
Entropy 2013, 15, 1357-1374; doi:10.3390/e15041357
OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

Outer Synchronization between Fractional-Order Complex
Networks: A Non-Fragile Observer-based Control Scheme
Meichun Zhao 1 and Junwei Wang 2,*

1 Department of Applied Mathematics, Guangdong University of Finance, Guangzhou 510521, China;
E-Mail: zhaomeichungz@tom.com

2 Cisco School of Informatics, Guangdong University of Foreign Studies, Guangzhou 510006, China

* Author to whom correspondence should be addressed; E-Mail: wangjunweilj@yahoo.com.cn;
Tel.: +86-20-39328577; Fax: +86-20-39328032.

Received: 25 February 2013; in revised form: 4 April 2013 / Accepted: 8 April 2013 /
Published: 15 April 2013

Abstract: This paper addresses the global outer synchronization problem between two
fractional-order complex networks coupled in a drive-response configuration. In particular,
for a given fractional-order complex network composed of Lur’e systems, an observer-type
response network with non-fragile output feedback controllers is constructed. Both additive
and multiplicative uncertainties that perturb the control gain matrices are considered.
Then, using the stability theory of fractional-order systems and eigenvalue distribution
of the Kronecker sum of matrices, we establish some sufficient conditions for global
outer synchronization. Interestingly, the developed results are cast in the format of linear
matrix inequalities (LMIs), which can be efficiently solved via the MATLAB LMI Control
Toolbox. Finally, numerical simulations on fractional-order networks with nearest-neighbor
and small-world topologies are given to support the theoretical analysis.
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1. Introduction

Most real systems in nature, society and engineering can be properly described by models of complex
networks of interacting dynamical units with diverse topologies [1]. In complex networks, various
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collective behaviors can emerge through the interaction of the units, among which synchronization
represents one of the most interesting ones. Since the first observation of synchronization phenomenon
of two pendulum clocks by Huygens in 1665, this phenomenon has been discovered in many biological
and physical systems, such as pacemaker cells in the heart and nervous systems, synchronously flashing
fireflies, networks of neurons in the circadian pacemaker [2,3]. Another topic that is closely related to the
synchronization of complex networks is the consensus of multi-agent systems, which means that a team
of agents reaches an agreement on certain quantities of interest through local communication. The study
of consensus problem not only helps us understand natural phenomena (e.g., schooling of fish, flocking
of birds and swarming of bees), but also has a variety of engineering applications (e.g., cooperative
control of unmanned aerial vehicles, rendezvous of mobile robots and communication among sensor
networks) [4]. Recently, the relation between synchronization of complex networks and consensus of
multi-agent systems has been discussed [5,6]. The past few years have witnessed dramatic advances
concerned with synchronization of complex networks and consensus of multi-agent systems (for more
details, see [7–17] and references therein).

Notwithstanding the vast technical literature on synchronization, the great majority of research efforts
has focused on complex networks of coupled integer-order systems, whose dynamics are described
by integer-order differential equations. However, it has been recognized that many physical systems
are more suitable to be modeled by fractional-order differential equations (i.e., differential equations
involving fractional-order derivatives) rather than the classic integer-order ones [18,19]. Fractional-order
derivatives provide an excellent instrument for the description of memory and hereditary properties of
various materials and processes. Moreover, they include traditional integer-order derivatives as a special
case. In addition, many natural collective behaviors can be explained by the complex networks with
fractional-order dynamics: for example, the synchronized motion of agents in fractional circumstances,
such as macromolecule fluids and porous media [20–22]. Therefore, it is meaningful to study
synchronization problem in complex networks of coupled fractional-order systems. For convenience,
we here call networks composed of integer-order and fractional-order systems “integer-order complex
networks (ICNs)” and “fractional-order complex networks (FCNs)”, respectively.

In recent years, synchronization in FCNs has begun to receive research attention within the
scientific community [23–28], with the first systematic studies on synchronization of FCNs emerging
in [29]. A common underlying assumption in the above mentioned literature is that they describe
the synchronization behavior inside a single network, which has been termed “inner synchronization”.
For this case, it has been shown that stability of the synchronized state depends on the details of the
underlying network topology. The route to inner synchronization differs from the synchronization taking
place between two coupled networks. In the latter case, also known as “outer synchronization”, the
corresponding nodes of two coupled networks will achieve synchronization [30]. In the real world, there
are a great many examples about relationships between different networks, such as the original spreading
of infectious diseases between two communities, the balance of beneficial bacteria and pathogenic
bacteria in our digestive systems, predator-prey interactions in ecological systems. This shows the great
importance and challenge to study the dynamics between two coupled networks.

Despite the fact that some advances have been made for outer synchronization [31–38], these
literatures almost exclusively report outer synchronization between coupled ICNs. For outer
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synchronization between two FCNs, the related research work is just beginning and the only two
attempts is the work in [39,40]. In [39], the authors treated outer synchronization problem between
two different bidirectionally coupled FCNs. However, the stability condition in that work depends
on the eigenvalues of a large system matrix. From the viewpoint of computational complexity, the
eigenvalue computation of such large size matrix is difficult and even prohibitive. Another work in [40]
considered the robust outer synchronization in a setup consisting of two FCNs coupled unidirectionally
by way of an open-plus-closed-loop scheme. Although their approach avoids the need to compute
eigenvalues of a large system matrix, the outer synchronization behavior is achieved in the “local” sense,
not in the “global” sense. When initial conditions of two FCNs lie far away from each other, the two
FCNs in [40] would fail to achieve outer synchronization. Therefore, whether outer synchronization
behavior between two FCNs can be achieved globally still remains an open problem, which motivates
the research of this work. Another motivation comes from concerns on controller gain variations. In
practical applications, uncertainties or inaccuracies do occur in the controller implementation stage
due to finite word length, round-off errors in numerical computations and finite resolution measuring
instruments [41]. Consequently, even though the designed controllers are robust with respect to system
uncertainties, they may be very fragile to their own uncertainties. This brings the so-called non-fragile
controller design problem, i.e., how to design a controller such that the controller is insensitive (or
resilient) to some uncertainties in its coefficients. To the best of authors’ knowledge, the non-fragile
control problem for global outer synchronization in coupled FCNs has never been reported in the
literature. The above situation is exactly what concerns and interests us.

The aim of this paper is to discuss the global outer synchronization problem between coupled FCNs
by designing appropriate non-fragile controllers. We will first construct two drive-response coupled
FCNs from the viewpoint of observer theory. Then, using the stability theory of fractional-order systems
and the characteristics of the eigenvalue distribution of Kronecker sum of two matrices, we present a
basic theorem for outer synchronization. Based on this basic theorem, two sufficient conditions for
outer synchronization in the LMI format are derived for the additive and multiplicative controller gain
perturbations, respectively. Finally, the effectiveness and feasibility of the designed control strategy for
outer synchronization are demonstrated by numerical simulations on chaotic drive-response FCNs with
nearest-neighbor or small-world topologies.

The organization of this work is as follows. In Section 2, the preliminaries and problem statement
are introduced. The outer synchronization analysis for two designed coupled FCNs is studied and
synchronization criteria are proposed in Section 3. In Section 4, corresponding numerical simulations
are presented. Finally, conclusions are drawn in Section 5.

Notations. In the sequel, if not explicitly stated, matrices are assumed to have compatible dimensions
for algebraic operations. Rn denotes the n-dimensional Euclidean space, Rm×n is the set of all
m× n real matrices; In represents the n× n identity matrix, I means an identity matrix of appropriate
order; the shorthand diag{· · · } represents a block diagonal matrix; and the superscript “T ” stands
for matrix transposition. λmin(A) and λmax(A) denote the smallest and the largest eigenvalues of
a real symmetric matrix A, respectively. The operator Sym(A) denotes A + AT . The notation
P > 0 (≥ 0, < 0, ≤ 0) means that P is positive (semi-positive, negative, semi-negative) definite, and
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the symbol ⋆ denotes the elements below the main diagonal of a symmetric block matrix. For A ∈ Rm×n

and B ∈ Rp×q, A⊗B ∈ Rmn×pq denotes the Kronecker product of the two matrices.

2. Preliminaries and Network Model

2.1. Basic Concepts and Lemmas

In this section, we first recall some definitions related to fractional-order derivatives that will
be used throughout this paper. Note that there are different definitions for fractional derivatives,
such as Grünwald–Letnikov, Riemann–Liouville, and Caputo definitions [18]. Here we make use of
the following Caputo fractional derivative, because its Laplace transform allows utilization of initial
conditions of classical integer-order derivative that has known physical interpretations.
Definition 2.1. Let m− 1 < α ≤ m, with m ∈ N, the Caputo fractional derivative is defined as

Dα
t h(t) = Jm−α

t Dm
t h(t) =


1

Γ(m− α)

∫ t

0

(t− τ)m−α−1h(m)(τ)dτ, α ̸= m

h(m)(t), α = m

where h(m)(t) = dmh(t)
dtm

is the ordinary derivative of integer order m.
To prove the main results in the next section, we need the following lemmas.

Lemma 2.2 ([42]). For the linear fractional-order system

Dα
t x(t) = Ax(t),with x(0) = x0 (1)

where 0 < α < 1, x ∈ Rn and A ∈ Rn×n. System (1) is asymptotically stable if and only if

|arg(spec(A))| > απ

2
(2)

where spec(A) is the spectrum of system matrix A.
Lemma 2.3 ([43]). Let A ∈ Rn×n have eigenvalues λi (1 ≤ i ≤ n), and let B ∈ Rm×m have eigenvalues
µi (1 ≤ i ≤ m). Then the Kronecker sum A⊕B , (Im⊗A)+(B⊗In) ∈ Rmn×mn has mn eigenvalues

λ1 + µ1, · · · , λ1 + µm, λ2 + µ1, · · · , λ2 + µm, · · · , λn + µ1, · · · , λn + µm

Lemma 2.4 ([44]). Let A ∈ Rn×n and 0 < α < 1. The fractional-order system Dα
∗x(t) = Ax(t)

is asymptotically stable if and only if there exist two real symmetric positive definite matrices Pk1 ∈
Rn×n (k = 1, 2), and two skew-symmetric matrices Pk2 ∈ Rn×n (k = 1, 2), such that

2∑
i=1

2∑
j=1

Sym{Θij ⊗ (APij)} < 0 (3)

[
P11 P12

−P12 P11

]
> 0,

[
P21 P22

−P22 P21

]
> 0 (4)
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where

Θ11 =

[
sinθ −cosθ
cosθ sinθ

]
, Θ12 =

[
cosθ sinθ
−sinθ cosθ

]

Θ21 =

[
sinθ cosθ
−cosθ sinθ

]
, Θ22 =

[
−cosθ sinθ
−sinθ −cosθ

]
, θ =

qπ

2

Lemma 2.5 ([45]). For matrices X and Y with appropriate dimensions, the following inequality holds
for ε > 0

XTY + Y TX < εXTX +
1

ε
Y TY (5)

Lemma 2.6 ([46]). For a given symmetric matrix S = ST , the following assertions are equivalent

(1) S =

[
S11 S12

S21 S22

]
< 0;

(2) S11 < 0, S22 − ST
12S

−1
11 S12 < 0;

(3) S22 < 0, S11 − S12S
−1
22 S

T
12 < 0.

2.2. Network Model

In this paper, we will focus on the outer synchronization problem of two coupled fractional-order
complex networks with the drive-response (or master-slave, unidirectional) coupling structure, in which
the drive network does not receive any information from the response network.

The drive network with each node being a n-dimensional fractional-order differential system in the
form of Lur’e type is described as

Dα
t xi =Axi + f(Hxi, t) +

N∑
j=1

cijxj

yi =Hxi, i = 1, 2, · · · , N

(6)

where 0 < α < 1 is the fractional commensurate order, xi ∈ Rn and yi ∈ R denote the state and
scalar output vectors of the i-th node, respectively. The nonlinear vector-valued function f(·, ·) :

R × R −→ Rn is continuously differentiable. The constant matrix A ∈ Rn×n combing with
f(·, ·) describes the dynamics of individual nodes. H ∈ R1×n is the observer matrix. The matrix
C = (cij) ∈ RN×N is the outer coupling matrix of the drive network, which denotes the network
topology, and is defined as follows: if there is a connection between node i and node j (i ̸= j), then
cij = cji > 0; otherwise, cij = cji = 0 (j ̸= i), and the diagonal elements of matrix C are defined
by cii = −

∑N
j=1
j ̸=i

cij, i = 1, 2, · · · , N . It is noted that the configuration matrix C is symmetric with

non-positive real eigenvalues and not necessarily irreducible.
Based on the design idea of observer in the control theory, the response network is described as a

nonlinear observer

Dα
t x̂i =Ax̂i + f(yi, t) +

N∑
j=1

cijx̂j +Ui(yi, ŷi)

ŷi =Hx̂i, i = 1, 2, · · · , N

(7)
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where x̂i ∈ Rn and ŷi ∈ R denote the state and scalar output vectors of node i of the response network,
respectively. A, f(·, ·), H and C are the same as in system Equation (6). Ui(·, ·) : R×R −→ Rn is the
control input to be designed.

Considering the control gain perturbations, the actual implemented control input is assumed to be

Ui(yi, ŷi) = (L+∆L(t))(yi − ŷi) (8)

where L ∈ Rn is the nominal control gain matrix and the term ∆L(t) represents the control gain
variations. In this paper, the following two classes of the control gain variations are considered:
Type 1: ∆L(t) is with the norm-bounded additive form:

∆L(t) = ∆1(t) = M1F1(t)N1 (9)

Type 2: ∆L(t) is with the norm-bounded multiplicative form:

∆L(t) = ∆2(t) = M2F2(t)N2L (10)

where M1, N1, M2 and N2 are known matrices with appropriate dimensions, F1(t) and F2(t) are
unknown time-varying matrices satisfying the relation

F1(t)F
T
1 (t) ≤ I, F2(t)F

T
2 (t) ≤ I (11)

Let us define the errors of outer synchronization ei = xi − x̂i, then the following error dynamics of
the outer synchronization can be obtained from Equations (6) and (7):

Dα
t ei = (A− (L+∆L)H)ei +

N∑
j=1

cijej, i = 1, 2, · · · , N (12)

In this paper, we aim at establishing computable criteria in the LMI format to find the control gain
L such that the coupled fractional-order complex networks Equations (6) and (7) achieve global outer
synchronization in the following sense

lim
t→∞

∥ei(t)∥ = lim
t→∞

∥xi(t)− x̂i(t)∥ = 0, i = 1, 2, · · · , N (13)

for any initial conditions xi(0) and x̂i(0), where ∥ · ∥ refers to the Euclidean norm.
Using the Kronecker product, the error system Equation (12) can be compactly rewritten

equivalently as
Dα

t e = (IN ⊗AL +C ⊗ In)e(t) (14)

where e =
(
eT
1 , e

T
2 , · · · , eT

N

)T ∈ RnN and AL = A − (L + ∆L)H . It is implied from the
above representation that the global outer synchronization problem between the FCNs Equations (6)
and (7) is converted into an equivalent global asymptotical stability problem of the linear error
system Equation (14).
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3. Global Outer Synchronization Analysis

From Lemma 2.2, the error system Equation (14) is asymptotically stable if the spectrum of system
matrix IN⊗AL+C⊗In satisfy the inequality (2). It can been seen that the system matrix IN⊗AL+C⊗
In is the Kronecker sum of AL and C, then its eigenvalues can be expressed by the sum of eigenvalues
of AL and eigenvalues of C using Lemma 2.3. Hence, we obtain the following basic theorem.
Theorem 3.1. The fractional-order complex networks Equations (6) and (7) with the designed
non-fragile controllers (8) will achieve outer synchronization behavior globally, if the following
condition is satisfied

|arg(spec(AL))| >
απ

2
(15)

where spec(AL) is the spectrum of system matrix AL = A− (L+∆L)H .
Remark 3.2. The importance of this theorem lies in the fact that it converts the outer synchronization
problem between coupled FCNs Equations (6) and (7) into the eigenvalue distribution of the uncertain
matrix AL with the same dimension as a single node, thereby significantly reducing the computational
complexity. In addition, it should be noted that in previous work [40] on outer synchronization of
FCNs, the linear error systems are often derived through a suitable linearization of the system’s nonlinear
functions. This approach often implies “local” stability of the outer synchronization manifold. However,
in many applications, global stability of the outer synchronization manifold is very desirable but difficult
to achieve. To circumvent this difficulty, here an observer-based design procedure is performed instead
of linearizing approximation of the nonlinear function f(·, ·) in Equations (6) and (7). Thus the
above proposed condition theoretically guarantees the “global” outer synchronization between FCNs
Equations (6) and (7).
Remark 3.3. For a given pair (H , A), whether the observer-type response network Equation (7)
synchronizes the drive network Equation (6) globally depends on whether the spectrum of system
matrix AL satisfies the inequality (15). In case when the control gain L is deterministic without
uncertainty, i.e., ∆L = 0, the control gain L ∈ Rn may be chosen such that the inequality (15)
is satisfied. As is known from the control theory [47], if the pair (H , A) is observable, i.e., if
rank[HT ,ATHT , · · · , (AT )n−1HT ] = n, then there exists L providing the matrix AL = A − LH

with any given eigenvalues. Particularly, all eigenvalues of AL can be designed to locate the region
defined by inequality (15). For other general pair (H , A), the control gain L is usually determined
through a considerable amount of trial and error. However, with control gain uncertainties (9) or (10),
the condition (15) is not easy to be checked because there is infinite number of eigenvalues [48]. To
effectively avoid this difficulty, in the following we will develop an LMI-based design method.

Now we are in a position to present an LMI-type solvability condition for the outer synchronization
problem of coupled FCNs (6) and (7) with the control gain perturbations (9) or (10).
Theorem 3.4. Consider the fractional-order complex networks (6) and (7) with the control gain
perturbation ∆1(t) in Equation (9). Then the outer synchronization between networks (6) and (7) will
be achieved globally, if there exist a constant ε > 0, a symmetric positive definite matrix P > 0 and a
matrix Q, satisfying the following LMI:[

Ψ I2 ⊗ (N1HP )T

⋆ −1
2
εI

]
< 0 (16)
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where

Ψ =
2∑

i=1

Sym {Θi ⊗ (AP −Q)}+ 2ε
(
I2 ⊗M1M

T
1

)
with

Θ1 =

[
sinθ −cosθ
cosθ sinθ

]
, Θ2 =

[
sinθ cosθ
−cosθ sinθ

]
, θ =

απ

2

Moreover, the non-fragile control gain L is given by

L = QP−1HT
(
HHT

)−1
(17)

Proof. Setting P11 = P21 = P , P12 = P22 = 0 in Lemma 2.4, we have that if there exists real
symmetric positive definite matrix P such that

2∑
i=1

Sym{Θi ⊗ (ALP )} < 0 (18)

then |arg(spec(AL))| > απ
2

, where spec(AL) is the spectrum of system matrix AL.
With AL = A− (L+∆L)H , the left hand side of Equation (18) can be rewritten as

2∑
i=1

Sym{Θi ⊗ (ALP )} =
2∑

i=1

Sym{Θi ⊗ (AP −LHP −∆LHP )}

=
2∑

i=1

Sym{Θi ⊗ (AP −LHP )}+
2∑

i=1

Sym{Θi ⊗ (−M1F1(t)N1HP )}

(19)

From Equation (11), one has

(I2 ⊗ F1)(I2 ⊗ F1)
T = (I2 ⊗ F1)(I2 ⊗ F T

1 )

= I2 ⊗ (F1F
T
1 ) ≤ I

(20)

By Equation (20) and Θi1Θ
T
i1 = I2, it directly follows from Lemma 2.5 that for any real scalar ε > 0

2∑
i=1

Sym{Θi ⊗ (−M1F1(t)N1HP )}

=
2∑

i=1

Sym{−(Θi ⊗M1)(I2 ⊗ F1)(I2 ⊗ (N1HP ))}

≤
2∑

i=1

{
ε(Θi ⊗M1)(I2 ⊗ F1)(I2 ⊗ F1)

T (Θi ⊗M1)
T +

1

ε
(I2 ⊗N1HP )T (I2 ⊗N1HP )

}
≤2ε

(
I2 ⊗M1M

T
1

)
+

2

ε
(I2 ⊗N1HP )T (I2 ⊗N1HP )

(21)
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Substituting Equation (21) into Equation (19), one has

2∑
i=1

Sym {Θi ⊗ (ALP )} =
2∑

i=1

Sym {Θi ⊗ (AP −LHP −∆LHP )}

≤
2∑

i=1

Sym {Θi ⊗ (AP −LHP )}

+ 2ε
(
I2 ⊗M1M

T
1

)
+

2

ε
(I2 ⊗N1HP )T (I2 ⊗N1HP )

(22)

Let
Q = LHP (23)

and following from Equation (22), the inequality Equation (18) holds if

2∑
i=1

Sym {Θi ⊗ (AP −Q)}+ 2ε
(
I2 ⊗M1M

T
1

)
+

2

ε
(I2 ⊗N1HP )T (I2 ⊗N1HP ) < 0 (24)

Using Lemma 2.6, it is easily seen that Equation (24) is in turn equivalent to the linear matrix
inequality Equation (16), which is the condition stated in the theorem. Therefore, |arg(spec(AL))| > απ

2
,

which implies that outer synchronization between the fractional-order networks (6) and (7) will occur
globally by using Theorem 3.1. This completes the proof.

For the FCNs (6) and (7) with the control gain perturbation defined in Equation (10), we have the
following results.
Theorem 3.5. Consider the fractional-order complex networks (6) and (7) with the control gain
perturbation ∆2(t) in Equation (10). Then the outer synchronization between networks (6) and (7)
will be achieved globally, if there exist a constant ε > 0, a symmetric positive definite matrix P > 0 and
a matrix Q, satisfying the following LMI:[

Ψ I2 ⊗ (N2Q)T

⋆ −1
2
εI

]
< 0 (25)

where

Ψ =
2∑

i=1

Sym {Θi ⊗ (AP −Q)}+ 2ε
(
I2 ⊗M2M

T
2

)
with

Θ1 =

[
sinθ −cosθ
cosθ sinθ

]
, Θ2 =

[
sinθ cosθ
−cosθ sinθ

]
, θ =

απ

2

Moreover, the non-fragile control gain L is given by

L = QP−1HT
(
HHT

)−1
(26)

Proof. It is similar to that of Theorem 3.4, the details are then omitted.
A particular case of Theorems 3.4 and 3.5 is ∆L = 0. In such a case, we can still provide a sufficient

condition for global outer synchronization.
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Corollary 3.6. Consider the fractional-order complex networks (6) and (7) without the control gain
perturbation (i.e., ∆L = 0). Then the outer synchronization between networks (6) and (7) will be
achieved globally, if there exist a symmetric positive definite matrix P > 0 and a matrix Q, satisfying
the following LMI:

Θ1 ⊗ (AP −Q) + ΘT
1 ⊗ (AP −Q)T +Θ2 ⊗ (AP −Q) + ΘT

2 ⊗ (AP −Q)T < 0 (27)

where

Θ1 =

[
sinθ −cosθ
cosθ sinθ

]
,Θ2 =

[
sinθ cosθ
−cosθ sinθ

]
, θ =

απ

2

Moreover, the non-fragile control gain L is given by

L = QP−1HT
(
HHT

)−1
(28)

Proof. It follows directly from Theorems 3.4 and 3.5, and the details are therefore omitted here.
Remark 3.7. The above theorems and corollary present sufficient conditions for the solvability of
non-fragile outer synchronization problem for coupled fractional-order complex networks, which are
related to the solutions to LMIs. In this case, these LMIs can be solved efficiently by resorting to some
standard numerical algorithms [46].

4. Numerical Simulations

In this section, numerical examples are given to verify the effectiveness of the above design scheme.
For the control gain perturbations in additive form, the coupled fractional-order jerk model based on
nearest-neighbor topology is first utilized to demonstrate the main results of Theorem 3.4. Then, a
small-world complex network consisted of fractional-order Duffing oscillators is introduced to illustrate
the correctness of Theorem 3.5 for the control gain perturbations in multiplicative form.

4.1. Outer Synchronization between Two FCNs with Nearest-Neighbor Network Topology

This subsection considers two coupled FCNs with N = 10 nodes each and nearest-neighbor network
topology. The dynamics of the nodes in two networks is determined by the following fractional-order
jerk model [49]: 

Dα
t x1 = x2

Dα
t x2 = x3

Dα
t x3 = −x2 − ρx3 + φ(x1)

(29)

with nonlinear characteristic
φ(x1) = −1.2x1 + 2sgn(x1)

and the measured output
y(t) = x1(t)

where x1, x2 and x3 are, respectively, the position, velocity, and acceleration of the object, ρ > 0 is the
control parameter. This model in its integer-order version (i.e., α = 1) is used to determine the time
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derivative of acceleration of an object and is known to give chaos for ρ = 0.6. For system (29), we show
that the chaotic behavior is preserved in the fractional-order case, as shown in Figure 1 for α = 0.95. In
Lur’e form, the fractional-order jerk model (29) can be represented with

A =

 0 1 0

0 0 1

0 −1 −ρ

 , f(y) =

 0

0

φ(y)

 , H = (1, 0, 0) (30)

The additive control gain perturbations ∆L(t) can be described by (9) with

M1 =

 0.05 −0.13 0.1

−0.24 0.54 0.2

−0.15 −0.2 0.16

 , F1(t) =

 cos(3t) 0 0

0 cos(0.1t) 0

0 0 sin(2t)

 , N1 =

 0.1

0.2

0.15


(31)

For the nearest-neighbor coupling structure, the coupling matrix is given by

C =


−2k k 0 · · · 0 k

k −2k k 0 · · · 0
. . . . . . . . .

0 · · · 0 k −2k k

k 0 · · · 0 k −2k

 (32)

where k > 0 denotes the coupling strength of the whole network.

Figure 1. Chaotic behavior of the fractional-order jerk model (29). The fractional orders
are: (a) α = 1 and (b) α = 0.95.
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Since the above ∆L(t) is in the form of Type 1, Theorem 3.4 is used to design a non-fragile
observer-based control (8). Using the MATLAB LMI Control Toolbox, we find that the LMI (16) in
Theorem 3.4 is feasible. A feasible solution is presented as follows:

ε = 85.0407, P =

 41.2019 −0.0000 0.0000

−0.0000 53.1504 −0.0000

0.0000 −0.0000 53.1504

 , Q = 103×

 0.0146 2.9380 −0.0124

−2.8902 0.0299 −0.4075

0.0154 0.4040 −0.0148


Therefore, based on the Equation (17) in Theorem 3.4, the nominal control gain is given by:

L = QP−1HT
(
HHT

)−1
=

 0.3539

−70.1471

0.3734

 (33)

With the aforementioned control gain matrix and k = 1, the simulation results for synchronization
errors eij (i = 1, 2, · · · , 10, j = 1, 2, 3) of networks (6) and (7) are given in Figure 2, where
the initial conditions xi(0) and x̂i(0) are randomly chosen. As seen in Figure 2, the trajectories
of the synchronization errors approach zero, which imply outer synchronization between complex
networks (6) and (7) with fractional-order jerk models as nodes’ dynamics.

Figure 2. Synchronization errors between the FCNs (6) and (7), where each node is a chaotic
fractional-order jerk model (29). (a) The time evolutions of ei1(t) = xi1(t)− x̂i1(t); (b) the
time evolutions of ei2(t) = xi2(t) − x̂i2(t); (c) the time evolutions of ei3(t) = xi3(t) −
x̂i3(t) (i = 1, 2, · · · , 10).
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4.2. Outer Synchronization between Two FCNs with Small-World Network Topology

In this simulation, two small-world FCNs of N = 100 Duffing oscillators are constructed. A single
fractional-order Duffing oscillator [50] is described by:{

Dα
t x1 = x2

Dα
t x2 = −p1x2 − p2x1 − p3x

3
1 + qcos(ωt)

(34)

with the measured output
y(t) = Hx(t) = (1, 0)(x1(t), x2(t))

T (35)

where p1, p2, p3 and q are system parameters. The system can be represented in Lur’e form with

A =

(
0 1

−p2 −p1

)
, f(y, t) =

(
0

−p3y
3 + qcos(ωt)

)
(36)

For the parameters p1 = 1/25, p2 = −1/5, p3 = 8/15, q = 2/5 and ω = 0.2, the fractional-order
Duffing oscillator (34) exhibits chaotic behavior for α = 0.98 (see Figure 3).

Figure 3. Chaotic behavior of the fractional-order Duffing oscillator (34). The fractional
orders are: (a) α = 1 and (b) α = 0.98.
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The additive controller uncertainties in Equation (10) are considered through

M2 =

(
−0.5 −0.24

0.1 −0.35

)
, F2(t) =

(
sin(0.1t) 0

0 cos(5t)

)
, N2 =

(
0.2 0.16

−0.05 0.32

)
(37)
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Since the control gain perturbations ∆L(t) is in the form of Type 2, Theorem 3.5 is used to design the
non-fragile observer-based control (8). Using the MATLAB LMI Control Toolbox, a feasible solution to
the LMI (25) in Theorem 3.5 is given by

ε = 71.6499, P =

(
40.9209 −1.7321

−1.7321 31.6650

)
, Q = 103 ×

(
0.0212 −7.5497

7.5921 0.0151

)

Therefore, based on the Equation (26) in Theorem 3.5, the nominal control gain is given by:

L = QP−1HT
(
HHT

)−1
=

(
−9.5952

185.9816

)
(38)

The zero-row-sum coupling matrix C is generated from the known Watts–Strogatz small-world
network model [51] with N = 100, m = 3 and p = 0.1 . According to Theorem 3.5, the outer
synchronization between two fractional-order complex networks of coupled Duffing oscillators with
small-world topology will be achieved globally. Figure 4 shows the changes in synchronization errors
eij (i = 1, 2, · · · , 100, j = 1, 2), respectively. From these simulation results, it can be seen the designed
drive-response networks achieve outer synchronization globally and the effectiveness of the theoretical
analysis is demonstrated.

Figure 4. Synchronization errors between the FCNs (6) and (7), where each node is a chaotic
fractional-order Duffing oscillator (34). (a) The time evolutions of ei1(t) = xi1(t) − x̂i1(t);
(b) the time evolutions of ei2(t) = xi2(t)− x̂i2(t) (i = 1, 2, · · · , 100).
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5. Conclusions

In this paper, we have proposed a novel observer-based control scheme for outer synchronization
between two complex networks with fractional-order derivatives. The designed controllers have the
following two features: (i) they use only scalar output signals to couple two FCNs in a drive-response
manner; (ii) they are non-fragile for both additive and multiplicative control gain perturbations.
Therefore, this is more practical and economical for real network applications, such as communication
networks. Taking advantage of the eigenvalue distribution of Kronecker sum of two matrices, we
presented a basic theorem for outer synchronization of coupled FCNs. Then, two sufficient conditions
in the form of LMI for outer synchronization of FCNs are further provided. Compared with previous
results, the proposed conditions can not only ensure outer synchronization to be achieved in the “global”
sense but also facilitate it with the help of MATLAB LMI Control Toolbox.
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