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Abstract: The one-dimensional (1D) power law velocity distribution, commonly used for 

computing velocities in open channel flow, has been derived empirically. However, a 

multitude of problems, such as scour around bridge piers, cutoffs and diversions, pollutant 

dispersion, and so on, require the velocity distribution in two dimensions. This paper 

employs the Shannon entropy theory for deriving the power law velocity distribution in 

two-dimensions (2D). The development encompasses the rectangular domain, but can be 

extended to any arbitrary domain, including a trapezoidal domain. The derived 

methodology requires only a few parameters and the good agreement is confirmed by 

comparing the velocity values calculated using the proposed methodology with values 

derived from both the 1D power law model and a logarithmic velocity distribution 

available in the literature. 
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1. Introduction 

Fundamental to hydraulic modeling of natural rivers, including modeling of sediment and 

contaminant transport, design of channels and river training works, design of hydraulic structures, 

development of a rating curve, and so on, is the velocity distribution. In general, velocity in open 

channels varies in three dimensions: along flow depth, width, and length. In a given cross-section, the 

velocity varies along the flow depth and along the transverse direction or width. Along the flow depth 

it varies from zero at the channel bed to a maximum value which, depending on channel geometric 

characteristics, exists either at the water surface or some distance below it. Along the transverse 

direction, it varies from zero at one boundary to a maximum value at some point in the flow domain 

and then declines to zero at the other boundary. The non-uniformity in the distribution of velocity from 

the bed to the open water surface and from one boundary to the other is caused by shear stresses. 

It is known that velocity is subject to the uncertainties due to both the intrinsic randomness and our 

inability to interpret the complex interactions. The empirical 1D power law velocity distribution is not 

capable of incorporating these uncertainties. More modern approaches, mainly based on the concept of 

entropy, as in the fields of hydraulics and hydrology [1,2], consider velocity as a probabilistic variable, 

taking into account this uncertainty. Following Chiu [3], it is plausible to consider time-averaged 

velocity as a probabilistic variable, derive the probability distribution of velocity and then derive the 

velocity distribution. Chiu [3] proposed the entropy theory for deriving the velocity distribution which 

has since been employed by Chiu and his associates [3–10], as well others [11–17]. Some of these 

investigations dealt with 1D and some with 2D velocity distributions. Although the 2D velocity 

distribution proposed by Chiu [4] has been used in a number of theoretical investigations, its practical 

usefulness is inhibited by the many parameters it contains. Moramarco et al. [18] simplified the 2D 

model by applying it to several verticals, but still it contains too many parameters. Also employing the 

entropy theory, Marini et al. [19] developed a generic 2D velocity distribution, which involves the 

geometry of the cross-section, average velocity, and the position and value of maximum velocity. The 

model does not require calibration and was successfully tested by comparing theoretical values with 

experimental measurements [20]. 

This approach is also employed in the present paper, aiming at deriving the 2D power law velocity 

distribution using the Shannon entropy and comparing it with the entropy-based logarithmic velocity 

distribution developed by Marini et al. [19]. 

2. Derivation of 2D Power Law Velocity Distribution 

It is assumed that the time-averaged velocity can be considered as a random variable [21]. The 

entropy-based approach for deriving the 2D power law velocity distribution entails maximizing the 

Shannon entropy subject to specified constraints and hypothesizing a relation between the cumulative 

distribution function (CDF) of u and flow depth y. The Shannon entropy [22] of velocity u, S(u), can 

be expressed as: 


max

0
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u
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where f(u) is the probability density function (PDF) of u, and umax is the maximum velocity. Two 

constraints must been defined to derive the 1D power law velocity distribution: 

 max

0
1)(

u
duuf  (2)

which defines the PDF of u [5], and: 

 max

0
ln)()ln(

u
uduufu  (3)

which represents the mean of the logarithmic velocity [23]. Since the constraints given by Equations 

(2) and (3) also hold in the 2D domain, a general equation for the velocity PDF was obtained. 

Following the approach proposed by Singh [24] for 1D domain, maximizing entropy according to the 

principle of maximum entropy (POME) [25–27] and using the method of Lagrange multipliers, the 

entropy-based PDF of u can be written as: 

 1λλexp)( 21  uuf (4)

where λ1 and λ2 are the Lagrange multipliers, calculated according to Equations (2) and (3).  

To derive the 2D velocity distribution, let us consider a 2D domain (x, y), with x denoting the 

transverse direction and y the vertical direction measured from the bed, upward positive. Let u = u(x, y) 

be the velocity distribution, fu(x, y) the PDF and Fu(x, y) the CDF. It is convenient to assume  

v = ln(u) [i.e., u = exp(v)]. Following the methodology developed by Marini et al. [19] and taking the 

partial derivatives of F(u) with respect to x and y, we obtain: 
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Using Equation (4), Equations (5) can be rewritten as: 
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Denoting λ2+1 = n, Equations (6) can be rewritten as: 
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Setting exp(nv) = w, the partial derivatives of w with respect to x and y can be cast as: 
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Substituting Equations (8) into Equations (7), the following system of equations is obtained: 
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Equations (9) can be integrated using the Leibnitz rule that states: 
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Because the point (0, 0) lies on a contour in the solution domain, u at this point is equal to 0 and  

v = ln(u) = −. Consequently, the right hand side of Equation (10) becomes: 

              0,,,,0,0, ln  yxwuyxweyxweyxwwyxw nunnv  (11)

The definite integral on the left side of Equation (10) is calculated at a generic point ( y,x ) 

identified by the mean of a polygonal curve that starts from (0, 0), passes across ( 0,x ) and ends at  

( yx, ), so that: 
       uFneyne

y

uF
yne

y

uF
ne

x

uF yyx
1111 λ1

0

λ1λ1),(

0,0

λ1 dddx  












  (12)

in which ( y,x ) represents a point of the solution domain. The right hand side of Equation (12) can be 

equated to the right hand side of Equation (11) to obtain: 

   uFneyxw 1λ1,   (13)

Because w(x, y) = exp(nv), Equation (13) is rewritten as: 

  yxuFnee nv ,1λ1  (14)

and recalling that v = ln(u), we obtain the expression of u(x,y): 

      n
yxuFneyxu

/1λ1 ,, 1  
(15)

Equation (15) contains two Lagrange multipliers λ1 and λ2, which can be calculated using Equations 

(2) and (3). Inserting Equation (4) into Equation (2) and integrating, one obtains: 
1λ1

max
 enu n  (16)

Combining Equations (15) and (16) we obtain the equation representing the 2D velocity distribution: 
nFuyxu /1

max),(   (17)

Equation (17) is the power law 2D velocity distribution, which depends on umax, n, and the 2D CDF. 

The derived equation formally coincides with the equation obtained by Singh [24] for 1D domain, 

although in this case F is a function of x and y. 

Parameter n can be calculated using the constraint given by Equation (2), resulting in the following 

equation [24]: 

uu
n

lnln
1

max   (18)

where f is given, for the power law equation, by Equation (4). As an alternative, following the 

approach proposed by Marini et al. [19], n can be calculated from the definition of average channel 

velocity uav: 
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where A is the channel cross section. As pointed out in the literature, Equation (18) refers to the mean 

of the logarithmic velocity distribution, whereas Equation (19) considers the average logarithmic 

velocity in the channel cross section. Unlike ū, the average channel velocity has a straightforward 

physical meaning, and consequently it can be more effective to calculate parameter n. 

3. Comparison with Entropy-Based Logarithmic 2D Velocity Distribution 

Equation (17) represents an effective way to estimate velocity distribution in a generic 2D domain if 

the CDF is properly defined. Starting from the same hypothesis, but using a different constraint 

equation than Equation (2), Marini et al. [19] obtained the following equation (logarithmic model): 

    11ln, max  GeF
G

u
yxu  (20)

Similar to Equation (17), Equation (19) depends only on umax, an entropic parameter (here called 

G), and the 2D CDF. Parameter G can be calculated using the following equation, depending on the 

mean of velocity distribution and the maximum velocity [3]: 
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  (21)

or considering again the definition of average channel velocity: 
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For both Equations (17) and (20), 1D and 2D domains can be considered, depending on the 

assumed CDF. The velocity distributions inferred from the proposed formulation were analyzed for 

different configurations and compared with Equation (20) in what follows. 

3.1. 1D Velocity Distribution and Maximum Velocity on the Water Level  

The case of a wide channel geometry (hence the ratio H/B between the water depth H and the 

channel width B tends to zero) is analyzed first. Consequently, only vertical velocity was considered. If 

the maximum velocity occurs for y = H, it is well-known [3] that F(u) = y/H. Equation (17) becomes: 

and n can be calculated from the following equation, derived from integration of Equation (19): 
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If Equation (20) is used with the same F(u), one obtains: 
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in which G can be calculated by means of Equation (22). 
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The following data were considered in the example: H = 1 m; umax = 1 m/s; uav = ū = 0.8 m/s, 

resulting in G = 4.8 from Equation (20) and 1/n = 0.25 from Equation (22). The velocity profiles 

obtained from the power law velocity distribution [Equation (17)] and the logarithmic velocity 

distribution [Equation (18)] were almost the same (negligible differences), as shown in Figure 1. 

Figure 1. Velocity profiles calculated using Equations (17) and (20) for 1D domain and y0 = H. 

 

3.2. 1D Velocity Distribution and Maximum Velocity below the Water Level 

In this case, the channel geometry of the previous example was used, except for the point where the 

maximum velocity occurs, which is located at a distance y0 = 0.8 m from the bed channel. Also in this 

case, the CDF is well-known [5]: 

  0

1

0

y

y

e
y

y
uF



  (26)

and Equation (17) becomes: 
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and from Equation (19) one obtains 1/n = 0.81. With the same F(u), Equation (20) becomes: 
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in which G can be calculated, again, using Equation (22), resulting in G = 0.55. The velocity profiles 

inferred from the two distributions were almost identical, as shown in Figure 2. 

Marini et al. [19] analyzed the same configuration as a special case of the 2D velocity distribution, 

thus proposing the following CDF equation: 
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Figure 2. Velocity profiles calculated using Equations (17) and (20) for 1D domain, y0 < H 

and F(u) proposed by Chiu [5]. 

 

Figure 3 shows the velocity profiles obtained using Equation (27) for F(u), resulting again in 

excellent agreement. 

Figure 3. Velocity profiles calculated using Equations (17) and (20) for 1D domain, y0 < H 

and F(u) proposed by Marini et al. [19]. 
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3.3. 2D Velocity Distribution where Maximum Velocity Occurs below Water Level 

The 2D domain was analyzed, considering a rectangular channel with symmetrical velocity 

distribution with respect to the vertical axis. For this configuration Marini et al. [19] proposed the 

following CDF: 
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Consequently, Equation (17) becomes: 
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and n can be calculated using Equation (19). With the same F(u), Equation (20) becomes: 
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and G can be calculated using Equation (22), in which the average channel velocity can be calculated 

from the definition of cross-sectional average velocity for the rectangular channel as: 
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Assuming H = 1 m; B = 1 m; y0 = 0.8 m; umax = 1 m/s; uav = 0.8 m/s, we obtain 1/n = 0.64 from 

Equation (19) and G = 1.22 from Equation (30). The velocity profiles at different abscissas were 

plotted in Figure 4, resulting in an excellent agreement. 

Figure 4. Velocity profiles calculated using Equations (17) and (20) for 2D domain 

(rectangular cross section). 
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Figure 4. Cont. 

 

4. Conclusions  

Using an entropy-based approach, a power law equation is obtained for the velocity distribution in a 

generic 2D domain. The equation formally coincides with that already derived for a 1D domain. For 

application, the model only requires the knowledge of average velocity and maximum velocity and the 

point where the latter occurs to be known. To assess the reliability of the obtained equation, the 

cumulative distribution functions of velocity available in the literature for 1D and 2D domains are used 

and velocity distributions in a number of configurations are derived. Results are compared with those 

calculated using an entropy-based logarithmic equation available in the literature. For all the analyzed 

cases, velocity profiles obtained by the proposed 2D power law velocity distribution show negligible 

differences with the logarithmic velocity distribution. Further refinements in the distribution will 

investigate the relationship between the power law exponent and the entropic parameter and/or other 

physical characteristics of the channel cross section. 
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