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Abstract: Multiscale entropy (MSE) was recently developed to evaluate the complexity of 

time series over different time scales. Although the MSE algorithm has been successfully 

applied in a number of different fields, it encounters a problem in that the statistical 

reliability of the sample entropy (SampEn) of a coarse-grained series is reduced as a time 

scale factor is increased. Therefore, in this paper, the concept of a composite multiscale 

entropy (CMSE) is introduced to overcome this difficulty. Simulation results on both white 

noise and 1/f noise show that the CMSE provides higher entropy reliablity than the MSE 

approach for large time scale factors. On real data analysis, both the MSE and CMSE are 

applied to extract features from fault bearing vibration signals. Experimental results 

demonstrate that the proposed CMSE-based feature extractor provides higher separability 

than the MSE-based feature extractor. 
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1. Introduction 

Quantifying the amount of regularity for a time series is an essential task in understanding the 

behavior of a system. One of the most popular regularity measurements for a time series is the sample 

entropy (SampEn) [1] which is an unbiased estimator of the conditional probability that two similar 

sequences of m consecutive data points (m is the embedded dimension) will remain similar when one 

more consecutive point is included [2]. The SampEn characterizes complexity strictly on a time scale 

defined by the sampling procedure which is used to obtain the time series under evaluation. However, 

the long-term structures in the time series cannot be captured by SampEn. In regard to this 

disadvantage, Costa proposed the multiscale entropy (MSE) algorithm [3], which uses sample 

entropies (SampEns) of a time series at multiple scales to tackle this problem. The MSE has been 

successfully applied to different research fields in the past decades. These applications include the 

analyses of the human gait dynamics [2], heart rate variability [3,4], electroencephalogram [5], postural 

control [6], vibration of rotary machine [7,8], rainfall time series [9], time series of river flow [10], 

electroseismic time series [11], time series of traffic flow [12], social dynamics [13], chatter in the 

milling process [14], and vibrations of a vehicle [15], etc.. These works demonstrate the effectiveness 

of the MSE algorithm for the analysis of the complex time series. 

The conventional MSE algorithm consists of two steps: (1) a coarse-graining procedure is used to 

derive the representations of a system’s dynamics at different time scales; (2) the SampEn algorithm is 

used to quantify the regularity of a coarse-grained time series at each time scale factor. To obtain a 

reasonable entropy value by using SampEn, the time series length is suggested to be in the range of 

10m to 30m [16]. As reported in [2,5], in case of m = 2, the SampEn is significantly independent of the 

time series length when the number of data points is larger than 750. However, for a shorter time 

series, the variance of the entropy estimator grows very fast as the number of data points is reduced. In 

the MSE algorithm, for an N points time series, the length of the coarse-grained time series at a scale 

factor τ is equal to N /τ. The larger the scale factor is, the shorter the coarse-grained time series is. 

Therefore, the variance of the entropy of the coarse-grained series estimated by SampEn increases as a 

time scale factor increases. In many practical applications, the data length is often very short and the 

variance of estimated entropy values at large scale factors would become large. Large variance of 

estimated entropy values leads to the reduction of reliability in distinguishing time series generated by 

different systems. In order to reduce the variance of estimated entropy values at large scales, a 

composite multiscale entropy (CMSE) algorithm is proposed in this paper. The effectiveness of the 

CMSE algorithm is evaluated through two synthetic noise signals and a real vibration data set provided 

by Case Western Reserve University (CWRU) [17]. 

2. Methods 

2.1. Multiscale Entropy 

Essentially, the MSE is used to compute the corresponding SampEn over a sequence of scale 

factors. For an one-dimensional time series, },...,,{ 21 Nxxxx , the coarse-grained time series, 
)(y , 

can be constructed at a scale factor of τ, according to the following equation [3]: 
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As shown in Figure 1, the coarse-grained time series is divided into non-overlapping windows of 

length τ, and the data points inside each window are averaged. We then define the entropy 

measurement of each coarse-grained time series as the MSE value. In this paper, the SampEn [1] is 

used as the entropy measurement. The algorithm proposed in [18] is repeated here, and we refer to the 

algorithm as shown in Figure 2. In the whole study of this paper, we calculate MSE values from  

scale 1 to scale 20 (τ = 1 to 20), and the sample entropy of each coarse grained time series is calculated 

with m = 2 and r = 0.15σ [2], where σ denotes the standard deviation (SD) of the original time series. 

Figure 1. Schematic illustration of the coarse-grained procedure. Modified from reference [3]. 

 

Figure 2. Brute force method. Modified from reference [18]. 

 

Most of the entropy measurements are dependent on the length of time-series. Since the length of 

each coarse-grained time series is equal to that of the original time series divided by the scale factor, τ, 

the variance of entropy measurements grows as the length of coarse-grained time series is reduced. 

The estimation error of a conventional MSE algorithm would be very large at large scale factors. In the 

following section, the modified MSE algorithm, named composite multiscale entropy (CMSE), is 

proposed to overcome this drawback. 

For i = 1:N
{ 
 For j = i+1:N 
 { 
 if( |xi - xj| < r & |xi+1 - xj+1| < r )

{ 
 nn = nn+1 

if( |xi+2 - xj+2| < r )
 nd = nd+1 

} 
} 

} 
SampEn = -log(nd / nn) 



Entropy 2013, 15 1072 

 

 

2.2. Composite Multiscale Entropy 

As shown in Figure 3, there are two and three coarse-grained time series divided from the original 

time series for scale factors of 2 and 3 respectively. The kth coarse-grained time series for a scale 
factor of τ,  )(
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Figure 3. Schematic illustration of the CMSE procedure. 

 

 

In the conventional MSE algorithm, for each scale, the MSE is computed by only using the first 

coarse-grained time series, 
)(

1
y : 

 rmSampEnrmMSE ,,),,,( )(
1
 yx   (3) 

In the CMSE algorithm, at a scale factor of τ, the sample entropies of all coarse-grained time series 

are calculated and the CMSE value is defined as the means of τ entropy values. That is: 
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Figure 4 shows the flow charts of the MSE and CMSE algorithms for comparison. The Matlab code 

of CMSE is shown in Appendix A. 

Figure 4. Flow charts of MSE and CMSE algorithms. 

 

3. Comparative Study of MSE and CMSE 

To evaluate the effectiveness of the CMSE, two synthetic noise signals, white and 1/f noises, and a 

real vibration data set were applied in comparison with that of the MSE in this section. 

3.1. White Noise and 1/f Noise 

The SampEn for coarse-grained white noise time series is computed by [4]: 

SampEn = 
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where erf refers to the error function [4]. For 1/f noise, the analytic value of SampEn is 1.8 with  

N = 30,000 in all scales [4]. In order to further investigate the effect of different data lengths on the 

MSE and CMSE, we first test the MSE on simulated white noises with different data lengths.  

As shown in Figure 5a, for short time series, the estimated MSE values are significantly different from 

the analytic solutions. This significant error may reduce the reliability in distinguishing time series 
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generated by different systems. We then applied the MSE on simulated 1/f noises with different data 

lengths. As shown in Figure 5b, the variance of the entropy estimator increases with the reduced data 

lengths and difference between analytic solutions and numerical solutions existing in all scales.  

Figure 6a,b show the entropies of white noise and 1/f noise by applying CMSE, respectively. In 

comparison with the estimation by the MSE, the variance of the entropy estimator can be improved by 

the CMSE evidently. However, the over estimation due to the shortage of the data length still exists 

when CMSE is applied to the 1/f noise. 

Figure 5. MSE results of (a) white noise and (b) 1/f noise with different data lengths. 
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Figure 6. CMSE results of (a) white noise and (b) 1/f noise with different data lengths. 

 
(a) 

 
(b) 

The numerical results of white noise with two different data lengths (N = 2,000 and 10,000) are 

shown in Figure 7. The error bar at each scale indicates the SD of an entropy value which calculated 

100 independent noise signals. For a scale factor of one, the MSE value is equal to the CMSE value 

because the coarse-grained time series is the same as the original time series. In all cases, the means of 

the entropy values have no significant difference between the MSE and CMSE. However, the SDs of 

the entropy values between the MSE and CMSE are different. For a longer length of white noise (N = 10,000, 

Figure 7b), the SD of the CMSE is slightly less than that of the MSE. For a shorter length of white 

noise (N = 2,000, Figure 7a), at a large scale, the SD of the CMSE can be reduced greatly. For 

instance, in the case of white noise with 2,000 data points, the SD of the MSE at a scale factor of 20 is 
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0.1033 while the SD of the CMSE is only 0.0658. Figure 8a,b show the results of the MSE and CMSE 

applied to the 1/f noise with 2,000 and 10,000 data points, respectively. The result of 1/f noise is 

similar to that of white noise; the CMSE can reduce the SDs of estimations. 

Figure 7. MSE and CMSE results of white noise with data lengths (a) N = 2,000 and  

(b) N = 10,000. 

(a) (b) 

Figure 8. MSE and CMSE results of 1/f noise with data lengths (a) N = 2,000 and  

(b) N = 10,000 

(a) (b) 

Table 1 summarizes the SDs of the MSE and CMSE at different time scales. These results indicate 

that the entropy values calculated by the conventional MSE and CMSE algorithms are almost the 

same, but the CMSE can estimate entropy values more accurate than the MSE. This improvement is 

significant when the CMSE is utilized to analyze the time series with short data length. 
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Table 1. Standard deviations of the MSE and CMSE at different time scales. 

Data 

Length 
Signals Methods 

Scales 

1 3 5 7 9 11 13 15 17 19 20 

2,000 

white 

noise 

MSE 0.026 0.049 0.059 0.064 0.072 0.067 0.084 0.076 0.091 0.091 0.103 

CMSE 0.026 0.030 0.037 0.043 0.046 0.051 0.054 0.054 0.057 0.063 0.066 

1/f 

noise 

MSE 0.084 0.097 0.121 0.139 0.162 0.227 0.236 0.284 0.265 0.282 0.310 

CMSE 0.084 0.088 0.092 0.099 0.108 0.126 0.122 0.148 0.153 0.155 0.163 

10,000 

white 

noise 

MSE 0.007 0.014 0.019 0.025 0.028 0.030 0.032 0.035 0.038 0.035 0.035 

CMSE 0.007 0.010 0.015 0.018 0.020 0.021 0.023 0.025 0.025 0.027 0.028 

1/f 

noise 

MSE 0.069 0.069 0.070 0.073 0.072 0.071 0.078 0.074 0.086 0.085 0.080 

CMSE 0.069 0.068 0.068 0.067 0.069 0.069 0.068 0.069 0.072 0.072 0.070 

3.2. Real Vibration Data 

In order to validate the utility of the CMSE algorithm for real data, experimental analysis on 

bearing faults is carried out. All the bearing fault data used in this paper are obtained from the Case 

Western Reserve University (CWRU) Bearing Data Center [17]. The test stand is composed of a  

2-horsepower motor and a dynamometer, which are connected by a torque transducer. The test 

bearings using electro-discharge machining with fault diameters of 7, 14, and 21 mils (1 mil is one 

thousandth of an inch) are used to detect single point faults. Bearing conditions of the experiments 

include normal states, ball faults, inner race faults and outer race faults located at 3, 6, and 12 o’clock 

positions which are at 0, 270, and 90 on the front section diagram of the bearing, respectively. In 

other words, from the cross section diagram of the bearing, the 3 o’clock position is parallel to the 

direction of the load zone; 6 and 12 o’clock positions are perpendicular to the load zone. Vibration 

data are collected by accelerometers which are placed at the 12 o’clock position at both the drive end 

and fan end of the motor housing. Digital data are collected at a sampling rate of 48,000 samples per 

second for drive end bearing experiments. The motor speeds controlled by motor load are set to be 

1,730, 1,750, and 1,772 rpm. 

In the experiments, the vibration signals were divided into several non-overlapping segments with a 

specified data length, N = 2,000. Each non-overlapping segment was regarded as one sample in the 

validation process. The numbers of samples for each bearing condition are listed in Table 2. Each 

sample is a time series with 2,000 data points. We then calculated the MSE and CMSE values up to 

scale 20 for each sample. Therefore, the dimension of sample in the feature space is 20 in the 

following experiments. Partial measured acceleration signals of vibrations at the six different 

conditions are shown in Figure 9. The MSE and CMSE of bearing data in specific condition is shown 

in Figure 10. For each condition, the means of the entropy estimator obtained by the CMSE are very 

similar to those obtained by the MSE, while less SDs are achieved by the CMSE. This consists with 

the analysis results of synthetic noise signals. The collected data in Figure 10 are dependent on the 

neighbor states sampled in the experiments. 
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Table 2. Numbers of data sets are corresponding to different faulted classes, defective 

levels and rotation speeds. 

Shaft Speed / Defect Level 

Rotation Speed (rpm) 

1730 1750 1772 

Fault diameter (mils) 

Fault Class 7 14 21 7 14 21 7 14 21 

Normal state 243 242 242 

Ball 244 243 243 243 243 243 243 243 243 

Inner race fault 243 242 244 243 244 245 243 191 242 

Outer race fault (3) 243  242 243  243 242  245 

Outer race fault (6) 244 244 244 243 243 244 243 242 244 

Outer race fault (12) 242  243 241  243 241  243 

Figure 9. Measured acceleration signals of vibrations in the time domain of six different 

bearing conditions (a) normal state, ball fault and inner race fault; (b) outer race faults at 3, 

6, and 12 o’clock positions. 
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Figure 10. MSE and CMSE results on bearing vibration data (1,730 rpm, 7 mils).  

(a) Normal state. (b) Ball fault. (c) Inner race fault. (d) Outer race fault (3 o’clock 

position). (e) Outer race fault (6 o’clock position). (f) Outer race fault (12 o’clock position) 

(a) (b) 

(c) (d) 

(e) (f) 
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groups of samples. Assuming two groups with mean vectors 1s  and 2s , Mahalanobis distance is 

shown as the following equation [19]: 

)()( 21
1

21 ssCssd T    (6) 

The pooled variance-covariance matrix C in equation (6) is shown below [19]: 

)(
2

1
2211

21

CnCn
nn

C 


  (7)  

where in  is the number of samples of group i and iC  is the covariance matrix of group i. 

Table 3 shows Mahalanobis distances for six different distinguishing conditions. The motor speed 

was set at 1,730 rpm and the fault diameter was 7 mils. The faults are normal state (N), ball fault (B), 

inner race fault (I), outer race defects at 3, 6, and 12 o’clock positions (O3, O6, and O12). Larger 

Mahalanobis distance in the table represents the higher level of linear separability for two different 

groups [19]. Comparing N with B (N in fault class 1 and B in fault class 2 or N in fault class 2 and B in 

fault class 1), both values of the CMSE and MSE are high and the value of the CMSE is higher than 

that of MSE, indicating that the normal state can easily be distinguished from ball fault and the CMSE 

has the higher distinguishability. Therefore, it is obvious that the normal state can easily be 

distinguished from ball fault, inner race fault, and outer race faults located at 3 and 6 o’clock positions, 

but not easily distinguished from the outer race fault located at 12 o’clock position due to the smaller 

value in Table 3. The most indistinguishable conditions are (1) between ball fault and inner race fault 

and (2) between outer race faults located at 3 and 6 o’clock positions. In addition, in all cases, 

Mahalanobis distance of two different groups of features extracted by the CMSE algorithm is larger 

than that extracted by the MSE algorithm. Therefore, compared with the MSE, the CMSE as a feature 

extractor can have the higher distinguishability. 

3.4. Fault Diagnosis Using an Artificial Neural Network 

We built a fault diagnosis system based on a neural network and used the CMSE as a feature 

extractor contrasting with MSE. The aforementioned quantities in twenty scales were selected as the 

features for bearing fault diagnosis. The training of a neural network with bearing vibration data was 

performed by the MATLAB Neural Networks Toolbox V6.0.2. A three-layer backpropagation neural 

network was trained by the Levenberg–Marquardt algorithm [20]. The network had 20 nodes in the 

input and visible layers (each node corresponding to a scale of MSE and CMSE), 30 nodes in the 

hidden layer, and 4 or 6 nodes in the output layer dependence on how many fault conditions were 

considered. For training, a target mean square error of 0, a learning rate of 0.001, a minimum gradient 

of 10−10 and maximum iteration number of 1,000 were used. To improve generalization, the data sets 

were randomly divided by three parts: (1) training (50%), (2) validation (15%), and (3) testing (35%). 

The average accuracy of prediction for each experiment was quantified over 200 tests. 
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Table 3. Mahalanobis distances for six different distinguishing conditions. 

Fault 
Class 1 

Feature 
Extractor 

Fault class 2 

N B I O3 O6 O12 

N 
MSE 

 
25.200 25.200 20.044 25.484 5.538 

CMSE 25.898 28.069 21.614 26.115 6.992 

B 
MSE 25.200 

 
3.675 5.312 5.515 9.657 

CMSE 25.898 5.852 8.105 7.534 11.387 

I 
MSE 25.200 3.675 

 
7.128 7.560 12.883 

CMSE 28.069 5.852 8.672 9.652 16.965 

O3 
MSE 20.044 5.312 7.128 

 
5.934 9.303 

CMSE 21.614 8.105 8.672 6.605 13.239 

O6 
MSE 25.484 5.515 7.560 5.934 

 
9.624 

CMSE 26.115 7.534 9.652 6.605 12.139 

O12 
MSE 5.538 9.657 12.883 9.303 9.624 

 
CMSE 6.992 11.387 16.965 13.239 12.139 

In this paper, we conducted nine experiments with a single operation speed and a single fault 

diameter. Table 4 lists the diagnostic accuracy results using the MSE and CMSE of each experiment. 

The experiments with the fault diameter of 21 mils have lower diagnosis accuracy than others. 

However, in these indistinguishable cases, the improvement by using the CMSE as a feature extractor 

is more obvious. Therefore, it can be inferred that the accuracy of bearing fault diagnosis can be 

enhanced by the CMSE. Furthermore, although CMSE is only applied to the univariate time series, it 

also can be applied to multivariate time series [21]. The proposed CMSE algorithm is for SampEn in 

this research. It is also for permutation entropy while  the multiscale analysis is performed [22,23]. 

Table 4 Diagnostic accuracy results using MSE and CMSE. 

Fault 
Diameter / 

Feature 
Extractor 

Rotation Speed (rpm) 

1730 1750 1772 

7 14 21 7 14 21 7 14 21 

MSE 97.33% 98.81% 96.77% 99.05% 98.01% 95.65% 99.34% 96.67% 95.89% 

CMSE 99.29% 99.75% 98.26% 99.58% 99.86% 98.50% 99.91% 99.65% 98.42% 

5. Conclusions 

In this paper, the concept of CMSE is introduced for the analysis of the complexity of a time series. 

The proposed method presents better performance on short time series than the MSE. For the analysis 

of white noise and 1/f noise, simulation results show that the CMSE provides a more reliable 

estimation of entropy than the MSE. In addition, for the CMSE as the feature extractor of the bearing 

fault diagnosis system and the Mahalanobis distance used as a performance assessment, the simulation 

results show that the CMSE can enhance the linear distinguishability in comparison with the MSE. 

Experimental results also demonstrate that the proposed CMSE provides a higher accuracy of bearing fault 

diagnosis. 
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Appendix A. The Matlab Code for the Composite Multiscale Entropy Algorithm 

function E = CMSE(data,scale) 

r = 0.15*std(data);  

for i = 1:scale   % i:scale index 

    for j = 1:i   % j:croasegrain series index 

        buf = croasegrain(data(j:end),i); 

        E(i) = E(i)+ SampEn(buf,r)/i; 

    end 

end 

%Coarse Grain Procedure. See Equation (2)  
% iSig: input signal ; s : scale numbers ; oSig: output signal  
function oSig=CoarseGrain(iSig,s) 
N=length(iSig); %length of input signal 
for i=1:1:N/s 
    oSig(i)=mean(iSig((i-1)*s+1:i*s)); 

end 

%function to calculate sample entropy. See Algorithm 1 
function entropy = SampEn(data,r) 
l = length(data); 
Nn = 0; 
Nd = 0; 
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for i = 1:l-2 
    for j = i+1:l-2 
        if abs(data(i)-data(j))<r && abs(data(i+1)-data(j+1))<r 
            Nn = Nn+1; 
            if abs(data(i+2)-data(j+2))<r 
                Nd = Nd+1; 
            end 
        end 
    end 
end 
entropy = -log(Nd/Nn); 
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