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Abstract: State-of-the-art heuristic algorithms to solve the vehicle routing problem with
time windows (VRPTW) usually present slow speeds during the early iterations and easily
fall into local optimal solutions. Focusing on solving the above problems, this paper analyzes
the particle encoding and decoding strategy of the particle swarm optimization algorithm, the
construction of the vehicle route and the judgment of the local optimal solution. Based
on these, a hybrid chaos-particle swarm optimization algorithm (HPSO) is proposed to
solve VRPTW. The chaos algorithm is employed to re-initialize the particle swarm. An
efficient insertion heuristic algorithm is also proposed to build the valid vehicle route in the
particle decoding process. A particle swarm premature convergence judgment mechanism is
formulated and combined with the chaos algorithm and Gaussian mutation into HPSO when
the particle swarm falls into the local convergence. Extensive experiments are carried out
to test the parameter settings in the insertion heuristic algorithm and to evaluate that they
are corresponding to the data’s real-distribution in the concrete problem. It is also revealed
that the HPSO achieves a better performance than the other state-of-the-art algorithms on
solving VRPTW.
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1. Introduction

Logistics management plays an important role in reducing costs and improving the competitiveness
of enterprise. The logistics companies have to make strategic and operational decisions to schedule the
business processes more efficiently. Many companies use the method of optimizing vehicle routes so
as to reduce costs and to improve logistic service quality effectively. Among them, the vehicle routing
problem (VRP) draws great interest, which presents promising performance in chain management and
many other areas. The VRP can be defined as determining an optimal set of routes for vehicles, which
would save time and cost, so as to effectively strengthen the logistic companies’ competitiveness. One
variants of VRP is the vehicle routing problem with time windows (VRPTW). VRPTW imposes the
appropriate time window and time constraints to each task node (including dispatch node and receiving
node) on the basic VRP. In this way, VRPTW is able to improve service quality. VRPTW has a wide
range of applications, such as distribution requirements planning [1,2], material handling systems [3],
bank deliveries [4], postal deliveries [5], school bus routing [6] and so on. Actually, VRPTW has been a
research field of great interest, and many different solving algorithms have been proposed.

Despite its great potential in solving the vehicle routing problem, VRPTW is still a difficulty, since
it belongs to NP-hard problems. Many researchers put forward a variety of accurate methods to solve
the problem, such as Multi-Objective Programming, Linear Programming and Integer Programming.
These polynomial methods with constraints can perform effectively and get the optimal solution in the
small-scale VRP. However, with the increase of the problem scale, it needs much more time to match the
explosive growth. Therefore, much effort has been done on the heuristic intelligent algorithm to solve
VRPTW. The heuristic algorithm is simple to implement and does not present an obvious time increase
with the problem scale increasing. The main problem is that the iteration speed is slow in the early stage,
and it is easy to fall into local optimal solutions. In a word, both the accurate solution and heuristic
solution have weakness on solving VRPTW.

Nowadays, the problem scale of real-world VRPTW increases rapidly. The accurate algorithms need
too much time to model and search for a proper solution, while single heuristic algorithms often fall into
local optimal solutions and need a large number of iteration times. This paper gives a new insight into
VRPTW and proposes an effective method by combining different VRPTW solutions. Particle swarm
optimization (PSO) is a promising method, since its iteration speed is fast. However, it often falls into
local optimal solution. The chaos optimization algorithm (COA) and the Gaussian strategy can upgrade
solution diversity and avoid falling into the local optimal. The insertion heuristic algorithm can construct
the initial solution quickly and upgrade iteration speed. So, this paper combines these algorithms and
proposes a hybrid chaos-particle swarm optimization algorithm (HPSO) for VRPTW. The contributions
of this paper are as follows:

(1) A PSO based on COA is proposed, so as to avoid the problem that the number of the feasible
solution particles is too small in the early state and the speed of the convergence is low. When the
feasible solution particle first appears, COA is able to re-initialize the particle swarm, which can
increase the number of the feasible solution particles and accelerate the convergence.

(2) The insertion heuristic algorithm is introduced into our method to construct the route of VRPTW
in the decoding process, which is much easier and more effective than conventional methods.
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(3) COA and Gaussian strategy are used to judge the premature convergence and to improve the
particle swarm when the solving process falls into local optimal solutions.

The remainder of this paper is organized as follows. Section 2 introduces the related work;
Section 3 describes the VRPTW model; Section 4 details the proposed HPSO; Section 5 presents various
experiments to compare HPSO with other state-of-the-art methods on solving VRPTW. Finally is a
summary of the paper and future outlooks.

2. Related Work

Many researchers used different heuristic algorithms for VRPTW. Instead of obtaining the optimal
solution of VRPTW, like the accurate algorithms, heuristic algorithms can quickly get the approximate
optimal solution. When the problem scale of VRPTW is large, the advantage of the heuristic algorithm
is more obvious. Thus, early studies are based on single heuristics and metaheuristic, such as local
search [7], minimum K-trees [8], adaptive memory [9], simulated annealing (SA) [10], tabu search
(TS) [11,13], genetic algorithm (GA) [12] and ant colony optimization (ACO) [14]. When the problem
scale of VRPTW is small, these methods mentioned above can get an optimal result with limited time.
However, when the problem scale of VRPTW increases, they will easily fall into the local optimal, and
the iteration time cost will increase explosively. So, nowadays, many researchers focus on combing two
or three heuristics and metaheuristic methods to solve VRPTW.

(1) A typical hybrid method is TS combined with other algorithms [15–17]. Tabu search keeps a list
of forbidden transformations to transfer the solution step that deteriorates the objective function
value; while a hybrid algorithm based on TS and variable neighborhood descent uses a sweep
method to obtain an initial solution [18].

(2) Local search combined with other algorithms was also proposed to solve VRPTW.
Bianchessi et al. citeR19 proposed a local search heuristic method based on TS using a variable
neighborhood structure, in which the node-exchange-based and arc-exchange-based movements
are combined. Gendreau et al. [20] proposed a hybrid neighborhood search heuristic to optimize
the planned route of vehicle in a context, where new requests with a pick-up and a delivery location
would occur in real-time. Zachariadis et al. [21] proposed a hybrid local search approach based on
TS, which can efficiently examine the rich solution neighborhood by statically encoding tentative
moves into the special data of a diversification component, which is based on the aspiration
criteria of TS. Hong [22] proposed a hybrid and improved the large neighborhood search (I-LNS)
algorithm to solve the VRPTW. Utilizing the remove-reinsert process of the LNS, the latest request
nodes are regarded as a part of the removed nodes; these nodes can be inserted into the original or
current solution in good time in the reinsertion process; meanwhile, its computing speed is high
and effective, for it does not need to resolve the primal problem each time.

(3) SA combined with other algorithms was used to solve VRPTW. Tavakkoli-Moghaddam et al. [23]
proposed a liner-integer model based on SA, which constructs VRPTW with the independent route
length in order to minimize the heterogeneous fleet cost and the capacity utilization. TTavakkoli-
Moghaddam et al. [24] also proposed a new mathematical model based on SA to find the short
routes with the minimum fleet travel cost, the minimum travel distances and the maximum sale.
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(4) ACO combined with other algorithms provided another way to solve VRPTW [25–27]. The
weakness of ACO for VRPTW is that ants tend to create infeasible solutions with non-routed
clients. Most implementations of ACO combined with other algorithms return feasibility to the
solutions by applying a simple ad hoc post-insertion procedure, and when the post-insertion fails
to route all the clients, the partial solution is discarded.

(5) GA can also be combined with other algorithms to solve VRPTW [28,29]. GA mimics the
evolution process in solving problems. The basic operation is the mating of two tours in order
to form a new tour. Moreover, GA combined with other algorithms uses algorithmic anagoges to
mutation and selection. The weakness of GA for VRPTW is the encoding of the chromosome.
With the problem scale increase, the difficultly of encoding the chromosome increases.

From the above brief review of different hybrid methods, it is concluded that many attempts
have been made to solve VRPTW by combining different approaches. Two main properties of
all the above methods in the literature can be summarized as follows: (1) Firstly, use a heuristic
method to obtain a feasible initial solution; (2) Then, hybridize the metaheuristic method with another
heuristic method to improve the solution during the iteration process. Particle swarm optimization
(PSO) is a recent and promising evolution metaheuristic and has been successfully applied to solve
VRPTW. Many researchers conduct research on solving VRPTW by combining PSO with other
heuristic methods. Chen et al. [30] proposed a discrete PSO algorithm combined with SA heuristics.
He got the high precision vehicle routes for some vehicle routing problems with less than 134
customers. However, the algorithm would cost a lot of computing time. In the worst case, it
would cost more than half an hour to get the solution. Kachitvichyanukul [31] proposed two new
PSO algorithms (SR-1 and SR-2) for encoding and decoding particles into vehicle routes. By
comparing SR-1 with SR-2, he got the conclusion that SR-2 is better than SR-1. Zhao et al. [32]
proposed a new encoding method based on PSO. They conducted a 2L-dimensional position vector
of particles. Among them, L represented the number of service customers. Then, 2L-dimensional
space corresponding to each particle was divided into two L-dimensional vectors: one vector meant
the vehicle number for each customer, and the other vector represented the service order for each
customer in the vehicle route. As to the particle decoding process, Zhang et al. [33] proposed
a simulated annealing algorithm to construct the vehicle route. Firstly, they used PSO to solve
the sub-problem of task assignment. Then, they used the simulated annealing algorithm to solve
the sub-problem of route optimization. In order to get the infeasible solutions for particle swarm,
Wu et al. [34] put forward a local neighborhood mechanism to increase the diversity of the particles
and avoid falling into the local optimal state. Gong et al. [35] proposed a set-based PSO to solve the
discrete combinatorial optimization VRPTW and achieved better effectiveness and efficiency. All the
above PSO based methods can get a satisfied solution, but when the problem scale increases, it will
cause problems, such as the speed of the iteration becoming slow in the early stage and it is easy to fall
into local optimal solutions.

Aiming at alleviating the above problems, this paper puts forward a new hybrid algorithm, HPSO. It
uses the advantage of the COA and Gaussian strategy to upgrade basic PSO solution diversity to avoid
falling into the local optimal. COA is also beneficial for accelerating the iteration in the early stage.
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This paper also proposes an insertion heuristic algorithm to construct the initial solution and upgrade the
iteration speed, as basic PSO is difficult for constructing the initial solution.

3. VRPTW Model Formulation

VRPTW as an extension of the basic vehicle routing problem is generally described as: one yard has
K cars. The deadweight of each car is qk(k = 1, 2, . . . , K). There are L customers who need service.
Customer i demands the gi(i = 1, 2, . . . , L) goods (Maxgi 6 Maxqk). It assumes that the time of
service for customer i is Ti, and the start time of service is a certain range of time, [ETi, LTi](ETi means
the earliest start time and LTi means the latest start time ). If the vehicle arrives earlier than ETi, the
vehicle need to wait until ETi. If the vehicle arrives later than LTj , customer i needs to be delayed. At
last, it finds the vehicle route that costs least. The mathematical model is described as follows:

The yard number is defined as 0, the customers are defined as 1, 2, . . . , L, and and so point,
i(i = 0, 1, . . . , L), can represent the yard and the customers.

The symbols in the model are defined as follows:

yki =

{
1 vehicle k serve for customer i
0 don’t serve

xijk =

{
1 vehicle k arrives from point i to point j
0 don’t arrive

cij is the transportation costs of i to j, which refer to the costs of distance and time.enumerate
sj is the time of vehicle arrival for customer j.
c1 is the cost per unit of time for the vehicle to wait for the customer.
c2 is the fine per unit of time for a later vehicle arrival.
c1(ETj − Sj) is the cost of waiting when the vehicle arrives earlier than ETj .
c2(sj − LTj) is the fine of vehicle arrival later than LTj .
K is the number of all vehicles.
gi is the demand quantity of customer i.
qk is the capacity of vehicle k.
oi is service time.
tij is the travel time between customer i and customer j.
wi is the waiting time of a vehicle at customer i.
Based on the symbols, we can obtain the VRPTW mathematical model as Equation (1):

minZ =
L∑
i=0

L∑
j=0

K∑
k=1

cijxijk + c1

L∑
j=1

max(ETj − sj, 0) + c2

L∑
j=1

max(sj − LTj, 0) (1)

The constraints are defined as follows:
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(1) On each route, the sum of each customer’s demand cannot exceed the capacity of the vehicle,
which is defined as Equation (2):

L∑
i=0

giyki 6 qk ∀k = 1, 2, . . . , K (2)

(2) Each customer must get the delivery service, which is defined as Equations (3) and (4):
K∑
k=1

yki = 1 i = 1, 2, . . . , L (3)

K∑
k=1

yk0 = K (4)

(3) The service for each customer can only be completed by a specific vehicle, which is defined as
Equations (5) and (6):

L∑
i=0

xijk = ykj j = 0, 1, . . . , L;∀k = 1, 2, . . . , K (5)

L∑
j=0

xijk = yki i = 0, 1, . . . , L; ∀k = 1, 2, . . . , K (6)

(4) Variables in the range are defined as Equations (7) and (8):

xijk = 0 or 1 i, j = 0, 1, . . . , L; ∀k = 1, 2, . . . , K (7)

yki = 0 or 1 i = 0, 1, . . . , L;∀k = 1, 2, . . . , K (8)

(5) Time window constraints are defined as Equations (9) and (10):

si + wi + oi + tij = sj i, j = 0, 1, . . . , L (9)

wi = max(ETi − si, 0) i = 0, 1, . . . , L (10)

The objective function of the mathematical model consists of three parts, including toll costs, waiting
time costs and delay fine costs. The goal is to get the minimum value of the total costs. In addition, set
the parameter c1 and c2, we can get the model of the corresponding vehicle routing problem with hard
time windows and the model with soft time windows. If c2 is infinity, we can get the model of the vehicle
routing problem with hard time windows. At the same time, the model also ensures that the vehicle route
does not have the local sub-loop. Besides, the model set the fine costs when the vehicle arrives earlier or
later. To get the least total costs, the solution has to avoid or minimize the fine costs.

4. HPSO

HPSO is based on PSO. To improve the quality of the particle in the early stage, we use the global
optimal particle by COA to re-initialize the particle swarm. At last, we judge the premature convergence
and use COA and Gaussian mutation to avoid falling into the local optimal state. Algorithm 1 is shown
as follows:
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Algorithm 1 HPSO
Input: maximum number of iterations T
Output: the optimal solution

1: Randomly initialize the swarm particle encoding, then decode the particle and get the fitness value
of the particle’ note Flag = true. (Algorithm 2)

2: When getting the feasible particle solution, use the global optimal particle by COA to re-initialize
the particle swarm and get the new particle swarm including n particles; note Flag = true. Go to
Step 3, otherwise go to Step 4. (Algorithm 3)

3: Judge the degree of the premature convergence: assume that the average optimal fitness value of the
particle in history has not changed for N rounds; if N1 > N > N0, optimize the global optimal
particle by COA; if N > N1 and the probability of particle randomly generated is P > P0, convert
the particle by Gaussian Mutation. N1, N0 and P0 are predetermined constants.

4: Update the speed and position of the particles: decode the particles and calculate the fitness value of
particles; update the local best value, pbest; obtain the global best, gbest.

5: If the current number of iterations t = T , go to Step 6; otherwise, when Flag = false, go to Step
2; or if the last, go to Step 3.

6: Stop updating particles; quit.

4.1. The Encoding and Decoding of the Particles

This paper proposes an encoding method. It assumes that there are K vehicles, and L customers. It
constructs particles in (L + 2 ∗ K)-dimensional space, in which each dimension is described by a real
number. The front L-dimensions are the total number of the customers, and the later 2 ∗K-dimensions
are the position of the K vehicles in the Descartes figure.

Figure 1. Particle decoding and the set of vehicle routes.
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Algorithm 2 Decoding the algorithm of HPSO
Input: the position of the particle
Output: the set of vehicle routing

1: Construct U , the set of customer priority service:
1.1 set S = {1, 2, . . . , L}, each element of S corresponds to the customer’s number. And U = ∅;
1.2 From S, choose customer C, which corresponds to the minimum value of the front

L-dimensions in the position of the particle, namely xic = min xie(c ∈ S);
1.3 Insert c after u (u is the last element of U );
1.4 Delete c from S

1.5 If S is not empty, go to Step 1.2.
2: Construct V , the matrix of vehicle priority service for the customer:

2.1 Get the position of the vehicle from the position of the particle. For k vehicles,
xrefi = xi,l+j ,yrefj = xi,L+j+1(i ∈ {1, 2, . . . , L}, j ∈ {1, 2, . . . , K}) ;

2.2 For each customer i:
2.2.1 Calculate the distance from the positions of all vehicles, and θj is the distance between

customer i and vehicle J ;
2.2.2 set G = {1, 2, . . . , K}; each element corresponds to the number of vehicles, Vi = ∅;
2.2.3 From G, choose vehicle v, which has the shortest distance from customer i, namely:

θv = min θe, e ∈ G;
2.2.4 Insert v into the end of Vi;
2.2.5 Delete v from G;
2.2.6 If G is not empty, go to Step 2.2.3.

3: Construct R, the set of the vehicle routes:
3.1 Assume h = 1;
3.2 Add customers to the route:

3.2.1 Assume c = Uh (the current customer to be served for) and variable j = 1;
3.2.2 v = Vc,j (the vehicle v serves for customer c);
3.2.3 According to the Insertion Heuristic Algorithm, insert customer c into the route so that

the total costs of the new route is least. This route is regarded as the candidate route;
3.2.4 Check the constraints of the candidate route;
3.2.5 If the candidate route meets the constraints, update Rv by the candidate route, optimize

Rv by
2-opt algorithm, otherwise go to Step 3.3;

3.2.6 If j = K, go to Step 3.3; otherwise, if j = j + 1, go to Step 3.2.2;
3.3 If h = L, quit; otherwise, if h = h+ 1, go to Step 3.2.

Based on particles encoded, we decode the position of the particles to “the list of customer priority
service” and “the matrix of vehicle priority service for the customer”. According to them, we construct
the vehicle routes. The process is shown as Figure 1 and described as follows:

(1) Use the front L-dimensions of the position of the particle to construct the list of customer priority
service, which represents the order of the service for customers. The sorting rules of the list are
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to sort the values of the front L-dimensions in ascending order and then regard the corresponding
subscript value as the service order number of each customer.

(2) Decode the later 2 ∗ K-dimensions to the position of the vehicles, and construct the matrix of
vehicle priority service for customer. This matrix is based on the distance between the position
of vehicles and the position of customers. It refers to the priority of each customer receiving the
service. The closer the distance, the higher the priority.

(3) Build the vehicle routes: according to the list and the matrix, the customers are inserted into the
corresponding vehicle route. When it is completed, the set of vehicle routes will be constructed.

The whole process is shown as Algorithm (2).

4.2. Insertion Heuristic Algorithm

In the process of particle decoding to construct the vehicle route, we need the operation of insertion.
This paper proposes the Insertion Heuristic Algorithm as follows: If after inserting customer u, it meets
Equation (11), we call p as the best position of u in R. C(i, u, j) is the new route that meets the
constraints after inserting u. So, it is necessary to change the start service time of customer (ip, . . . , im)
and to check whether it meets the constraints.

C(i(u), u, j(u)) = min[C(ip−1, u, ip)], p = 1, 2, . . . , n (11)

According to the characteristics of VRPTWs goal, specific heuristic conditions are shown in
Equations (12) and (13):

C11(i, u, j) = diu + duj − µ ∗ dij, µ > 0 (12)

C12(i, u, j) = bju − bj (13)

In these formulas, diu is the distance between customer i and customer u. µ is a constant. bj is the start
time for serving customer j before inserting customer u. bju is the start time after insertion. C11(i, u, j)

is the increased traveling distance from the original route after insertion. C12(i, u, j) is the delay time
serving customer j after insertion.

Considering VRPTW, it is impractical to use the insert method of shortest distance or least time cost.
This is because VRPTW is limited by the constraints of time and route. After all customers are inserted
by this method, the route will not be the shortest. Even the route cannot meet the constraints after several
rounds of insertion. Taken as a compromise, this paper proposes the heuristic insertion conditions that
are shown in Equation (14) and (15):

C1(i, u, j) = α1 ∗ C11(i, u, j) + α2 ∗ C12(i, u, j) α1 + α2 = 1;α1, α2 > 0 (14)

C2(i, u, j) = λ ∗ d0u − C1(i, u, j) λ > 0 (15)

In these formulas, α2, α2, λ are the weighting parameters. C1(i, u, j) is the whole cost and C2(i, u, j)

is the whole income. The heuristic insertion conditions try to construct part of the route instead of
the entire route to maximize the costs of the new route. For example, when u = α1 = λ = 1 and
α2 = 0, c2(i, u, j) is the reduced distance after inserting customer u.
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4.3. COA

The basic idea of COA is: Firstly, because the values of the chaotic variable have to be in the range
of the limited values, it is necessary to convert the variables. Then, optimize the converted variables
according to chaotic rules. Lastly, convert the optimization variables into the original space. Relative to
the irregular and aimless search operation in the problem space, chaos has many advantages, which
is determined by its characteristics. In addition, chaos can avoid the problem of falling into local
optimization that often appears in the evolutionary algorithm and maintains population diversity to
improve the global search ability of the algorithm.

In general, there are a lot of methods to generate chaos, such as Lozi’s mapping [36], logistic mapping,
Ikeda mapping [37], Henon mapping and Tent mapping [38]. Among them, Tent mapping (also known
as a tent mapping) is a kind of piecewise linear one-dimensional mapping, with uniform power spectral
density and probability density and the ideal related characteristic. The mathematical expression is
shown in Equation (16):

f(x) =

{
2x, 0 6 x 6 0.5

2(1− x), 0.5 6 x 6 1
(16)

From Equation (14), we can see that Tent mapping is used to make the chaos process of the float on
the interval [0, 1], and the binary number of the fractional part does an unsigned left shift. These kinds of
mapping characteristics make full use of the computer’s shift operation characteristics (the processor has
a shift operation register, so the operation in the computer processing is highly efficient), so it’s suitable
for computing a large data sequence. The whole process is shown as Algorithm 3:

Algorithm 3 Tent mapping algorithm
Input: particle position vector
Output: chaos transformed particle position vector

1: Do chaos optimization of X(x1, x2, . . . , xD) (the position of the particle). According to the mapping
relationship, z = (x − xmin)/(xmax − xmin), map xi(i = 1, 2, . . . , D) into [-1,1] and get zi(i =

1, 2, . . . , D).
2: Use Eqatuon (14) to generate chaos sequence z′i(i = 1, 2, . . . , D).
3: According to the mapping relationship, x = xmin + z′ ∗ (xmax − xmin), map zi(i = 1, 2, . . . , D) into

the particles position space X ′(x′
1, x

′
2, . . . , x

′
D). Quit.

4.4. Premature Convergence Judgment

In the process of constructing vehicle routes, due to the limits of the vehicles, the time window for
serving the customers, even the insertion algorithm, there are particles that cannot be decoded, that is,
the position of the particle is invalid and cannot be used as a feasible solution.

Based on the above, assume fi is the optimal fitness value of particle i in history. The optimal position
of i in history is a feasible solution. We call this particle the “effective particle”.

favg =
1

M

M∑
i=1

fi, fi /∈ ∞ (17)
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In Equation (17), M is the number of effective particles, and favg is the average of all optimal fitness
values. In the iteration process, if favg has not changed many times, such as 20 or 50, it is necessary to
take measures to increase the diversity of the particle swarm.

5. Experimental Results and Comparisons

This section is devoted to the performance evaluation of HPSO for VRPTW. The adopted benchmarks
and parameter setting will be described in Section 5.1. Section 5.2 describes the parameters analysis of
the Insertion Heuristic Algorithm of HPSO. Section 5.3 details the comparison result of the performance
of HPSO by different problem sets. Section 5.4 describes the comparison results of HPSO and PSO.
Section 5.5 describes the comparison results of HPSO with other state-of-the-art methods. Section 5.6
describes a real-world numerical example of VRPTW.

5.1. Benchmark Description and Parameter Setting

In order to compare the performance of our algorithms on VRPTW, the basic data of our testing
problems adopt Solomon’s benchmark problems [39]. Solomon’s benchmark problems focus on the
factors affecting the route and the scheduling algorithm (including geographical location, the number of
customers in each route, the ratio of customers with time windows and the density and flexibility of time
windows). They are divided into six types of data sets: R1, C1, RC1, R2, C2 and RC2. There are two
goals to solve the data sets:

(1) use the least vehicles, that ism the route that is least;
(2) the total length of all routes that is shortest. The parameters of HPSO are set as Table 1. We use

linear decreasing optimization for inertia factor, w, in the iteration.

Table 1. Parameters setting of hybrid chaos-particle swarm optimization algorithm (HPSO).

Parameter value

population size 100
Number of iterations “t” 1,000
Minimum of the position Xmin 0

Experiments are carried out under the configuration of Windows VistaTM Home Premium, with AMD
Turion (tm) 64 X2 Mobile Technology TL-62 2.10GHz and 2GB RAM. We realize the CGAMO on the
platform, MyEclipse 6.6. The solution of the main problem invokes the linprog function of Matlab7.0.

5.2. Parameters Analysis of Insertion Heuristic Algorithm

Section 4.2 describes an Insertion Heuristic Algorithm of HPSO proposed in this paper. This section
will make some experiments to analyze the parameters of the Insertion Heuristic Algorithm. The
Insertion Heuristic Algorithm plays a key role in the process of constructing the vehicle route. It involves
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four parameters: α1, α2,µ and λ. Among them,α1 + α2 = 1 and α1 affects the increasing distance after
inserting the customer, and α2 affects the delay time after insertion. The six types of data sets have their
own characteristics for all factors from the geographical location to the required time windows. In order
to unify the results, the number of the customers is 100, µ = 0.5,λ = 0.5, α1 is 0.11, 0.21, . . . , 0.91 in
turn and α2 is 0.890.79...0.09 in turn. Select the value and other parameters for each data set; execute
in turn. The result is shown as Figure 2. Based on these results of Figure 2, we can make the following
conclusion on the parameter analysis of the Insertion Heuristic Algorithm.

(1) The parameters can hardly affect the results of C101 and C102. That is because their customer
locations are concentrated and the time windows are [0,1,236] and [0,3,390]; it is relatively large.

(2) On the other hand, R101 and R102 are largely affected by the parameters. Because their customer
locations are a random distribution and the time windows are [0,230] and [0,1,000], it is relatively
small. RC101 and RC201 are between the above. In the process of executing, we must set the
weights of the parameters according to the data characteristics so that we get the better solution.

Figure 2. Results comparison of all data sets. (a) C101; (b) C201; (c) R101; (d) R201;
(e) RC101; (f) RC201.

(a) (b)

(c) (d)
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Figure 2. Cont.

(e) (f)

5.3. HPSO Performance Comparison by Different Problem Sets

In order to evaluate the proposed HPSO on large-scale problems, we tested on a set of 56 Solomon’s
test cases. The aim of the experiments is performance comparison of HPSO for different problem sets in
different iteration times, which can test HPSO convergence speed and sensibility to the problem scale.
The performance comparison results are shown in Tables 2–4. Tables 2–4 compare the performance
produced by the proposed HPSO in the set of C1, C2, R1, R2, RC1 and RC2 for 100, 200 and 500
iterations. The rate in Tables 2–4 expresses the ratio of the difference value of the distance between
the best known result and the different iteration time results. Based on these results of Tables 2–4,
we can make the following conclusion on the HPSO performance of different problem set for solving
the VRPTW.

(1) In a set of C, the coverage speed to a good solution is fast. It gets an approximately best result by
100 iteration times, many problems of C coverage to the best known results by 200 iteration times
and all problems of C coverage to the best known results by 500 iteration times. We can see that
HPSO has a better performance on problem set C than Tavakkoli-Moghaddam et al. [24].

(2) In a set of R, the average rate of 100 iteration times is nearly 15% for each problem, the average
rate of 200 iteration times is nearly 4% and almost all problems of C coverage to the best known
results by 500 iteration times. We can see that HPSO has a better performance on problem set R
than Tavakkoli-Moghaddam et al. [24].

(3) In a set of RC, the average rate of 100 iteration times is nearly 13% for each problem, the average
rate of 200 iteration times is nearly 6% and almost all problems of C coverage to the best known
results by 500 iteration times, except RC101, RC102, RC105, RC107, RC201, RC202, RC203
and RC207. We can see that HPSO has a better performance on problem set RC than Tavakkoli-
Moghaddam et al. [24].
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Table 2. Comparison of the performance of the proposed HPSO for a set C.

Instance Best known result 100 iterations 200 iterations 500 iterations
Vehicle Distance Vehicle Distance Rate % Vehicle Distance Rate % Vehicle Distance Rate %

C101 10 828.94 10 831.01 0.25 10 828.94 0.00 10 828.94 0.00
C102 10 828.94 10 831.45 0.30 10 828.94 0.00 10 828.94 0.00
C103 10 828.06 10 830.21 0.26 10 828.68 0.08 10 828.06 0.00
C104 10 824.78 10 827.77 0.36 10 826.31 0.19 10 824.78 0.00
C105 10 828.94 10 835.69 0.82 10 828.94 0.00 10 828.94 0.00
C106 10 828.94 10 834.97 0.73 10 828.94 0.00 10 828.94 0.00
C107 10 828.94 10 836.74 0.94 10 828.94 0.00 10 828.94 0.00
C108 10 828.94 10 836.55 0.92 10 828.94 0.00 10 828.94 0.00
C109 10 828.94 10 835.99 0.85 10 828.94 0.00 10 828.94 0.00
C201 3 591.56 3 594.11 0.43 3 591.99 0.07 3 591.56 0.00
C202 3 591.56 3 592.95 0.24 3 591.56 0.00 3 591.56 0.00
C203 3 591.17 3 592.52 0.23 3 591.31 0.02 3 591.17 0.00
C204 3 590.60 3 593.62 0.51 3 592.10 0.25 3 590.60 0.00
C205 3 588.88 3 591.67 0.47 3 589.63 0.13 3 588.88 0.00
C206 3 588.49 3 592.68 0.71 3 590.12 0.28 3 588.49 0.00
C207 3 588.29 3 593.74 0.93 3 589.68 0.24 3 588.29 0.00
C208 3 588.32 3 593.27 0.84 3 592.12 0.65 3 588.32 0.00

Table 3. Comparison of the performance of the proposed HPSO for a set R.

Instance Best known result 100 iterations 200 iterations 500 iterations
Vehicle Distance Vehicle Distance Rate % Vehicle Distance Rate % Vehicle Distance Rate %

R101 19 1645.79 20 1768.39 7.45 19 1694.21 2.94 19 1684.10 2.33
R102 17 1486.12 18 1625.32 9.37 17 1602.01 7.80 17 1492.13 0.40
R103 13 1292.68 13 1435.62 11.06 13 1359.69 5.18 13 1300.10 0.57
R104 9 1007.24 9 1289.96 28.07 9 1109.32 10.14 9 1007.24 0.00
R105 14 1377.11 15 1541.21 11.92 14 1487.84 8.04 14 1380.14 0.22
R106 12 1251.98 13 1398.65 11.72 12 1296.37 3.55 12 1257.63 0.45
R107 10 1104.66 11 1232.28 11.55 10 1164.21 5.39 10 1104.66 0.00
R108 9 960.88 10 1012.96 5.42 9 1002.64 4.35 9 960.88 0.00
R109 11 1194.73 12 1301.27 8.92 11 1259.68 5.44 11 1200.01 0.44
R110 10 1118.59 10 1241.74 11.01 10 1187.69 6.18 10 1118.59 0.00
R111 10 1096.72 10 1279.68 16.68 10 1124.08 2.50 10 1099.78 0.28
R112 9 982.14 10 1214.19 23.63 9 1023.15 4.18 9 984.10 0.20
R201 4 1253.37 4 1458.35 16.35 4 1296.39 3.43 4 1253.37 0.00
R202 3 1191.70 3 1354.96 13.70 3 1264.54 6.11 3 1196.39 0.39
R203 3 939.54 3 1102.39 17.33 3 978.98 4.20 3 941.58 0.22
R204 2 825.52 2 1021.97 23.80 2 874.18 5.89 2 825.52 0.00
R205 3 994.42 3 1124.02 3.03 3 1032.68 3.85 3 996.85 0.24
R206 3 906.14 3 1168.38 28.94 3 965.47 6.55 3 906.14 0.00
R207 2 893.33 2 1038.76 16.28 2 938.51 5.06 2 893.33 0.00
R208 2 726.75 2 874.10 20.28 2 745.65 2.60 2 726.75 0.00
R209 3 909.16 3 1094.52 20.39 3 934.74 2.81 3 910.85 0.19
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Table 3. Cont.

Instance Best known result 100 iterations 200 iterations 500 iterations
Vehicle Distance Vehicle Distance Rate % Vehicle Distance Rate % Vehicle Distance Rate %

R210 3 939.34 3 1034.67 10.15 3 968.14 3.07 3 939.34 0.00
R211 2 892.71 2 968.98 8.54 2 913.61 2.34 2 892.71 0.00

Table 4. Comparison of the performance of the proposed HPSO for a set RC.

Instance Best known result 100 iterations 200 iterations 500 iterations
Vehicle Distance Vehicle Distance Rate % Vehicle Distance Rate % Vehicle Distance Rate %

RC101 14 1696.94 15 1869.32 10.16 15 1786.32 5.27 14 1739.68 5.70
RC102 12 1554.75 13 1754.98 12.88 13 1652.32 6.28 12 1605.25 3.25
RC103 11 1261.67 12 1475.52 16.95 11 1387.63 9.98 11 1261.67 0.00
RC104 10 1135.48 11 1296.36 14.17 10 1196.68 5.39 10 1135.48 0.00
RC105 13 1629.44 14 1872.39 14.91 14 1796.31 10.24 13 1729.84 6.18
RC106 11 1424.73 12 1596.37 12.05 11 1496.39 5.03 11 1424.73 0.00
RC107 11 1230.48 12 1421.01 15.48 12 1301.21 5.75 11 1277.46 3.82
RC108 10 1139.82 10 1396.39 22.51 10 1198.69 5.17 10 1139.82 0.00
RC201 4 406.91 4 1742.39 23.85 4 1510.36 7.35 4 1486.02 5.62
RC202 3 1367.09 3 1584.24 15.88 3 1421.35 3.97 3 1399.69 2.39
RC203 3 1049.62 3 1257.47 19.80 3 1187.10 13.10 3 1055.25 0.54
RC204 3 798.41 3 902.10 12.99 3 809.69 1.41 3 798.41 0.00
RC205 4 1297.19 4 1547.96 19.33 4 1352.25 4.25 4 1297.19 0.00
RC206 3 1146.32 3 1321.17 15.25 3 1169.39 2.01 3 1146.32 0.00
RC207 3 1061.14 3 1268.39 19.53 3 1186.39 11.80 3 1076.96 1.49
RC208 3 828.14 3 1000.14 20.77 3 896.10 8.21 3 828.14 0.00

5.4. Comparison Results of HPSO and PSO

In HPSO, in order to avoid falling into the local optimum, this paper uses COA and Gaussian mutation.
In order to add the number of particles in the early stage and to accelerate the searching speed in solution
space, this paper uses COA to reinitialize the particle swarm. To verify results, this section makes
experiments to compare the HPSO and basic PSO and tests the effect of COA in HPSO. The results are
shown in Table 5. Table 5 compares the performance produced by the proposed HPSO and basic PSO
in the set C1, R1 and RC1. The run-time in Table 5 expresses the solving time of problems by HPSO
or PSO. The rate in Table 5 expresses the ration of different value of distance between the best known
result and HPSO or PSO results. If the rate value is negative, it means that the distance value of HPSO
or PSO is shorter than the best known results. If the rate value is a positive number, it means that the
distance value of HPSO or PSO is bigger than the best known results. Based on these results of Table 5,
we can make the following conclusion on the performance of HPSO and PSO on solving the VRPTW.

(1) HPSO can get all the best known results, and sometimes, it gets better results than the best known
result, such as for problems R101, R103, R105, R106 and RC101; while basic PSO can hardly
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cover the best known results for almost all problems of C1, R1 and RC1. We can see that HPSO
has better performance than basic PSO.

(2) HPSO covers the best known results at nearly two minutes for R1, one minute for C1 and at most
three minutes for RC1. PSO covers its best results at least three minutes for R1, two minutes for
C1 and four minutes for RC1. We can see that COA can effectively accelerate the searching speed
in solution space, and the HPSO has better performance coverage speed than basic PSO.

Table 5. Comparison of the performance of HPSO and PSO.

Instance Best known result HPSO PSO
Vehicle Distance Vehicle Distance Run-time (s) Rate % Vehicle Distance Run-time (s) Rate %

R101 19 1645.79 19 1640.32 135.36 -0.33 19 1689.66 196.35 2.67
R102 17 1486.12 17 1486.12 123.96 0.00 17 1497.47 186.47 0.76
R103 13 1292.68 13 1286.96 116.35 -0.44 13 1329.65 175.85 2.86
R104 9 1007.24 9 1007.24 114.24 0.00 9 1087.29 168.96 7.95
R105 14 1377.11 14 1369.11 125.85 -0.58 14 1489.96 172.32 7.98
R106 12 1251.98 12 1248.47 121.18 -0.28 12 1306.65 169.69 4.37
R107 10 1104.66 10 1104.66 114.96 0.00 10 1254.19 164.32 13.54
R108 9 960.88 9 960.88 109.69 0.00 9 990.74 161.85 3.11
R109 11 1194.73 11 1194.73 115.65 0.00 11 1201.78 167.98 0.59
R110 10 1118.59 10 1118.59 112.39 0.00 10 1189.63 164.91 6.35
R111 10 1096.72 10 1096.72 116.21 0.00 10 1096.72 172.21 0.00
R112 9 982.14 9 982.14 105.24 0.00 9 982.14 168.97 0.00
C101 10 828.94 10 828.94 58.65 0.00 10 838.64 102.64 1.17
C102 10 828.94 10 828.94 59.63 0.00 10 859.06 106.39 3.63
C103 10 828.06 10 828.06 61.24 0.00 10 828.06 100.23 0.00
C104 10 824.78 10 824.78 52.47 0.00 10 842.98 99.68 2.20
C105 10 828.94 10 828.94 61.03 0.00 10 858.32 109.64 3.54
C106 10 828.94 10 828.94 60.14 0.00 10 863.21 108.47 4.13
C107 10 828.94 10 828.94 61.07 0.00 10 835.69 106.85 0.81
C108 10 828.94 10 828.94 57.41 0.00 10 839.89 102.36 1.32
C109 10 828.94 10 828.94 56.39 0.00 10 828.94 100.29 0.00

RC101 14 1696.94 14 1689.36 165.21 -0.45 14 1851.09 269.65 9.08
RC102 12 1554.75 12 1554.75 159.21 0.00 12 1618.47 256.32 4.10
RC103 11 1261.67 11 1261.67 138.69 0.00 11 1326.41 259.34 5.13
RC104 10 1135.48 10 1135.48 135.21 0.00 10 1169.09 241.17 2.96
RC105 13 1629.44 13 1629.44 168.95 0.00 13 1684.46 239.69 3.50
RC106 11 1424.73 11 1424.73 154.12 0.00 11 1557.02 241.73 9.28
RC107 11 1230.48 11 1230.48 139.68 0.00 11 1247.65 235.25 1.40
RC108 10 1139.82 10 1139.82 135.87 0.00 10 1293.21 231.04 13.46

Because the number of the vehicles and routes in different data sets are different, this paper only
chooses R201, RC101 and RC201 to make an experiment. The comparisons of the number and the
average optimal fitness value in history of the effective particle are shown as Figure 3. From the data of
Figure 3, it is easy to get HPSO better than PSO. Although, in RC101, the solution of HPSO is worse
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than PSO. The number of effective particles and the average optimal fitness value in history of HPSO
are better than PSO. This shows that HPSO is more effective.

Figure 3. The comparisons of the number and the average optimal fitness value in the history
of the effective particle. (a) the number of effective particles of R201; (b) the average optimal
fitness value in history of R201; (c) the number of effective particles of RC101; (d) the
average optimal fitness value in history of RC101; (e) the number of effective particles of
RC201; (f) the average optimal fitness value in history of RC201.

(a) (b)

(c) (d)

(e) (f)
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5.5. Comparison Result of HPSO with Other State-of-the-art Methods

In order to compare the efficiency of different algorithms to VRPTW, The state-of-the-art method
of Goal Programming and Genetic Algorithm (GPGA) [28], Improved Large Neighborhood Search
(I-LNS) [22] and Ant Colony Optimization Hybridized with Insertion Heuristics (ACO-IH) [25] are
used to compare HPSO. The results of comparison experiments of VRPTW are shown in Tables 6–8.
The rate in tables 6–8 expresses the ratio of the difference value of the distance between HPSO and other
state-of-the-art methods. If the rate value is negative, it means that the distance value of HPSO is shorter
than other state-of-the-art methods. If the rate value is a positive number, it means that the distance value
of HPSO is bigger than other state-of-the-art methods. Based on these results of Tables 6–8, we can
make the following conclusion on the effectiveness of the HPSO approach for solving the VRPTW.

Table 6. Comparison results of different methods for vehicle routing problem with time
windows (VRPTW) of R1.

Instance HPSO Best known results GPGA I-LNS ACO-Ih
Vehicle Distance CPU(s) Vehicle Distance Rate % Vehicle Distance Rate % Vehicle Distance Rate % Vehicle Distance Rate %

R101 19 1640.32 135.36 19 1645.79 -0.33 19 1677.00 -2.44 18 1612.29 1.71 19 1650.80 -0.64
R102 17 1486.12 123.96 17 1486.12 0.00 18 1511.80 -1.73 16 1473.41 0.86 17 1486.12 0.00
R103 13 1286.96 116.35 13 1292.68 -0.44 14 1287.00 -0.03 12 1279.37 0.59 13 1292.68 -0.44
R104 9 1007.24 114.24 9 1007.24 0.00 10 974.24 3.27 10 1025.47 -1.81 9 1007.31 -0.01
R105 14 1369.11 125.85 14 1377.11 -0.58 15 1424.60 -4.05 14 1377.95 -0.65 14 1377.11 -0.58
R106 12 1248.47 121.18 12 1251.98 -0.28 13 1270.30 -1.75 12 1276.48 -2.24 12 1252.03 -0.29
R107 10 1104.66 114.96 10 1104.66 0.00 11 1108.80 -0.38 11 1153.86 -4.45 10 1104.66 0.00
R108 9 960.88 109.69 9 960.88 0.00 10 971.91 -1.15 10 990.82 -3.12 9 960.88 0.00
R109 11 1194.73 115.65 11 1194.73 0.00 12 1212.30 -1.47 12 1179.73 1.26 11 1194.73 0.00
R110 10 1118.59 112.39 10 1118.59 0.00 12 1156.5 -3.39 11 1113.10 0.49 10 1118.84 -0.02
R111 10 1096.72 116.21 10 1096.72 0.00 11 1111.9 -1.38 11 1155.39 -5.35 10 1096.73 0.00
R112 9 982.14 105.24 9 982.14 0.00 10 1036.9 -5.58 10 981.46 0.07 9 985.28 -0.32

Table 7. Comparison results of different methods for VRPTW of C1.

Instance HPSO Best known results GPGA I-LNS ACO-Ih
Vehicle Distance CPU(s) Vehicle Distance Rate % Vehicle Distance Rate % Vehicle Distance Rate % Vehicle Distance Rate %

C101 10 828.94 58.65 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00
C102 10 828.94 59.63 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00
C103 10 828.06 61.24 10 828.06 0.00 10 828.06 0.00 10 839.37 -1.37 10 828.06 0.00
C104 10 824.78 52.47 10 824.78 0.00 10 824.78 0.00 10 838.98 -1.72 10 824.78 0.00
C105 10 828.94 61.03 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00
C106 10 828.94 60.14 10 828.94 0.00 10 828.94 0.00 10 842.10 -1.59 10 828.94 0.00
C107 10 828.94 61.07 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00
C108 10 828.94 57.41 10 828.94 0.00 10 828.94 0.00 10 832.74 -0.46 10 828.94 0.00
C109 10 828.94 56.39 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00

(1) The solution quality computed by HPSO can approximate the best known results well. If the travel
distances and the number of used vehicles are taken into account seriously, the HPSO can almost
get the best results of C1, R1 and RC1.

(2) Comparing with the results generated by GPGA, I-LNS and ACO-IH, the results of HPSO are
almost better than them. The average CPU times of HPSO are less than 3 min. The results are hard
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to systematically compare with other state-of-the-art methods, because there are big differences in
the run environments.

Table 8. Comparison results of different methods for VRPTW of RC1.

Instance HPSO Best known results GPGA I-LNS ACO-Ih
Vehicle Distance CPU(s) Vehicle Distance Rate % Vehicle Distance Rate % Vehicle Distance Rate % Vehicle Distance Rate %

RC101 14 1689.36 165.21 14 1696.94 -0.45 15 1690.60 -0.07 15 1671.54 1.06 14 1696.94 -0.45
RC102 12 1554.75 159.21 12 1554.75 0.00 14 1509.40 2.92 13 1447.14 6.92 12 1554.75 0.00
RC103 11 1261.67 138.69 11 1261.67 0.00 12 1331.80 -5.56 11 1313.79 -4.13 11 1262.02 -0.03
RC104 10 1135.48 135.21 10 1135.48 0.00 11 1177.20 -3.67 11 1163.54 -2.47 10 1135.48 0.00
RC105 13 1629.44 168.95 13 1629.44 0.00 15 1611.50 1.10 13 1502.48 7.79 13 1629.44 0.00
RC106 11 1424.73 154.12 11 1424.73 0.00 13 1437.60 -0.90 12 1406.25 1.30 11 1424.73 0.00
RC107 11 1230.48 139.68 11 1230.48 0.00 11 1222.10 0.68 11 1278.96 -3.94 11 1230.48 0.00
RC108 10 1139.82 135.87 10 1139.82 0.00 11 1156.50 -1.46 11 1172.83 -2.90 10 1139.82 0.00

5.6. A Real-World Numerical Example

A real-world numerical example is provided here to illustrate the effectiveness of HPSO. The data
of Yunda Expressage Company of Wuhan City is used to test the sensitivity of the algorithm to the
specimen data. One-day data of the Yunda Expressage Company of Wuhan City of Hongshang district is
transformed as a Solomon problem set format, which is shown in Table 9. Yunda Expressage Company
of Wuhan City has 10 vehicles. They have 60 delivery nodes in Hongshang district. The delivery nodes
can be defined as the customers of Solomon problem data set. We use HPSO to solve this real-world
numerical example, and the computing result is shown in Table 10. We use other state-of-the-art methods
to solve this example, and the comparison result of HPSO with other state-of-the-art methods is shown
in Table 11. Based on these results of Tables 9–11, we can make the following conclusion on the
performance of the HPSO and other state-of-the-art methods on solving a real-world numerical example.

Table 9. One-day data of Yunda expressage company of Wuhan city.

Delivery node N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15

XCOORD 90 50 120 60 20 10 15 30 180 60 20 10 80 70 120
YCOORD 120 60 20 30 120 150 30 170 25 120 100 150 150 60 100
DEMAN 24 10 5 10 5 10 15 10 6 5 6 4 6 6 10

READY TIME 0 10 12 2 6 4 2 2 6 2 4 10 10 2 6
DUE TIME 48 28 24 18 18 24 12 16 24 16 24 24 24 12 18

SERVICE TIME 1 2 1 2 1 2 1 1 1 1 1 1 2 1 1
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Table 9. Cont.

Delivery node N16 N17 N18 N19 N20 N21 N22 N23 N24 N25 N26 N27 N28 N29 N30

XCOORD 120 30 120 60 120 180 170 100 25 30 65 160 150 30 65
YCOORD 90 60 80 50 10 160 30 180 125 155 185 110 10 185 95
DEMAN 10 5 5 14 10 2 6 10 16 10 10 10 20 5 12

READY TIME 0 0 10 15 10 0 15 2 10 12 24 2 6 10 5
DUE TIME 24 12 24 24 36 24 30 24 24 24 48 16 14 24 15

SERVICE TIME 2 1 1 4 1 1 1 1 1 1 1 1 1 1 1

Delivery node N31 N32 N33 N34 N35 N36 N37 N38 N39 N40 N41 N42 N43 N44 N45

XCOORD 75 40 175 45 105 45 65 130 180 160 125 105 55 170 120
YCOORD 35 80 25 35 120 150 15 170 125 120 45 115 40 60 50
DEMAN 24 10 5 10 5 10 15 10 6 5 6 4 6 6 10

READY TIME 0 10 12 2 6 4 2 2 6 2 4 10 10 2 6
DUE TIME 48 28 24 18 18 24 12 16 24 16 24 24 24 12 18

SERVICE TIME 1 2 1 2 1 2 1 1 1 1 1 1 2 1 1

Delivery node N46 N47 N48 N49 N50 N51 N52 N53 N54 N55 N56 N57 N58 N59 N60

XCOORD 35 45 120 75 120 180 170 100 25 130 75 45 135 75 105
YCOORD 95 10 95 45 115 55 45 75 85 105 95 120 45 50 105
DEMAN 10 5 5 14 10 2 6 10 16 10 10 5 5 14 10

READY TIME 0 0 10 15 10 0 15 2 10 12 0 0 10 15 10
DUE TIME 24 12 24 24 36 24 30 24 24 24 24 12 24 24 36

SERVICE TIME 2 1 1 4 1 1 1 1 1 1 2 1 1 4 1

Table 10. The computing result of the real-word numerical example by HPSO.

Vehicle ID The Amount of delivery node delivery node

V01 8 [N1] [N13] [N14] [N35] [N42] [N49] [N53] [N60]
V02 7 [N15] [N16] [N18] [N45] [N48] [N50] [N55]
V03 11 [N8] [N9] [N21] [N23] [N27] [N33] [N39] [N40] [N44][N51][N52]
V04 11 [N2] [N4] [N17] [N19] [N30] [N32] [N34] [N43] [N46] [N47] [N59]
V05 6 [N5] [N6] [N11] [N12] [N24] [N25]
V06 6 [N3] [N20] [N28] [N38] [N41] [N58]
V07 7 [N10] [[N26] [N29] [N31] [N36] [N56] [N57]
V08 4 [N7] [N22] [N37] [N54]
V09
V10

(1) HPSO coverage a good solution, which can satisfy the company’s requirement. HPSO can get less
distance than almost all other state-of-the-art methods, just a little bigger than the LNS method,
but the LNS method needs more vehicles to support it.

(2) HPSO coverage to a satisfied solution by least iteration times than other state-of-the-art methods.
It uses the least run-time times to solve this example compared to other state-of-the-art methods.
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(3) In conclusion, HPSO achieves better performance than other state-of-the-art methods on solving
real-world VRPTW.

Table 11. The result of comparison experiments of the real-world numerical example.

Algorithm Coverage iteration times Run-time (s) Vehicle Distance

HPSO 478 121.36 8 1687.28
PSO 1586 298.68 10 1965.24

GPGA 798 187.54 9 1712.98
SA 1025 247.87 10 1701.41
TS 981 199.68 10 1689.10

ACO-IH 1014 245.63 9 1754.98
I-LNS 765 178.69 9 1685.24

6. Conclusions

VRPTW has drawn great interest in the field of vehicle routing. The research area of the problem
also expanded to water carriage, aviation, logistics, industrial management and communication. Most
researchers use heuristic evolutionary algorithms to solve it. However, the principles of these heuristic
algorithms are mostly complex and need more optimization work. This paper proposes a hybrid PSO
algorithm, combining the chaos optimization algorithm and the heuristic algorithm, with the purpose of
improving the number of effective particles and avoiding falling into local optimization.

The experiments mainly analyze the influence of the insertion heuristic algorithm parameters and
comparison of HPSO with state-of-the-art methods. From the experiments, it concludes that:

(1) it is necessary to set the weights for the parameters according to the characteristics of customer
locations and time windows. When there are feasible solutions, using the Chaos Optimization
Algorithm to re-initialize the particle swarm can speed up the convergence rate. Using CAO and
Gaussian mutation can further avoid falling into the local optimum.

(2) Using the Solomon benchmark, HPSO achieves much better performance than the other state-of-
the-art methods in converging speed and solutions.

(3) Using a real-world numerical example, HPSO covers a better solution than the other state-of-the-
art methods, and its coverage iteration times and run-time times are also the least.

Although HPSO for VRPTW obtains satisfactory achievements, there are still some spaces for
improvement, such as how to effectively construct the initial solution and how to precisely judge the
local optimal solution. These would be explored in our future work.
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