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Abstract: Generally, the controller design should be performed to narrow the shape of the 

probability density function of the tracking error. A small information entropy value 

corresponds to a narrow distribution function, which means that the uncertainty of the 

related random variable is small. In this paper, information entropy is introduced in the field 

of control performance assessment (CPA). For the unknown time delay case, the minimum 

information entropy (MIE) benchmark is presented, and a MIE-based performance index is 

defined. For the known time delay case, a tight upper bound of MIE is derived and adopted 

as a performance benchmark to assess the stochastic control performance. Based on these, 

the control performance assessment procedures are developed for both the steady and the 

transient processes. Simulation tests and an industrial case study of a main steam pressure 

system of a 1,000MW power unit are utilized to verify the effectiveness of the proposed procedures. 

Keywords: MIE-based performance assessment; steady state performance assessment; 

transient performance assessment; main steam pressure system 

 

1. Introduction 

The performance of the control system has a direct impact on the security and the economy of an 

industrial process. However, about 66%–80% of the control systems cannot achieve the desired 
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performance [1]. Therefore, control performance assessment (CPA) is an urgent problem, and the 

relevant surveys will have wide application prospects. 

There are two research branches of CPA: the model-based CPA and the data-driven-based CPA. For 

the former branch: the Harris index was proposed first [2]. It was used in the SISO system first, and then 

was extended to the MIMO system [3]. Based on this index, the cascade system [4], the non-phase 

system [5], the traditional PID control system [6] and the predictive control system [7], etc., can be 

assessed accordingly. In addition, many other indexes were proposed based on variance, such as the 

Relative Variance Index [8], the General Minimum Variance [9]. For the latter branch Desborough and 

Harris [10] studied the data-based monitoring for SISO systems. McNabb and Qin [11] developed a 

covariance-based MIMO control monitoring method. Yu and Qin [12,13] extended data-driven 

covariance benchmark to performance diagnosis. 

Because the data-driven-based CPA does not require much process knowledge, it is easy to apply in 

practice. Furthermore, the information collection and management systems are general equipment in 

modern industrial production processes, so a vast amount of real operation data can be obtained. 

Applying these data to achieve CPA is both feasible and meaningful. 

For the data-driven-based CPA methods, the choice of the statistic index is an essential issue. 

Generally, the control system performance can be represented by the tracking error. Ideally, the 

controller design should be performed so that the shape of the probability density function (PDF) of the 

tracking error is as narrow as possible. This is simply because a narrow distribution function generally 

indicates that the uncertainty of the related random variable is small, which also corresponds to a small 

entropy value [14]. In this case, entropy, an important statistic, has natural advantages for characterizing 

the control stochastic performance. Unfortunately, entropy has not been used in CPA. 

The purpose of this paper is to propose an information-entropy-based CPA method with its advantage 

of generalized random performance description, and focuses on the selection of the Minimum- 

Information-Entropy (MIE) benchmark and the design of minimum information entropy index. The rest 

parts of this paper are organized as follows: Section 2 presents the minimum information entropy 

benchmark. Section 3 introduces a normalized minimum entropy index. Section 4 describes a procedure 

for performance assessment using the MIE index for both steady and transient states. Simulation 

comparisons are presented in Section 5, and a CPA test for a main steam pressure control system of a 

1,000MW power plant is shown in Section 6. The conclusions are given in Section 7. 

2. Minimum-Information-Entropy Benchmark 

2.1. Information Entropy 

The information entropy is a measure of the uncertainty associated with a random variable. It can 

characterize the control stochastic performance. Usually, the information entropy refers to the Shannon 

entropy, which is a unified probabilistic measure of the uncertainty quantification [15]. For a random 

variable x , the continuous-type entropy (or the differential entropy) H is defined as: 

H    (x)




 ln (x)dx  (1)

where ( )x  is the PDF of x . 
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2.2. MIE Benchmark 

Suppose a linear Gaussian process with time delay d is: 

yk  ai yki
i1

n

  bjukd j
j0

m

 k   (2)

where yk  is the process output, uk  is the control variable, ai  and bj  are the coefficients, the 

independent and identically distributed (i.i.d.) stochastic disturbance k  obeys Gaussian distribution 
2( , )N    with variance 2  and mean  , and its PDF is: 

2

2

1 ( )
( ) exp( )

2 2

x
x


 


   (3)

The MIE benchmark is deduced with the MIE optimal control in accordance with the following steps: 

Step 1: Obtain the recursive control law uk  with the MIE optimal control. 

The tracking error of the control system (2) is defined as: 

ekd  ykd  rkd  ai ykdi
i1

n

  bjuk j  b0
j1

m

 uk kd  rkd  f ( y,u,r,k )   (4)

where y is the process output vector collecting the immediate historical values, i.e. 

y  ( y
k
, y

k1
, y

k2
,),u is the control variable vector,e is the tracking error vector,r is the set-point 

vector. Letting Vk  ai yki
i1

n

  bjukd j
j1

m

  rk  and f 1( y,u,r, x)  x Vk  b0uk
, the PDF of the tracking error 

can be obtained from (4) as: 

 ekq
(Vk ,uk , x)    ( f 1( y,u,r,x))

df 1( y,u,r,x)

dx
 (5)

Then from (3), (4) and (5), the PDF of the tracking error becomes: 
2

0
2

( )1
( , , ) exp( )

2 2k d

k d k
e k d k

x V b u
V u x




 



  

    (6)

According to the information-entropy definition (1), the information entropy of the tracking error is:  

He    ed (Vkd ,uk , x)




 ln ed (Vkd ,uk ,x)dx  (7)

Then the objective of the MIE control is to find a control law uk
 
to minimize He , or to satisfy 

H
e
u

k
 0. According to [14], the recursive control law is deduced as: 

1
1

0

k d k d
k k

V V
u u

b
  




   (8)

Step 2: Obtain the PDF of the tracking error with the recursive control law uk.  

Equation (8) can be rewritten as: 

b0uk Vkd  b0uk1 Vk1d  c  (9)

where c is a design constant that should be designed as μ to make the mean of the tracking error equal to 0, 

the control output becomes: 

0

k d
k

c V
u

b


  (10)
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Step 3: Obtain the MIE benchmark. 

Substituting (10) into (6), we can obtain the PDF of the tracking error as: 
2

2

1
( , , ) exp( )

2 2k de k d k
x

V u x
  


  (11)

From (7) and (11), the MIE benchmark can be deduced as: 

min ln( 2 exp(1) )H    (12)

where exp(1) is Euler's number. 

Remark 1: During the delay-time, the controller with no delay-time compensation has no effect on the 

process output, so the system must achieve its steady state after the delay time. From (11), we can know 
that the steady-state tracking error se  obeys a Gaussian distribution. Then the steady-state MIE 

benchmark is ln( 2 exp(1) )  . 

2.3. Upper Bound of the MIE Benchmark 

Remark 2: The steady-state MIE benchmark of Remark 1 is obtained without using the time delay as 

a priori-knowledge. If the delay time is known, a tight upper bound of the MIE can be obtained. 

The process (2) can also be described as: 
1 1( ) ( )k k kA q y B q u     (13)

where A(q1) 1 a
1
q1  a

2
q2 a

n
qn

 and B(q1)  b
0
 b

1
q1  b

2
q2 b

m
qm

. 

Suppose the feedback control law is: 
1( )k ku C q y   (14)

From (13) and (14), we have: 

y
k
 [A(q1) B(q1)C(q1)]1

k
 f

i
i0



 
i
 (15)

where f
i
 (i=1,2,…) are constant coefficients. 

According to the minimum-variance theory [2,16], the relationship between the minimum variance 


mv
2  and the tracking-error variance of the stochastic disturbance  2  is:  

 2  f
i
2

i0

d1

  2  
mv
2  (16)

Then from (12) and (16), we obtained the upper bound of the MIE: 

min ln 2 exp(1) mvupper
H    (17)

2.4. Extension to Nonlinear Processes and Non-Gaussian Disturbance Case 

Remark 3: The MIE benchmark ln( 2 exp(1) )   is also valid for nonlinear processes with 

non-Gaussian disturbances. 

Here, we explain and prove the validity in the following two steps. 
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Step 1: Prove the MIE of a non-linear process is the disturbance information entropy. 

Generally, a nonlinear process can be described as an autoregressive-nonlinear moving average 

process with exogenous inputs: 

A (q1) yk  B (q1)q d g(uk ,uk1,uk2,)   k
 (18)

where d  is the time delay, A (q1) 1 a
1
q1  a

n
qn , B (q1)  b0  b1q

1  bmqm , k
 is a 

stochastic disturbance with variance 2  and probability distribution density function   , ( )g   is a 

causal nonlinear function. 
Denoting tv  as: 

v
t
 g(u

k
,u

k1
,u

k2
,)  (19)

Equation (19) can be rewritten as: 

1 0

n m

k i k i j k d j k
i j

y a y b v   
 

       (20)

Then the tracking error of the control system becomes: 

ekd  ykd  rkd  ai ykdi
i1

n

  bjvk j  b0
j1

m

 vk  kd  rkd  fn ( y,v,r, k )  (21)

The following equation is used to solve this MIE optimization problem: 
'

'
( , , )

ln ( , , ) 1 0k d

k d

e d ke
e d k

k k

V v xH
V v x dx

v v






 


        (22)

where Vk
'  ai yki

i1

n

  bjg(ukd j )
j1

m

  rk . Like reference [14], the control law is given by:
 

vk  g(uk ,uk1,uk2,) 
c V

kd

'

b0
 (23)

where c is a constant. With (21) and (23), we have fn
1  x Vkd

'  b0vk  x  c , the probability density 

function of the tracking error is: 

1
' 1 d ( , , , )

( , , ) ( ( , , , )) ( )
dk d k d

n
e k n

f x
V v x f x x c

x   
 


 

     
y v r

y v r  (24)

From the definition of information entropy (7), the MIE is obtained as: 

min ( ) ln ( )H x c x c dx  



        (25)

The stochastic disturbance information entropy is:
 

( ) ln ( )disturbanceH x x dx  



   (26)

and we can deduce: 

min ( ) ln ( ) ( ) ln ( ) disturbanceH x c x c dx x x dx H      
 

 
              (27)

Step 2: Prove the disturbance information entropy extremum is ln( 2 exp(1) )   
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The following work is to prove that the extremum of disturbanceH  is ln( 2 exp(1) )  , no matter what 

distribution the stochastic disturbance with variance 2  obeys. The variance 2  of the disturbance is 

defined as: 

2 2( )x x dx 



   (28)

All the probability density functions should meet: 

( ) 1x dx



   (29)

According to the definition of disturbanceH , and using the variational method, we have: 

0disturbanceH   (30)

Considering the constraints (28) and (29), the Lagrange function is defined as: 

2
1 2( ) ln ( ) ( ) ( )J x x x x x                (31)

With (30) and the Euler's equation 0J     , we can obtain: 

2
1 2ln ( ) 1 0x x        (32)

The solution of (33) is: 

   2
1 2( ) exp 1 expx x      (33)

Substituting (34) into the constraints (28) and (29), we have: 

 

2 2

1 2

1

2

2
exp 1

2







  

  


 (34)

Substituting (35) into (34), the probability distribution density function is: 

2

2

1
( ) exp

22

x
x 

    
 

 (35)

So, the disturbance entropy extremum is obtained as: 

ln( 2 exp(1) )disturance extremumH    (36)

It is equal to the MIE of linear process with Gaussian disturbance. 

3. MIE Performance Assessment Index 

For the entropy-based performance assessment, the MIE index   is defined as: 

exp( )

exp( )
min

act

H

H
   (37)

where Hact is the information entropy of the tracking error. 
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This MIE index is easily understandable, meaning clear and succinct. It compares the current 

information entropy of the tracking error with the information entropy under the MIE control. In the 

meaning of the MIE, the closer the index is to 1, the better the control performance is. 

The Hmin is a slack information entropy upper bound. If the delay is known as a prior-knowledge, a 
tight minimum information entropy upper bound min upper

H will be obtained. In this case, the MIE 

performance index is defined as: 

min upper

act

exp( )

exp( )upper

H

H
   (38)

Compared to the Harris index, the advantages of the new CPA index are as follows: 

(1)  If the upper bound of the MIE is mvln( 2 exp(1) )  , which is selected as the performance 

benchmark to assess the control performance, the new CPA index will have the similar 

computational complexity and assessment result with the Harris index. 

(2)  If the MIE is ln( 2 exp(1) )  , which is selected as the performance benchmark to assess the 

control performance, the delay need not be obtained as a prior knowledge. So, it is easier to be 

used than the Harris index in this case. 
(3)  The new CPA index can be used in non-linear processes and non-Gaussian disturbances case. 

3.1. Information Entropy Calculation 

Before calculating the MIE of the tracking error, the PDF should be calculated. 
The approximation of the tracking error PDF defined on [ , ]p q  can be represented as: 

1

( , ) ( ) ( )
n

i i
i

e u u S e  


   (39)

where ( )iS e  represents the ith basic function, ( )i u is the ith weight,   represents the approximation error. 

The weight ( )i u  estimation can be used as the least squares polynomial approximation, namely 

B-spline approximation [17]. Many similar parametric estimation methods can be used, and the 

difference among them is the selection of basic function. There are also nonparametric estimation 

methods to calculated the information entropy [18]. In addition, bias correction procedures to obtain 

accurate estimates of the information conveyed by spike trains can be used to calculate the  

information entropy [19,20]. 

3.2. Hmin Estimation 

From Remark 1, the MIE of the tracking error depends on the stochastic disturbance variance when 

the stochastic disturbance obeys Gaussian distribution, so the disturbance estimation, especially its 

variance, is needed. 

The estimation of the noise sequence is important for the MIE estimation. In general, the relationship 

between the tracking error and the stochastic disturbance is established. Then, by reversing the process, 

the stochastic disturbance can be viewed as the output of the filtering, whose input is the tracking error. 

The filtering can be chosen as a time-series modeling. If the residuals of the modeling are “white”, they 
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can be viewed as the estimated stochastic disturbance. Depending on the data, an AR, ARMA or Kalman 

filter can be used to estimate the white noise [21]. The estimation of white noise is known as “whitening”. 

After the stochastic disturbance variance is estimated, the minimum variance can be obtained by (16) 

with the known delay. In addition, there are also some other methods to estimate the minimum variance, 

such as the processes and disturbances completely identification method, the filtering and correlation 

analysis method [21], the recursive least squares method [22]. With the estimation of the minimum 

variance, the upper bound of the MIE can be obtained by (17). 

4. MIE Based CPA Procedure 

4.1. CPA under Steady State 

Actual performance assessment can be divided into two situations: 1) delay is unknown; 2) delay is 

known. The traditional CPA method cannot achieve the performance assessment in the first case. But, 

the MIE-based CPA can achieve the performance assessment in both cases. The MIE-based CPA 

method is given as follows: 

When the delay is unknown, the steps of the MIE-based CPA index estimating procedure under 

steady state are summarized as below: 

Step 1. Get the tracking error from the set-points and the process outputs. 

Step 2. Calculate the tracking error PDF γ from (40), which can be canceled when using the 

nonparametric information entropy estimation method. 
Step 3. Calculate the actual tracking error information entropy ac tH  from (1) and the PDF γ. 

Step 4. Estimate the stochastic disturbance k  by “whitening”. 

Step 5. Obtain the MIE Hmin  from (12). 

Step6. Get the MIE index η from (38). 

When delay is known, a tight MIE performance index can be obtained from (39). The steps of 

estimating the CPA index are different in Step 5 and Step 6. They should be changed to:  
Step 5. Calculate the MIE min upper

H from (17). 

Step 6. Obtain the MIE index upper from (39). 

4.2. Transient CPA 

In transient state, the actual tracking error contains the response of the stochastic disturbance and the 

response of the deterministic disturbance. The stochastic tracking error is gotten by the difference 

between the actual tracking error and the deterministic part of the tracking error. 

The deterministic part of the tracking error is estimated by trend extraction. An efficient method of 

trend extraction is based on local linear fitting [23]. Besides, many filters of trend extraction such as 

GLAS weighted moving average filters, Henderson weighted moving average filters are represented in [24]. 

There are also many smoothers, such as the Savitzky-Golay (SG) filter [25,26], Hodrick-Prescott 

smoothers [27], Loess smoother [28] and smoothing B-spline [29] to be adopted to achieve trend extraction. 

The CPA procedure for transient state is shown in Figure 1. The steps are summarized as below: 

Step1: Estimate the deterministic tracking error by trend extraction. 
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Step2: Estimate the stochastic tracking error by the actual tracking error minus the deterministic 

tracking error. 

Step3: Using the stochastic tracking error, the CPA under steady state method is selected to calculate 

the performance index. 
From the above steps, the CPA under steady state is a special case of the transient CPA . For the real 

industrial stochastic control performance assessment, the CPA under transient state method can be 

utilized without indentifying the system state (steady state or transient state). In addition, there is a basic 

assumption that the disturbance obeys linear Gaussian distribution in the MIE based CPA. Though the 

disturbance in the industry environment is non-Gaussian, the method here is valid. The reason is that the 

performance benchmark ln( 2 exp(1) )   or mvln( 2 exp(1) )   is still an ideal information entropy 

benchmark with the non-Gaussian disturbance. 

Figure 1. The procedure of the transient CPA. 

 

5. Case Study 

5.1. Case 1: CPA under Steady State 

In this section, a simple example is presented to validate the effectiveness of the MIE-based CPA 

under steady state. Consider a SISO process: 

3

1 1

0.08 1

(1 0.92 ) (1 0.92 )k k t

q
y u

q q




  
 

 (40)

Figure 2. (a)The tracking error; (b) the PDF. 
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It is controlled by a PI controller 
1

(1 )c
i

k
s

  with 3.33ck   and 6.94i  . The stochastic 

disturbance k  obeys Gaussian distribution (0, 0.02)N . The sample time is 1s. The tracking error and 

the PDF are shown in Figure 2. In the PDF sub-figure, the two PDFs (blue line and green line) 

correspond to two performance benchmarks (the MIE benchmark and the upper bound of the MIE 

benchmark). Performance assessment is a process to measure the distance between the benchmark PDF 

and the tracking error PDF. Through entropy, this distance can be given to achieve CPA. The upper 

bound of the MIE benchmark is equal to the minimum variance benchmark. It also can be obtained from 

Table 1 by the two performance indexes. The MIE-based CPA procedure under steady state is utilized to 

achieve the CPA. Using the nonparametric estimation method, the actual information entropy is 

calculated as 0.01385. The calculation result is shown in Table 1. From this table, the MIE based CPA 

procedure under steady state is validate to be an effective CPA method. Using the MIE benchmark, the 

effective CPA can be achieved without using delay. 

Table 1. CPA results comparison (Actual Entropy is 0.01385, variance is 0.0642). 

Method 
Benchmark Performance Index 

Name Value Name Value 

MIE based CPA (Time delay is known) Upper bound of MIE -0.5602 MIE index 0.5632

MIE based CPA (Time delay is unknown) MIE -0.493 MIE index 0.6024

nimum-variance-based CPA Minimum variance 0.0362 Harris index 0.5639

5.2. Case 2: CPA under Transient State 

Several simulation examples [30,31], shown in Table 2, are used to verify the effectiveness of the 

transient CPA method. The disturbance k  of all examples is a white noise with zero mean and 

variance 0.2. With the MIE CPA procedure, the performance of all the examples is assessed. 

Generally, for a given control system, stochastic performance assessment results should be the same, 

no matter it is obtained from the steady-state data or the transient data. To test the effectiveness of the 

transient CPA procedure, the MIE-based transient CPA results of the proposed method are compared 

with the MIE-based CPA under steady-state results. Comparison results are shown in Figures 3, 4 and 5. By 

comparison, absolute error (between transient CPA and steady-state CPA) is at the level of 10−2 in 

Figure 5, so the transient CPA results have little difference with the steady-state CPA results. It indicates 

the effectiveness of the transient CPA procedure. For example 2, the actual information entropy with 

different states is different from each other in Figure 3, and the upper bound of the MIE is also different 

under different states in Figure 4. Although different calculation processes with different states data, the 

transient CPA results have little difference from the steady-state CPA results in Figure 5. It indicates the 

effectiveness of the transient CPA procedure. From any other example, the same conclusion can be obtained. 
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Table 2. Simulation Examples. 
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Figure 3. Comparison of the entropy estimations of the tracking error. 
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Figure 4. Comparison of upper bound of the MIE. 
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Figure 5. Comparison of the MIE index.  
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5.3. Case3: CPA for Nonlinear Non-Gaussian Case 

In this section, a nonlinear case is provided to demonstrate the methodology outlined in this paper. 

Consider a nonlinear system, which can be represented by a second-order Volterra series as: 
2 2 2

3 4 5 3 3 4 4 5 3 50.2 0.3 0.8 0.8 0.7 0.5 0.5t t t t t t t t t t t ty u u u u u u u u u u                    

A proportional integral (PI) controller 
1

1

0.3 0.2

1t t

q
u e

q






 


 is used for different disturbance 

distributions (Weibull distribution, Beta distribution and Gaussian distribution). The comparison of the 

CPA results is shown in Table 3. The traditional variance-based CPA method is used when the 
disturbance t  obeys Gaussian distribution. According to the variance-based CPA method, the Harris 

index is 0.8023 which indicates the control system has good stochastic performance. If the t  obeys 

non-Gaussian distribution, the traditional variance-based method cannot be utilized, but the 

entropy-based CPA method can be used to achieve performance assessment. For a Weibull distribution 

and Beta distribution, the entropy-based CPA results also represent good stochastic performance. For a 

given control system, the CPA results with different disturbances should be consistent. From the MIE 

index values and the Harris index value in Table 3, similar CPA results can be obtained. This indicates 

the effectiveness of the entropy-based CPA method for nonlinear process and non-Gaussian 

disturbance. 

Table 3. CPA results comparison of nonlinear non-Gaussian case. 

Method Item 

Disturbution of Disturbance t  

Gaussian Distribution 

with Mean 0 and 

Variance 0.1 

 Weibull 

Distribution with 

A=0.6 B=2 

Beta Distribution 

with 3   

Entropy-based 

Actual Entropy 
 

0.3493 0.3164 -0.3655 
Benchmark (MIE) 0.1498 0.1484 -0.1566 

MIE index 0.8191 0.8453 0.8115 

Variance-based 

Actual variance 0.1239 - - 

Minimum variance 0.0994 - - 
Harris index 0.8023 ‐ ‐ 

6. MIE-Based CPA of an Industrial Example 

In order to illustrate the above performance assessment procedure, an industrial data set from the 

main steam pressure control system of a 1,000MW power unit is used. This control system is an 

important part of the boiled-turbine system (BTS) [32,33]. The fuel-pressure path is considerably slower 

than the valve-power path (especially the power of the high-pressure turbine) and the two paths are 

coupled [34]. As a result, main steam pressure fluctuation is common. The main steam pressure is an 

important embodiment of steam quality. So its stochastic performance assessment is important for BTS. 
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Figure 6. Estimation of the stochastic disturbance. 

(a) The main steam pressure and its set-point. (b) The tracking error. 

(c) The estimated stochastic disturbance. 
(d) The PDF of the estimated stochastic 

disturbance. 

The sample data was acquired from 21:00 on March 5th to 2:00 on March 6th, 2011. Sampling 

interval is 3 s. There are 6,001 samples. The main steam pressure and its set-point are given in Figure 6a. 

The tracking error is shown in Figure 6b. The actual information entropy is calculated as Hact ≈ �3.509 
by a non-parameter estimator [18]. The trend of the tracking error is obtained by Hodrick-Prescott smoother [27]. 

Then, the stochastic error is estimated and shown in Figure 6c. The tracking error is fit and adequately 

modeled by AR (30) model [21]. The variance of the stochastic disturbance is 52.2756 10  by 

“whitening”. The disturbance distribution is plotted in Figure 6(d). From Figure 6d, we can find the 

disturbance obeys non-Gaussian distribution, so the entropy-based transient CPA should be chosen. 

With (12), the MIE is −3.926. Then, the stochastic performance index is obtained as 0.6589 by (40). 

Because the disturbance obeys non-Gaussian distribution, strictly speaking, the variance-based CPA 

method can be used. But, the disturbance distribution is approximately symmetrical, the 

minimum-variance-based CPA result can be given for reference. Using the minimum variance 

benchmark (the delay is 34 sample intervals) with the estimated stochastic error, the Harris index is 0.6612. 
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The two performance assessment results are similar, with the two methods. When the CAP uses the 

minimum variance index, the delay as a priori is necessary to be estimated. However, the delay is not the 

necessary priori-knowledge for the MIE-based CPA. This is a significant advantage. It will make the 

MIE index being widely applied in the actual industrial process by the engineers. 

7. Conclusions 

In this paper, a MIE-based CPA method is developed. The concept of information entropy is 

introduced to CPA. The MIE benchmark is presented by the MIE optimal control in a linear process 

and Gaussian disturbance. Then this benchmark is extended to nonlinear processes and non-Gaussian 

disturbance cases. If the delay is unknown, the MIE performance index is defined. If the time delay is 

known, a tight upper bound of MIE is used as a performance benchmark to assess the stochastic 

control performance. For engineering applications, a formal procedure is presented based on this 

performance index. This procedure only utilizes routine operating data no matter whether it is steady 

state data or transient data. The effectiveness of the CPA procedures is tested by many simulation 

examples. To show that this CPA method can be easily used in the real industrial system, the main 

steam pressure system in a 1,000MW power unit is used to achieve CPA. Of course, the extension of 

the MIE performance assessment to MIMO systems still has much work to do. Utilizing the concept of 

the information entropy, evaluating the performance of a specific controller or a control structure, such 

as a PID controller, the predictive controller, the cascade control structure, etc. is also a meaningful task. 
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