20)1 and (23)2 in the independent variables, the
moments, FA. Let us begin with Equation (20)1.

To this end, let us call FA∗ the variables, FA, different from F and F j . With this notation,
Equation (20)1 becomes:

∂h

∂F j
F +

∂h

∂FA∗M
jA∗

BF
B = 0 (33)

It is not restrictive to consider h a composite function of:

H(F , F i , ηB
∗
) and of ηB

∗
= XB∗

A

(
−F

i

F

)
FA, that is (34)

h = H

[
F , F i , XA∗

A

(
−F

i

F

)
FA

]

By using this expression and Equation (18), the Equation (33) becomes:

F

{
∂H

∂F j
+

∂H

∂ηB∗

[
− 1

F
M jB∗

DX
D
A

(
−F

i

F

)
FA +XB∗

j

(
−F

i

F

)]}
+ (35)

+
∂H

∂ηB∗X
B∗

A∗

(
−F

i

F

)
M jA∗

BF
B = 0

However, for Equation (19), the first term in the square brackets of Equation (35) becomes:

− 1

F
M jB∗

DX
D
A

(
−F

i

F

)
FA = − 1

F
XB∗

D

(
−F

i

F

)
M jD

AF
A = (36)

= − 1

F

[
XB∗

0

(
−F

i

F

)
M j0

AF
A +XB∗

i1

(
−F

i

F

)
M ji1

AF
A+

+ XB∗
D∗

(
−F

i

F

)
M jD∗

AF
A

]

This allows one to rewrite Equation (35) as:

F
∂H

∂F j
+

∂H

∂ηB∗

[
−XB∗

0

(
−F

i

F

)
M j0

AF
A −XB∗

i1

(
−F

i

F

)
M ji1

AF
A + FXB∗

j

(
−F

i

F

)]
= 0

By using the expression of M jA
B reported after Equation (18), our condition becomes ∂H

∂F j = 0, that is,
H does not depend on F j . In other words, the general solution of Equation (20)1 is:

h = H

[
F , XA∗

A

(
−F

i

F

)
FA

]
. (37)

Let us find now the general solution of Equation (23)2.
To this end, it will be useful to know firstly the expression of h′ deduced from the first equality in

Equation (21) and from Equation (37), that is:

h′ = −h+
∂h

∂F
F +

∂h

∂F j
F j +

∂h

∂FB∗F
B∗

= −H
[
F , XA∗

A

(
−F

i

F

)
FA

]
+ (38)
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+F

∂H∂F +
∂H

∂ηA∗M
jA∗

BX
B
A

(
−F

i

F

)
FA 1

F 2
F j +

∂H

∂ηA∗X
A∗

0

(
−F

i

F

)+

+F j

− 1

F

∂H

∂ηA∗M
jA∗

BX
B
A

(
−F

i

F

)
FA +

∂H

∂ηA∗X
A∗

j

(
−F

i

F

)+

+FB∗ ∂H

∂ηA∗X
A∗

B∗

(
−F

i

F

)

where we have used Equation (18). Moreover, from Equation (34)2, we see that the underlined terms
contribute with ∂H

∂ηA
∗ ηA

∗ . Two other terms in Equation (38) are opposite, and there remains:

h′ = −H + F
∂H

∂F
+

∂H

∂ηA∗ η
A∗

(39)

In other words, also h′ has an expression like Equation (37), and this is not strange, because we have
already said that Equation (23)1 holds as a consequence of Equation (20)1; moreover, Equation (23)1 is
the same Equation (20)1, but with h′ instead of h.

Let us find now the general solution of Equation (23)2, that is ∂h′k

∂F j F + ∂h′k

∂FA∗M jA∗
BF

B − h′δkj = 0;
It is not restrictive to write

h′k = h′
F k

F
+H ′k

[
F , F i , XA∗

A

(
−F

i

F

)
FA

]
which allows one to rewrite our equation as:

F

{
h′

F
δkj +

∂H ′k

∂F j
+
∂H ′k

∂ηB∗

[
− 1

F
M jB∗

DX
D
A

(
−F

i

F

)
FA +XB∗

j

(
−F

i

F

)]}
+

+
∂H ′k

∂ηB∗X
B∗

A∗

(
−F

i

F

)
M jA∗

BF
B − h′δkj = 0

where we have taken into account that h′ satisfies Equation (23)1. By using Equation (36), there remains

F
∂H ′k

∂F j
+
∂H ′k

∂ηB∗

[
−XB∗

0

(
−F

i

F

)
M j0

AF
A −XB∗

i1

(
−F

i

F

)
M ji1

AF
A + FXB∗

j

(
−F

i

F

)]
= 0

which, by using the expression of M jA
B reported after Equation (18), becomes ∂H′k

∂F j = 0, that is, H ′k

does not depend on F j . In other words, the general solution of Equation (23)2 is:

h′k = h′
F k

F
+H ′k

[
F , XA∗

A

(
−F

i

F

)
FA

]
(40)

We note now that Equation (20) looks like Equation (23), but with (h, hk) instead of (h′, h′k); this allows
one to write the most general solution of Equation (20)2 like Equation (40), that is,

hk = h
F k

F
+Hk

[
F , XA∗

A

(
−F

i

F

)
FA

]
(41)

It is interesting to test our general solution in the particular case, N = 2 and M = 1, that is, the
14-moments case, where Equations (20)1 and (23)2 are:

F
∂h

∂F j
+ 2F i ∂h

∂F ji
+ (2F ij + F llδij)

∂h

∂F ill
+ 4F jll ∂h

∂F aabb
= 0 (42)

F
∂h′k

∂F j
+ 2F i ∂h

′k

∂F ji
+ (2F ij + F llδij)

∂h′k

∂F ill
+ 4F jll ∂h

′k

∂F aabb
− h′δkj = 0
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In this case, the variable Equation (34)2 is:

ηij = F ij − 1

F
F iF j (43)

ηill = F ill − 2

F
F ilFl −

1

F
F llF i +

2

F 2
F iF lFl

ηaabb = F aabb − 4

F
F aabFb +

2

F 2
F llF aFa +

4

F 2
F abFaFb −

3

F 3
(F aFa)

2

and it is easy to verify that,

h = H
(
F , ηij , ηill , ηaabb

)
(44)

h′k =
F k

F
H ′
(
F , ηij , ηill , ηaabb

)
+H ′k

(
F , ηij , ηill , ηaabb

)
in composite with Equation (43), are solutions of Equation (42).

4. The General Solution in Terms of the Lagrange Multipliers as Independent Variables

Let us now describe the general solution of Equation (31), using λA as independent variables. It holds
only in the subdomain with λ0 ̸= 0, like Equations (20)1 and (23)2 were solved in the previous section,
in the subdomain F ̸= 0. However, F is the mass density, so that it is obvious that it is different from
zero. The same thing cannot be said for λ0, which is zero, quite in equilibrium!

However, if we assume that λ1i in equilibrium is an infinitesimal of a higher order with respect to
λ0, then our solution will be acceptable also at equilibrium. This assumption has been already adopted
in [6,25] for the 14-moments model and was based on the requirement of the convexity of entropy, which,
in turns, assures the hyperbolicity of the resulting system.

Let us call λÃ the variables λA, different from λ0 and λ1i . With this notation, Equation (31) becomes:

λDM
jD

Ã

∂h′

∂λÃ
+ λDM

jD
i
∂h′

∂λ1i
= 0 , λDM

jD
Ã

∂h′k

∂λÃ
+ λDM

jD
i
∂h′k

∂λ1i
+ h′δkj = 0 (45)

where we have taken into account that M jD
A = 0 when A is the same index of λRj1···jR and R = 0; this

fact is evident from the description of M jD
A, reported above, after Equation (18).

It is now not restrictive to consider h′ a composite function of

H ′(µÃ , λ
1
i , λ

0) and of µB̃ = λAX
A
B̃

(
− 1

N +M + 1

λ1i
λ0

)
(46)

In this way, Equation (45)1, by using Equation (18), becomes:

λDM
jD

Ã

∂H ′

∂µB̃

XÃ
B̃

(
− 1

N +M + 1

λ1i
λ0

)
+ λDM

jD
il1l1···lN+M−1

2
lN+M−1

2

{
∂H ′

∂λ1i
+ (47)

+
∂H ′

∂µB̃

[
X

il1l1···lN+M−1
2

lN+M−1
2

B̃
+ λAM

iA
CX

C
B̃

(
− 1

N +M + 1

λ1i
λ0

)
· −1

N +M + 1

1

λ0

]}
= 0

where we have substituted M jD
i with M jD

il1l1···lN+M−1
2

lN+M−1
2

in order not to lose sight the fact that i is

the same index of λ1i .
Now, from the description of M jD

A reported above, after Equation (18), we have:

M jA
l1l1···lN+M+1

2
lN+M+1

2

= 0 , M jD
il1l1···lN+M−1

2
lN+M−1

2

= 0 forD ̸= l1l1 · · · lN+M+1
2

lN+M+1
2

,

M
jl1l1···lN+M+1

2
lN+M+1

2 il1l1···lN+M−1
2

lN+M−1
2

= (N +M + 1)δji (48)
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By using these equations, the relation, Equation (47), becomes:

λDM
jD

Ã

∂H ′

∂µB̃

XÃ
B̃ + λ0(N +M + 1)

∂H ′

∂λ1j
+ (49)

+λ0(N +M + 1)
∂H ′

∂µB̃

X
jl1l1···lN+M−1

2
lN+M−1

2

B̃
− λAM

jA
C X

C
B̃

∂H ′

∂µB̃

= 0

Now, we see that, from the first and last term, in this equation, there remains:

−λAM jA
i1l1l1···lN+M−1

2
lN+M−1

2

X
i1l1l1···lN+M−1

2
lN+M−1

2

B̃

∂H ′

∂µB̃

=

= −λ0(N +M + 1)X
jl1l1···lN+M−1

2
lN+M−1

2

B̃

∂H ′

∂µB̃

where we have used Equation (48)2,3. It is now evident that from Equation (49), it remains
λ0(N +M + 1)∂H

′

∂λ1
j
= 0, that is, H ′ does not depend on λ1j . In other words, the general solution of

Equation (31)1 is:

h′ = H ′
[
λAX

A
B̃

(
− 1

N +M + 1

λ1i
λ0

)
, λ0

]
(50)

It remains now to find the general solution of Equation (31)2. By defining H ′k from
h′k = H ′k − 1

N+M+1

λ1
k

λ0 h
′, it becomes:

λDM
jD

A
∂H ′k

∂λA
= 0 (51)

where we have used the fact that h′ already satisfies Equation (31)1 and taken into account Equation (48).
Now, Equation (51) looks like Equation (31)1, but with H ′k instead of h′; by operating in the same way,

we obtain thatH ′k is a composite function of λ0 and λAXA
B̃

(
− 1

N+M+1

λ1
i

λ0

)
. In other words, the general

solution of Equation (31)2 is:

h′k = − 1

N +M + 1

λ1k
λ0
h′ +H ′k

[
λAX

A
B̃

(
− 1

N +M + 1

λ1i
λ0

)
, λ0

]
(52)

Let us now see how the conditions (2) can be solved in terms of the functions, H ′ and H ′k, appearing in
Equations (50) and (52), respectively.

4.1. On the Condition Gk = F k

Let us consider now the condition (2)1, which means that the flux in the conservation law of mass
is the momentum density, that is, the independent variable in the subsequent conservation law of
momentum. By using Equation (8), it can be expressed as:

∂h′k

∂λ
=
∂h′

∂λk
(53)

However, we note that λ appears in µB̃, as expressed by Equation (46)2, only for B̃ = 0, that is, in µ̃;
moreover, we have:

∂µ̃

∂λ
= 1 (54)
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Similarly, λi appears in µB̃ only in µ̃ and µ̃j; moreover, we have:

∂µ̃

∂λi
= − 1

N +M + 1

λ1i
λ0
,

∂µ̃j

∂λ
= 0 ,

∂µ̃j

∂λi
= δij (55)

In order to prove these properties, we note that from Equation (16)1, it follows λAFA = λAX
A
B(u⃗)F

IB;
by comparing this with the definition (46)2 of µB̃, we find that µ̃ is the coefficient of F I in
λAF

A, calculated in ui = − 1
N+M+1

λ1
i

λ0 and µ̃j is the coefficient of F Ij in λAF
A, calculated in

the previous value of ui (in effect, this value of ui was introduced above when we considered h′ a
composite function of Equation (46). This was inspired by the fact that, from Equation (28)2 with
B = il1l1 · · · lN+M−1

2
lN+M−1

2
, this value ui corresponds to the condition λIil1l1···lN+M−1

2
lN+M−1

2

= 0,

exactly as for the corresponding passage used in terms of the moments.)
By using Equations (10)1 and (15)1, we find:

λAF
A =

N∑
n=0

λi1···in

n∑
s=0

Si1···in
j1···js (u⃗)F

Ij1···js + (56)

+
M∑

R=0

λRi1···iR

[
N∑
s=0

Y i1···iR
j1···js (u⃗)F

Ij1···js +
M∑

S=R

X i1···iR
j1···jS (u⃗)F

Ij1···jS
S

]

It follows that the coefficient of F I is:

N∑
n=0

λi1···inS
i1···in(u⃗) +

M∑
R=0

λRi1···iRY
i1···iR(u⃗)

and the coefficient of F Ij is:

N∑
n=1

λi1···inS
i1···in
j (u⃗) +

M∑
R=0

λRi1···iRY
i1···iR
j (u⃗)

where we have omitted the value for n = 0, because, in the other summation, the index, s, goes from 0
to n; consequently, for n = 0, there is not the value s = 1.

By using Equations (11) and (14), the coefficient of F I becomes:

N∑
n=0

λi1···inu
i1 · · · uin +

M∑
R=0

λRi1···iRu
i1 · · ·uiR(u2)

N+M+1
2

−R

while the coefficient of F Ij becomes:

N∑
n=1

nλi1···in−1ju
i1 · · · uin−1 +

+
M∑

R=0

[
RλRji2···iRu

i2 · · ·uiR(u2)
N+M+1

2
−R + (N +M + 1− 2R)uj λ

R
i1···iRu

i1 · · · uiR(u2)
N+M−1

2
−R
]

By calculating these expressions in ui = − 1
N+M+1

λ1
i

λ0 , we find µ̃ and µ̃j , respectively, from which
Equations (54) and (55) easily follow.

With the same passages, we find the other properties, that is, λ appears in µB̃ only for B̃ = 0 and λi
appears in µB̃ only for B̃ = 0 or B̃ = j.
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More precisely, µB̃ is the coefficient of F IB̃ in λAFA, calculated in ui = − 1
N+M+1

λ1
i

λ0 ; but, λ appears
in Equation (56) only for n = 0, so that the other summation may assume only the value, s = 0, giving
only the coefficient of F I and not of the others, F IB̃. Similarly, λi appears in Equation (56) only for
n = 1, so that the other summation may assume only the value s = 0 and s = 1, giving only the
coefficients of F I and F Ij and not of the others, F IB̃.

By using Equations (54) and (55), we can rewrite Equation (53) as:

∂h′k

∂µ̃
= − 1

N +M + 1

λ1k
λ0
∂h′

∂µ̃
+
∂h′

∂µ̃k
(57)

which, by using Equations (50) and (52) becomes:

∂H ′k

∂µ̃
=
∂H ′

∂µ̃k
(58)

This equation may be easily integrated; in fact, there exists surely a function, ψ, such that:

H ′ =
∂ψ

∂µ̃
(59)

After that, Equation (58) says that:

H ′k =
∂ψ

∂µ̃k
+ ψk (60)

where ψk is an arbitrary function that does not depend on µ̃ and arises from the integration with respect
to µ̃.

4.2. On the Eventual Condition Gki = Gik

This symmetry condition (2)2 has to be imposed only if there is a conservation of angular momentum,
differently from Equation (2)1, which holds surely, for physical reasons.

By using Equation (8), it becomes:

∂h′[k

∂λi]
= 0 (61)

Now, thanks to Equations (54) and (55), we have:

∂h′k

∂λi
= − 1

N +M + 1

∂h′k

∂µ̃

λ1i
λ0

+
∂h′k

∂µ̃i

which, by using Equation (57) becomes:

∂h′k

∂λi
=

1

(N +M + 1)2
∂h′

∂µ̃

λ1iλ
1
k

(λ0)2
− 1

N +M + 1

λ1i
λ0

∂h′

∂µ̃k

+
∂h′k

∂µ̃i

It follows that:

∂h′[k

∂λi]
= − 1

N +M + 1

1

λ0
∂h′

∂µ̃[k

λ1i] +
∂h′[k

∂µ̃i]

=

=
1

N +M + 1

1

λ0
∂h′

∂µ̃[i

λ1k] +
∂h′[k

∂µ̃i]

=
∂H ′[k

∂µ̃i]
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where in the last passage, Equation (52) has been used.
Consequently, the condition (61) becomes:

∂H ′[k

∂µ̃i]

= 0 (62)

This equation, together with Equation (58), is nothing else than the integrability conditions, which allow
one to obtain the scalar function, ψ, such that:

H ′ =
∂ψ

∂µ̃
, H ′k =

∂ψ

∂µ̃k

(63)

Vice versa, from Equation (63), the conditions (58) and (62) easily follow. We may conclude that the
four-potentials, h′ and h′k, are determined, except for an arbitrary scalar function, ψ, depending on λ0

and µB̃.
Let us now test the results of the present paper, by comparing their restriction to the 14-moments

model with those found, for this particular case and in a completely different way, in [5,6].

5. The Particular Case with 14-Moments

A comparison of the definition (46)2 of µB̃ with Equation (28)2 shows that µB̃ is equal to λI
B̃

calculated in ui = − 1
N+M+1

λ1
i

λ0 . Now, in Equation (16)2 of [5], we find the expressions of λIB (which in
that paper, were called mB) in the 14-moments case; so, they allow one to obtain:

µ̃ = λ− 1

4
λi

λill
λppqq

+
1

16
λij

λillλjll
(λppqq)2

− 3

256
(λppqq)

−3(λillλill)
2 (64)

µ̃i = λi −
1

2
λij

λjll
λppqq

+
1

8
(λppqq)

−2(λpllλpll)λill

µ̃rs = λrs −
1

8

λillλill
λppqq

δrs −
1

4
λrllλsll(λppqq)

−1

where, in the present notation, λill = λ1i and λppll = λ0.
Now, let us assume that h′ depends on λA as a composite function of λppll, µ̃, µ̃i and µ̃rs and of

Equation (64); if we substitute it in (4)1 of [5], we find that it is identically satisfied, as we expected for
what was said above in the present paper.
Similarly, if we assume that:

h′k = −1

4

λkll

λppll
h′ +H ′k (λppll , µ̃ , µ̃i , µ̃rs) (65)

with µ̃, µ̃i and µ̃rs given by Equation (64), we obtain that (4)2 of [5] is identically satisfied, as we
expected.

Regarding the expression of H ′k, we know from the representation theorems [7,8,10] that

H ′k = ψ1µ̃k + ψ2µ̃kiµ̃i + ψ3(µ̃
2)kiµ̃i (66)

with ψ1, ψ2 and ψ3 arbitrary scalar functions. Moreover, from the same representation theorems, we
know thatH ′ and ψi are arbitrary functions of λppqq, µ̃, µ̃ll, µ̃liµ̃li, µ̃liµ̃ijµ̃jl, µ̃iµ̃i, µ̃iµ̃ijµ̃j and µ̃iµ̃ilµ̃ljµ̃j .
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Now we expect that there is a correspondence between the solution found in the present paper and
that found in [5], with a completely different method. This is true; in fact, in [5] it has been found
that h′ is an arbitrary function of eight scalar variables X1-X8. By comparing their expressions (see
Equation 6 of [5]), with the solution here found, we see that the correspondence between the scalars is
the following one:

λ0 = λppqq = X1 (67)

µ̃ll = − 5

16

X2

X1

µ̃liµ̃li = −1

4

X3

X1

+
11

256

(
X2

X1

)2

µ̃liµ̃ijµ̃jl = −3

8

X4

X1

+
3

32

X3

X1

· X2

X1

− 29

84

(
X2

X1

)3

µ̃ =
1

16

X5

X1

+
1

32

X3

(X1)2
− 3

1024

(X2)
2

(X1)3

µ̃iµ̃i =
1

4

X6

X1

− 1

32

X5X2

(X1)2
+

1

8

X4

(X1)2
− 1

32

X3X2

(X1)3
+

1

512

(X2)
3

(X1)4

µ̃iµ̃ijµ̃j =
1

4

X7

X1

− 3

64

X2X6

(X1)2
− 1

4

[
1

8
X3 −

3

128

(X2)
2

X1

]
X5

(X1)2
− 5

128

X2X4

(X1)3
− 1

64

(X3)
2

(X1)3
+

+
1

128

X3(X2)
2

(X1)4
− 3

213
(X2)

4

(X1)5

µ̃iµ̃ilµ̃ljµ̃j =
1

4

X8

X1

− 1

16

X2X7

(X1)2
+
X6

X1

[
9

16 · 64

(
X2

X1

)2

− 1

32

X3

X1

]
+

+
X5

X1

{
3

128

X2

X1

[
1

2

X3

X1

− 3

64

(
X2

X1

)2
]
− 1

32

X4

X1

}
+

+
1

32

X4

(X1)2

[
−X3

X1

+
21

64

(
X2

X1

)2
]
+

1

128

(
X3

X1

)2 X2

(X1)2
+

− 1

64

15

128

X3

(X1)2

(
X2

X1

)3

+
9

217
1

X1

(
X2

X1

)5

In order to verify these relations, it suffices to substitute Equation (64) in the lefthand sides and
the expressions of X1-X8 (reported in Equation 7 of [5]) in the righthand sides; after that, we have
simply to note that identities are obtained, thanks also to the Hamilton-Cayley theorem (see also on
page 32 of [7]).

We note also that Equation (67) is invertible. In fact, the righthand side of Equation (67)i is a
linear function in the variable Xi; moreover, the coefficient of Xi and the term of zero degree in Xi

are functions, depending only on X1, X2 and · · · and Xi−1. This fact proves that Equation (67) is easily
invertible.

For what concerns h′k, let us analyze firstly the result of [5]. Equation 5 of this paper gives h′k and
h′ in terms of four arbitrary functions, H0, H1, H2 and H3, depending on the variables, X1-X8. By
deducing from (5)2 the function H0 in terms of h′, H1, H2 and H3 and by substituting it in (5)1, we find:

h′k = −1

4

λkll

λppll
h′ +H1

(
V k
1 − X2

8X1

V k
0

)
+H2

(
V k
2 − X3

8X1

V k
0

)
+H3

(
V k
3 − X4

8X1

V k
0

)
(68)



Entropy 2013, 15 1053

where we have used Equation (6)1 of [5].
After that, by using also Equations 6 and 7 of [5] and the Equation (64) of the present paper, we find

the following identities:

V k
1 − X2

8X1

V k
0 = 4X1µ̃

k (69)

V k
2 − X3

8X1

V k
0 = 4X1µ̃

kiµ̃i +
3

4
X2µ̃

k

V k
3 − X4

8X1

V k
0 = 4X1µ̃

klµ̃liµ̃i +X2µ̃
kiµ̃i +

[
1

2
X3 +

3

64
(X2)

2
]
µ̃k

by substituting these values in Equation (68), we find:

h′k +
1

4

λkll

λppll
h′ = ψ1µ̃k + ψ2µ̃kiµ̃i + ψ3µ̃

klµ̃liµ̃i (70)

with

ψ1 = 4X1H1 +
3

4
X2H2 +

[
1

2
X3 +

3

64
(X2)

2
]
H3

ψ2 = 4X1H2 +X2H3

ψ3 = 4X1H3

From the arbitrariness of H1, H2 and H3, that of ψ1, ψ2 and ψ3 follows, and vice versa.
We note now that Equation (70) is equivalent to Equations (65) and (66) of the present article. So,

we have found a complete proof that as the result of the present work, restricted to the 14 moments case,
is the same of that known in the literature and found with a completely different method.

6. Conclusions

We consider very interesting the results here obtained, because until now, nobody has found exact
solutions in Extended Thermodynamics with an arbitrary number of moments. This allows one to review
the procedures previously used and which were based on Taylor’s expansions. Moreover, it opens up the
possibility for many other further deepening considerations; for example, one could try to extend this
procedure to the case with additional symmetry conditions. We hope that this will be a great spur also
for other researchers.
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