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Abstract: Boundary line models for N2O emissions from agricultural soils provide a means 

of estimating emissions within defined ranges. Boundary line models partition a two-

dimensional region of parameter space into sub-regions by means of thresholds based on 

relationships between N2O emissions and explanatory variables, typically using soil data 

available from laboratory or field studies. Such models are intermediate in complexity 

between the use of IPCC emission factors and complex process-based models. Model 

calibration involves characterizing the extent to which observed data are correctly forecast. 

Writing the numerical results from graphical two-threshold boundary line models as 3×3 

prediction-realization tables facilitates calculation of expected mutual information, a 

measure of the amount of information about the observations contained in the forecasts. 

Whereas mutual information characterizes the performance of a forecaster averaged over all 

forecast categories, specific information and relative entropy both characterize aspects of the 

amount of information contained in particular forecasts. We calculate and interpret these 

information quantities for experimental N2O emissions data.  

Keywords: nitrous oxide; emissions; boundary line model; agricultural soils; expected 

mutual information; normalized mutual information; specific information; relative entropy  
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1. Introduction 

Over the last few decades, the atmospheric concentration of nitrous oxide (N2O) has been 

increasing. Agricultural soils are a significant source of N2O emissions [1]. Under the Kyoto Protocol, 

over 170 nations agreed to develop national inventories of anthropogenic emissions. These are 

calculated using the IPCC emission factors [2], which assume that the annual N2O emissions from 

agricultural soils are proportional to the N applied, and which are mostly based on emission factors 

developed by Bouwman [3]. This is the simplest approach to calculating emissions.  
However, the rate of N2O emissions is affected by soil characteristics and climate [4-8], soil 

management [1,4,9] and the crops planted [4,10,11]. Thus, in order to incorporate these factors into 

estimates of N2O emissions, more complex process-based models have been developed. These include 

DAYCENT [12] and DNDC [13,14]. Although it is recognized that they have the ability to test 

different management and mitigation options, these models require large amounts of input data and 

need to be calibrated for different agricultural systems.  

The use of empirical models provides an approach to estimating N2O emissions intermediate in 

complexity between the IPCC emission factor approach and process-based models [15]. The idea is to 

use soil and climate data to estimate the corresponding level of N2O emissions [15]. Conen et al. [15] 

and Wang and Dalal [16] have used a boundary line model approach, based on water filled pore space, 

soil temperature and soil mineral N, to determine levels of N2O emissions from agricultural soils. 

Calibration for different agricultural systems is still required, but acquisition of the relevant input data 

is simpler than for process-based models. 

In writing for this special issue of Entropy on Applications of Information Theory in the 

Geosciences, our emphasis is on practical applications. That is to say, we are interested in applications 

that relate to the analysis of models and observed data, and we are writing for colleagues in the 

experimental geosciences who, it is to be hoped, are attracted to this special issue by the prospect of 

finding, then assimilating and utilizing such applications. In particular, we will use an information 

theoretic analysis to address the properties of boundary line model forecasts of N2O emissions from 

agricultural soils.  

2. Models and Data 

2.1. Boundary Line Models 

The response variable of interest here is N2O emission (or ‘flux’, g N2O-N ha−1 day−1). For the kind 

of boundary line model under consideration here, a two-dimensional region of parameter space is 

delimited by appropriate ranges (considering the observed data) of two continuous explanatory 

variables, soil water-filled pore space (WFPS, %) and soil temperature (T, °C). The parameter space is 

partitioned into sub-regions by means of thresholds based on relationships between N2O flux and the 

explanatory variables; two such thresholds partition the parameter space into three sub-regions of 

forecast N2O flux, denoted ‘low’, ‘medium’ and ‘high’.  

For an introductory example, Figure 1 shows observed data from an intensive study of N2O 

emissions from sandy loam grassland soils at a site in Dumfries (SW Scotland) between March 2011 

and March 2012, in which inorganic N fertilizer (ammonium nitrate and urea) treatments at a range of 
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application rates (0, 80, 160, 240, 320, 400 kg/ha N) and additional 320 kg/ha N plus the nitrification 

inhibitor DCD were used. In Figure 1, the observed data are superimposed on the partitioned parameter 

space using the boundary lines for forecast N2O emissions as calculated in Conen et al. [15]. In this 

case, although the majority of the observed low emissions (<10 g N2O-N ha−1 day−1) were correctly 

forecast, only a minority of observed medium emissions (10-100 g N2O-N ha−1 day−1) and no observed 

high emissions (>100 g N2O-N ha−1 day−1) were correctly forecast. Here, these data serve only to make 

the point that it is important to be able to characterize the extent to which observed levels of N2O flux 

are correctly or incorrectly forecast by a boundary line model. Although these data are not analyzed 

further, we will discuss in Section 5 how other data sets present similar issues in terms of estimating 

N2O emissions from agricultural soils within defined ranges.  

Figure 1. The parameter space delimited by observed ranges of water filled pore space 
(WFPS, %) and soil temperature (T, °C) in 2011-2012 at a grassland site in Dumfries, SW 

Scotland, receiving inorganic fertilizer, is the basis for a boundary line model. Observed 

N2O emissions were categorized as ‘low’ (<10 g N2O-N ha−1 day−1), ‘medium’ (10-100 g 

N2O-N ha−1 day−1) or ‘high’ (>100 g N2O-N ha−1 day−1), as in Conen et al. [15]. There were 

715 ‘low’ observations, 322 ‘medium’ observations and 19 ‘high’ observations (N = 1056), 

resulting in many overlapping data points on the graph. The boundary lines between forecast 

emission categories are WFPS(%) + 2·T(°C) = 90 (low-medium) and WFPS(%) + 2·T(°C) = 

105 (medium-high), as described in Conen et al. [15]. 
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At this stage, before discussing the details of any of the information quantities that may be used to 

analyze forecasts of N2O emissions, we note that the boundary line approach (as described in [15,16]) 

is intrinsically suitable for such analysis. For example, Tribus and McIrvine [17] note: “In modern 

information theory, probabilities are treated as a numerical encoding of a state of knowledge. One’s 

knowledge about a particular question can be represented by the assignment of a certain probability 

(denoted p) to the various conceivable answers to the question.” Thus the boundary line approach, as 

described, starts by characterizing the conceivable answers to the question of the magnitude of N2O 

flux (‘low’, ‘medium’ and ‘high’). Note that this specification restricts our attention to discrete 

distributions of probabilities.  

2.2. Data 

The data analyzed in this study come from an assessment of the boundary line approach for 

forecasting N2O emission ranges from Australian agricultural soils [16]. Observed emissions were 

categorized as ‘low’ (<16 g N2O-N ha−1 day−1), ‘medium’ (16-160 g N2O-N ha−1 day−1) or ‘high’ 

(>160 g N2O-N ha−1 day−1). Boundary lines were calculated separately for pasture and sugarcane soils 

(Table 1) and for cereal cropping soils (Table 2, see also Figure 2 in [16]). For a boundary line plot in 

which two thresholds partition the parameter space into three sub-regions of forecast N2O flux, 

denoted ‘low’, ‘medium’ and ‘high’, we can present the data in a 3×3 prediction-realization table in 

which the columns correspond to the observations, the rows to the forecasts. Theil [18] uses this 

terminology to refer both to the cross-tabulated frequencies of observations and forecasts, and to the 

estimated probabilities obtained by normalization of the frequencies. Here we present the normalized 

version of the data (Tables 1 and 2, based on Figure 2 in [16]).  

We adopt the following notation for Table 1 and subsequently. The observed categories are denoted 

oj (j=1,2,3) for ‘low’, ‘medium’ and ‘high’ N2O flux categories, respectively. The bottom row of the 

table contains the distribution Pr(O). The forecast categories are denoted fi (i=1,2,3) for ‘low’, 

‘medium’ and ‘high’ N2O flux categories, respectively. The right-hand margin of the table contains the 

distribution Pr(F). The body of the table contains the joint probabilities Pr(oj ∩ fi). All values (here and 

throughout) are rounded to 4 d.p. 

Table 1. Prediction-realization table based on N=271 observations of N2O flux for pasture 

and sugarcane soils from Figure 2 of [16]. The boundary lines between forecast emission 

categories were WFPS(%)+0.71·T(°C) = 63 (low-medium) and WFPS(%)+0.71·T(°C) = 75 

(medium-high). 

Forecast 
category, fi 

Observed category, oj Row sums 
1. Low 2. Medium 3. High 

1.  Low 0.2841 0.0554 0.0074 0.3469 
2.  Medium 0.1181 0.1513 0.0959 0.3653 
3.  High 0.0480 0.0812 0.1587 0.2878 
Column sums 0.4502 0.2878 0.2620 1.0000 
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3. Analysis of Information Properties  

Shannon’s two papers, collected together as [19], represent the beginning of modern information 

theory; Cover and Thomas’s text [20] provides a comprehensive overview of half a century of 

progress. In the present context, where we are more concerned with applications of information theory 

relating to the analysis of models and data than with the mathematical theory of communications, 

readers may also find useful background in Attneave [21], Theil [18] or Hughes [22].  

3.1. Information Content 

We write p (=Pr(E), 0 ≤ Pr(E) ≤ 1) to denote a generic probability of an event E. Then h(p) = 

log(1/p) = −log(p) is the information content of a message that tells us, without error, that E has 

occurred (thus, in the present context, such a message constitutes a perfect forecast). If p is small, the 

information content of this message is large, and vice versa. If p=0 (the event is impossible) and you 

tell us that E has definitely occurred, the information content of this message is indefinitely large; if 

p=1 (the event is certain) and you tell us that E has definitely occurred, the information content of this 

message is zero. The base of the logarithm serves to define the units of information. In the 

mathematical theory of communications, logarithms base 2 are often used and the unit of information 

is the bit. Here we will use natural logarithms for calculations, and refer to the unit of information as 

the nit [23]. We will write log in places where the reference is generic.  
Now consider the observed N2O flux categories o1 (‘low’), o2 (‘medium’) and o3 (‘high’), with 

corresponding probabilities Pr(o1), Pr(o2) and Pr(o3),     .3,2,1,0Pr,1Pr  joo jj j We cannot 

calculate the information content   joh Pr  until the message is received, because the message ‘oj 

occurred’ may refer to any one of o1, o2 or o3. We can, however, calculate expected information 

content before the message is received. This quantity, often referred to as the entropy, is the weighted 

average of the information contents of the possible messages. Since the message ‘oj occurred’ is 

received with probability Pr(oj), the expected information content, denoted H(O), is: 

We note that H(O) ≥ 0 and take Pr(oj)log(Pr(oj)) = 0 if Pr(oj) = 0, since   .0loglim
0




xx
x

 If any 

Pr(oj) = 1, H(O) = 0. This is reasonable since we expect nothing from a forecast if we are already 

certain of the actual outcome. H(O) has its maximum value when all the Pr(oj) have the same value. 

This is also reasonable, since a message that tells us what actually happened will have a larger 

information content when all outcomes are equally probable than when some outcomes are more 

probable than others. Providing an everyday-language metaphor by means of which to characterize 

entropy is no easy task. Tribus and McIrvine [17] give a brief account of Shannon’s own difficulty in 

this respect. In the present context, entropy can be thought of as characterizing either information or 

uncertainty, depending on our point of view. At the outset, we know that just one of a number of 

events will occur, and the corresponding probabilities of the events. Entropy quantifies how much 

information we will obtain, on average, from a message that tells us what actually happened. 

      jj j ooOH PrlogPr  (1) 
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Alternatively, entropy characterizes the extent of our uncertainty prior to receipt of the message that 

tells us what happened. 

Now, similarly, we can calculate the entropy of the distribution of forecast N2O flux probabilities: 

and the entropy of the joint probability distribution: 

Working in natural logarithms, we calculate from Table 1 [using Equations (1), (2) and (3), 

respectively] the expected information contents in nits as follows: H(O) = 1.0687, H(F) = 1.0936 and 

H(O,F) = 1.9585.  

3.2. Expected Mutual Information 

In the unfortunate situation that the forecasts were independent of the observations, we would have 

H(O,F) = H(O) + H(F). When the joint entropy is smaller than the sum of the individual entropies, this 

indicates association between forecasts and observations. Then H(O,F) = H(O) + H(F) – IM(O,F), 

where the expected mutual information, denoted IM(O,F), is a measure of the association. To calculate 

IM(O,F) directly: 

and IM (O,F) ≥ 0, with equality only if O and F are independent. Working in natural logarithms, we 

calculate from Table 1 [using Equation (4)] the expected mutual information in nits: IM(O,F) = 0.2038, 

and note also that IM(O,F) =  H(O) + H(F) – H(O,F).  

3.2.1. The G2-test 

The correspondence between expected mutual information as estimated above and the χ2 statistic 

was noted at least as far back as Attneave [21]. Essentially, G2 = 2·N·IM(O,F) ≈ χ2 (in which N is the 

total number of observations) (see, e.g., [24]). 

3.2.2. Conditional Entropy 

Returning to our prediction-realization table (Table 1), with probabilities Pr(oj) and Pr(fi) in the 

margins and Pr(oj ∩ fi) in the body of the table, we note Pr(oj ∩ fi) = Pr(fi|oj)Pr(oj) = Pr(oj|fi)Pr(fi) 

(Bayes’ theorem). Recalling Equation (4), we can now write: 

and then after some rearrangement: 

      ii i ffFH PrlogPr  (2) 

       
i ijj ij fofoFOH  PrlogPr,  (3) 
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in which we recognize the first term on the right-hand side as the entropy H(O). The second term is the 

conditional entropy H(O|F). Thus we note IM(O,F) = H(O) – H(O|F). Numerically, we can calculate 

     
j ijijij fofofo  PrPrPr . For completeness, we can also write: 

in which we recognize the first term on the right-hand side as the entropy H(F). The second term is the 

conditional entropy H(F|O). Thus we note IM(O,F) =  H(F) – H(F|O). Working in natural logarithms, 

we calculate from Table 1 the conditional entropies in nits: H(O|F) = 0.8649 and H(F|O) = 0.8898, and 

note also that H(O,F) = H(O) + H(F|O) = H(F) + H(O|F). 

We can interpret the expected mutual information IM(O,F) = H(O) – H(O|F) in terms of the average 

reduction in uncertainty about O resulting from use of a forecaster (i.e., a predictive model) F. Suppose 

that we have a forecaster such that F and O are identical, so that use of the forecaster accounts for all 

the uncertainty in O. Then H(O|F) = H(O|O) and IM(O,F) =  H(O) – H(O|O) = H(O). This tells us that 

the maximum of the expected mutual information IM(O,F) between O and F, that would characterize a 

perfect forecaster, is the entropy H(O). Also, we have H(O) – H(O|F) = IM(O,F) ≥ 0, so we must have 

H(O|F) ≤ H(O) with equality only if F and O are independent. Reassuringly, this tells us that on 

average, as long as F and O are not independent, use of a forecaster F will decrease uncertainty in O.  

3.2.3. Normalized Mutual Information 

We have seen that expected mutual information IM(O,F) varies between 0 (indicating that F and O 

are independent) and H(O) (indicating that F is a perfect forecaster of O). Sometimes (for example, 

when making comparisons between analyses) it is useful to calculate a normalized version of expected 

mutual information. Some care is required here, as different normalizations have been documented in 

the literature. Here, following Attneave [21] (see also Forbes [25]), we adopt:  

as a measure of association that lies between 0 (indicating that F and O are independent) and 1 

(indicating that F is a perfect forecaster of O).  We can interpret the normalized version of IM(O,F) as a 

measure of the proportion of entropy in O explained by covariate F. From Table 1 [using Equation 

(8)], working in natural logarithms, we calculate normalized IM(O,F) = 0.1907.  

3.3. Specific Information 

We have seen that on average, as long as F and O are not independent, use of a forecaster F will 

decrease uncertainty in O. However, although uncertainty is reduced on average, certain specific 
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forecasts may increase uncertainty. In the current example, we have H(O) = 1.0687, H(O|F) = 0.8649 

and IM(O,F) = 0.1907. For a specific forecast fi, we have:  

and from Table 1 [using Equation (9)], working in natural logarithms, we calculate H(O|f1) = 0.5382, 

H(O|f2) = 1.0813, and H(O|f3) = 0.9839 nits. Specific information, denoted IS(fi), is then: 

(DelSole [26] refers to this quantity as ‘predictive information’). This quantity may be positive (when 

H(O) > H(O|fi), in which case uncertainty has decreased), or negative (when H(O) < H(O|fi), in which 

case uncertainty has increased). For the present example, based on Table 1, the results are illustrated in 

Figure 2.  

Figure 2. For each forecast category i, the bar comprises a red component IS(fi), and a blue 

component H(O|fi) which together sum to H(O) in each case. The weighted average of red 

components is equal to IM(O,F) (the Pr(fi) provide the appropriate weights).  

 
 

Expanding Equation (10), we have: 

and thus we can see that Equation (6) calculates the expected value of IS(fi); that is to say, expected 

mutual information is expected specific information over all forecast categories: 
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3.4. Relative Entropy 

Recall Section 3.1, where we defined the information content of a message that tells us, without 

error, that an event has occurred. In practice, not all the messages we receive will tell us without error 

that the event in question has occurred (see, e.g., Figure 1 above). So now we can think of a message 

as serving to transform a set of prior probabilities into a corresponding set of posterior probabilities. In 

this case, we can generalize as follows: 

     
     messageEhEh

EmessageE

receivedmessagebeforeeventofyprobabilit

receivedmessageaftereventofyprobabilit
messageofcontentninformatio

PrPr

PrlogPrlog

log















  

(13) 

which includes the previous example of the message that tells us without error what has occurred (i.e., 

Pr(E|message)=1) as a special case. We now generalize Equation (1) in order to calculate expected 

information content for such a message. 

Recall the observed N2O flux categories o1 (‘low’), o2 (‘medium’) and o3 (‘high’), with 

corresponding probabilities Pr(o1), Pr(o2) and Pr(o3), which we will call the prior (i.e., pre-forecast) 

probabilities. A message fi is received which serves to transform these prior probabilities into the 
posterior probabilities Pr(oj|fi), with     .3,2,1,0Pr,1Pr  jfofo ijj ij  The information content 

of this message as viewed from the perspective of a particular oj is [from Equation (13)]: 

The expected information content of the message fi is I(fi), is the weighted average of the 

information contents, the weights being the posterior probabilities Pr(oj|fi):  

referred to here as the relative entropy (also widely known as the Kullback-Leibler divergence). The 

quantity I(fi) ≥ 0, and is equal to zero if and only if Pr(oj|fi) = Pr(oj) for all j; thus the expected 

information content of a message which leaves the prior probabilities unchanged is zero, which is 

reasonable. For the present example, based on Table 1, the results are illustrated in Figure 3.  

Note now that we can re-write Equation (5) as: 

so now, recalling Equation (15), we can write: 

and thus we can see that Equation (16) calculates the expected value of I(fi); that is to say, expected 

mutual information is expected relative entropy over all forecast categories. 
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Thus we have two information quantities that characterize a specific forecast fi, for both of which 

the expected value is the expected mutual information IM(O,F). Specific information, IS(fi), is based on 

the difference between two entropies [Equation (10)]. Relative entropy, I(fi), is based on the difference 

between two information contents [Equations (13) and (14)].  

Figure 3. For each forecast category i, the bar comprises a red component I(fi), and a blue 

component H(O|fi). The weighted average of the sums of the two components is equal to 

H(O). The weighted average of red components is equal to IM(O,F). In each case the Pr(fi) 

provide the appropriate weights. 

 
3.5. A Second Data Set 

Here we present a second prediction-realization table based on a boundary line plot for cereal 

cropping soils from Figure 2 of [16] (Table 2) and then summarize the calculations based on both 

Tables 1 and 2 (Table 3). 

Table 2. Prediction-realization table based on N=247 observations of N2O flux for cereal 

cropping soils from Figure 2 of [16]. The boundary lines between forecast emission 

categories were WFPS(%)+0.76·T(°C) = 78 (low-medium) and WFPS(%)+0.76·T(°C) = 90 

(medium-high). 

Forecast 
category, fi 

Observed category, oj Row sums 
1. Low 2. Medium 3. High 

1.  Low 0.7854 0.0324 0.0000 0.8178 
2.  Medium 0.0972 0.0445 0.0040 0.1457 
3.  High 0.0121 0.0202 0.0040 0.0364 
Column sums 0.8947 0.0972 0.0081 1.0000 
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Table 3. Summary of information quantities and calculations (working in natural 

logarithms).  

Information  
quantity 

Equation (boldface 
indicates equation 
used for calculation) 

Value (nits) for 
pasture and sugarcane 
soils data (Table 1) 

Value (nits) for 
cereal cropping soils 
data (Table 2) 

H(O) 1 1.0687 0.3650 
H(F) 2 1.0936 0.5659 
H(O,F) 3 1.9585 0.8430 
IM(O,F) 4, 5, 6, 7, 12, 16, 17 0.2038 0.0879 
H(O|F) Component of 6 0.8649 0.2772 
H(F|O) Component of 7 0.8898 0.4780 
normalized IM(O,F) 8 0.1907 0.2407 
H(O|f1) 9 0.5382 a,b 0.1667 
H(O|f2) 9 1.0813 a,b 0.7321 
H(O|f3) 9 0.9839 a,b 0.9369 
IS(f1) 10, 11  0.5305 a 0.1984 
IS(f2) 10, 11  −0.0126 a −0.3671 
IS(f3) 10, 11  0.0848 a −0.5718 
I(f1) 15  0.3428 b 0.0325 
I(f2) 15  0.0442 b 0.1882 
I(f3) 15  0.2388 b 0.9305 

a see Figure 2; b see Figure 3 

4. Results and Discussion 

From Table 3, we see that the entropy H(O) for pasture and sugarcane soils is larger than for cereal 

cropping soils, indicating greater dispersion in the distribution Pr(O) for pasture and sugarcane soils. 

The expected mutual information IM(O,F) is a measure of association between forecasts and 

observations. This is larger for pasture and sugarcane soils than for cereal cropping soils, but is 

difficult to interpret because its maximum value is the entropy H(O). If, instead, we look at the 

normalized version of IM(O,F), which lies between 0 and 1, we see that the proportion of entropy in O 

that is explained by the forecaster F is similar for both data sets (see Table 3). 

If we look at the relative entropies I(fi) for cereal cropping soils (Table 3), the small value for I(f1) 

and the large value for I(f3) are notable. In each case, the largest component of I(fi) will arise from the 

information content of a correct forecast, ln[Pr(oj|fi)/Pr(oj)] (i=j) [from Equation (14)]. From Table 2, 

for a correct f1 (‘low’) forecast, information content = ln[0.7854/(0.8178·0.8947)] = 0.0708 nits. From 

Table 2, we calculate that an f1 forecast provides about 96% correct forecasts, but this is set against the 

fact that almost 90% correct categorizations could be made just on the basis of o1 without recourse to a 

forecast. Information content is a measure of the value of a forecast given what we already know. For a 

correct f3 (‘high’) forecast, information content = ln[0.0040/(0.0364·0.0081)] = 2.6190 nits. While this 

is impressively large, it is based on only two o3 observations, of which one was correctly forecast, so 

should be regarded with caution. For cereal cropping soils, we note also that the specific information 

values IS(f2) and IS(f3) are negative (Table 3). As almost 90% of the observations were in the o1 
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category, an f2 forecast results in H(O|f2)>H(O) and an f3 forecast results in H(O|f3)>H(O) (Table 3); in 

both cases uncertainty is increased. 

For pasture and sugarcane soils, the small value for the relative entropy I(f2) is notable (Table 3). 

From Table 1, for a correct f2 (‘medium’) forecast, information content = ln[0.1513/(0.3653·0.2878)] = 

0.3639 nits, not small enough to provide an explanation for the small value of  I(f2) without further 

investigation. From Table 1, we calculate that an f2 forecast provides about 41% correct forecasts, 

smaller than for both an f1 forecast (about 82%) and an f3 forecast (about 55%). At the same time, f2 

forecasts make up a larger percentage of the total forecasts (about 36%) than f1 (about 35%) or f3 

(about 29%). Further, the conditional entropy H(O|f2) is larger than H(O|f1) and H(O|f3); so large, in 

fact, that an f2 forecast results in H(O|f2)>H(O) and IS(f2) is negative, indicating increased uncertainty 

(Table 3). Taken together, these results indicate that the small value for the relative entropy I(f2) arises 

because the f2 forecast category contains relatively large proportions of incorrectly-forecast o1 and o3 

observations in addition to the correctly-forecast o2 observations.  

On the basis of our analysis, we note that there is a prima facie case for considering boundary line 

models for N2O flux in which the parameter space is partitioned by a single threshold into two sub-

regions. In particular, the advantage of retaining separate medium and high emission categories 

deserves critical examination. As discussed above: 

 for cereal cropping soils, information properties of the three sub-region model largely depend on 

the prior (i.e., pre-forecast) probabilities Pr(o1) (≈0.9), Pr(o2) (≈0.1) and Pr(o3) (<0.01) of the 

observed N2O flux categories o1 (‘low’), o2 (‘medium’) and o3 (‘high’) respectively;  

 for pasture and sugarcane soils, information properties of the three sub-region model indicate 

that observed N2O flux categories o1 (‘low’), o2 (‘medium’) and o3 (‘high’) are poorly 

distinguished in the f2 forecast category.  

Further: 

 Conen et al. [15] observed that “During most days of the year, emissions tend to be within the 

‘low’ range, increasing to ‘medium’ or ‘high’ only after fertilizer applications, depending on 

soil temperature or WFPS limitations.”  

 Recalling the data set from Figure 1, we note that as in [15], most emissions were in the ‘low’ 

observed range. The proportions of emissions in the ‘low’ (<10 g N2O-N ha−1 day−1), ‘medium’ 

(10-100 g N2O-N ha−1 day−1) and ‘high’ (>100 g N2O-N ha−1 day−1) observed ranges were ≈0.68, 

≈0.30 and ≈0.02, respectively.  

Characterizing the extent to which observed levels of a response variable of interest are correctly or 

incorrectly forecast is greatly simplified if the parameter space is partitioned by a single threshold. For 

an example of a boundary line model in which the parameter space is partitioned into two sub-regions, 

an epidemiological study by De Wolf et al. (Figure 2 in [27]) calculates a model with a single 

threshold, used in forecasting wheat Fusarium head blight epidemics based on within-season weather 

data. The decision-theoretic and information-theoretic properties of such binary prediction models in 

epidemiology have been discussed by Madden [28] and Hughes [22] respectively.  
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5. Conclusions  

The boundary line approach provides a simple and practical alternative to more complex process-

based models for the estimation of N2O emissions from soils [15,16]. The boundary line approach 

categorizes data for observed and forecast emissions; a graphical two-threshold boundary line model 

can be written as a 3×3 prediction-realization table. Boundary line model data in such a tabular format 

may be analyzed by information theoretic methods as also applied in, for example, psychology [21], 

economics [18] and epidemiology [22].  

Expected mutual information is a measure of the amount of information about the observations 

contained in the forecasts, characterizing forecaster performance averaged over all forecast categories. 

Expected mutual information characterizes the component of entropy H(O) that is associated with 

forecaster F. A normalized version of expected mutual information, with a range from zero (forecasts 

are independent of observations) to one (forecasts are perfect), is useful if we want to compare model 

performance over different data sets. Here, we found that a boundary line approach to forecasting N2O 

emission ranges from Australian agricultural soils [16] provided a similar level of performance 

averaged over low, medium and high forecast categories for cereal cropping soils and for pasture and 

sugarcane soils.  

Whereas mutual information characterizes the average performance of a forecaster, specific 

information IS(fi) and relative entropy I(fi) both characterize aspects of the amount information 

contained in particular forecasts. Here is an heuristic interpretation in relation to our analysis of 

boundary line models. After receiving forecast fi, we know more than we did before (assuming 

forecasts are not independent of observations). For N2O flux categories o1 (‘low’), o2 (‘medium’) and 

o3 (‘high’), we knew the prior probabilities Pr(o1), Pr(o2) and Pr(o3), and now we know the posterior 

probabilities Pr(o1|fi), Pr(o2|fi) and Pr(o3|fi). Relative entropy is the expected value of the information 

content of fi; I(fi) cannot be negative. Now, recall that if all the Pr(oj) had the same value, this would 

represent maximum uncertainty about N2O flux categories O. Generally, larger H(O) represents more 

uncertainty. So, if after receiving forecast fi the Pr(oj|fi) are more similar than were the Pr(oj), H(O|fi) 

will be larger than H(O) and IS(fi) will be negative. This represents an increase in uncertainty having 

received the forecast fi. When H(O|fi) is smaller than H(O), IS(fi) will be positive; this represents a 

decrease in uncertainty having received the forecast fi.  

Finally, for completeness, we note two related areas of study not discussed in the present article, but 

of potential future interest in the context of applications of information theory to the analysis and 

modeling of N2O emissions from soils. First, there is another application of boundary line models, not 

considered here, where a boundary represents the upper or lower limit of a response variable with 

variation in the value of an explanatory variable (see, e.g., [29,30]). Second, there is a burgeoning 

interest in information theory as a basis for weather forecast evaluation (e.g., DelSole [26,31]; Weijs et 

al. [32] and Tödter and Ahrens [33] are recent contributions). In future, such work may also contribute 

to the analysis of models of N2O emissions from agricultural soils. 
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