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Abstract: In this paper we present entropy driven methodology for discretization.
Recently, the original entropy based discretization was enhanced by including two options
of selecting the best numerical attribute. In one option, Dominant Attribute, an attribute
with the smallest conditional entropy of the concept given the attribute is selected for
discretization and then the best cut point is determined. In the second option, Multiple
Scanning, all attributes are scanned a number of times, and at the same time the best cut
points are selected for all attributes. The results of experiments on 17 benchmark data
sets, including large data sets, with 175 attributes or 25,931 cases, are presented. For
comparison, the results of experiments on the same data sets using the global versions
of well-known discretization methods of Equal Interval Width and Equal Frequency per
Interval are also included. The entropy driven technique enhanced both of these methods
by converting them into globalized methods. Results of our experiments show that the
Multiple Scanning methodology is significantly better than both: Dominant Attribute and
the better results of Globalized Equal Interval Width and Equal Frequency per Interval
methods (using two-tailed test and 0.01 level of significance).
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1. Introduction

Discretization of numerical attributes is one of the basic techniques of data mining. During this
process, numerical values are transformed into intervals. Among the many discretization techniques,
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discretization based on the conditional entropy of the concept given an attribute is considered to be one
of the most successful methods [1–21].

For a numerical attribute a with an interval [i, j] as a range, a partition of the range into k intervals

{[i0, i1), [i1, i2), ..., [ik−2, ik−1), [ik−1, ik]}

where i0 = i, ik = j, and il < il+1 for l = 0, 1, ..., k − 1, defines a discretization of a. The numbers
i1, i2,..., ik−1 are called cut points. Our discretization system denotes such intervals as i0..i1, i1..i2,...,
ik−1..ik.

Discretization methods that may be applied only to one variable at a time are called local. Methods
with all attributes processed during discretization are called global.

We present an enhanced version of the original discretization based on entropy presented in [22].
In this version there is a choice between two options. The first option is called Dominant Attribute.
First the current best attribute is selected, then, for this attribute, the best cut point, using conditional
entropy again, is selected. This process continues until a stopping criterion is satisfied. In the second
option, called Multiple Scanning, the entire attribute set is scanned. For any attribute, the best cut point is
selected, then sub-tables that still need discretization are created. The entire attribute set of any sub-table
is scanned again, and the best corresponding cut points are selected. The process continues until the
stopping condition is satisfied or the required number of scans is reached. If necessary, discretization is
completed by the Dominant Attribute technique. The same stopping criterion, based on rough set theory,
was used in all experiments. The quality of each discretization technique was evaluated by an error rate
computed as a result of ten-fold cross validation (with the exception of the spectrometry data set where
hold-out was used). Our experiments were conducted on 17 benchmark data sets.

For comparison, results of experiments on the same data sets using well-known discretization methods
of Equal Interval Width and Equal Frequency per Interval are also included. These two methods are local,
but we converted both methods to global using entropy as well. Results of our experiments show that
the Multiple Scanning methodology is significantly better than both: Dominant Attribute and the better
results of Globalized Equal Interval Width and Equal Frequency per Interval methods (using two-tailed
test and 0.01 level of significance).

A preliminary version of this paper was presented at the ISMIS 2009, the 18th International
Symposium on Methodologies for Intelligent Systems [11].

2. Entropy Based Discretization

We are assuming that the input data set is given in a form of the table exemplified by Table 1. In
such a table all cases are described by variables called attributes and one variable is called a decision
(or class) and is denoted by d. The set of all attributes will be denoted by A. The set of all cases will
be denoted by U . In Table 1 the attributes are Weight, Length and Height while the decision is Price.
Additionally, U = {1, 2, 3, 4, 5, 6, 7}. An entropy of a variable v (attribute or decision) with values v1,
v2,..., vn is defined by the following formula

Hv(U) = −
n∑

i=1

p(vi) · log p(vi)
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where U is the set of all cases in a data set and p(vi) is a probability (relative frequency) of value vi in
the set U , i = 0, 1, ..., n. All logarithms in this paper are binary.

Table 1. An example of a data set with numerical attributes.

Case
Attributes

Decision Price
Weight Length Height

1 0.8 0.3 7.2 very small

2 0.8 1.1 7.2 small

3 0.8 1.1 10.2 medium

4 1.2 0.3 10.2 medium

5 1.2 2.3 10.2 medium

6 2.0 2.3 10.2 high

7 2.0 2.3 15.2 very high

A conditional entropy of the decision d given an attribute a is

H(d|a) = −
m∑
j=1

p(aj) ·
n∑

i=1

p(di|aj) · log p(di|aj)

where a1, a2, ..., am are all values of a and d1, d2, ..., dn are all values of d. There are two fundamental
criteria of quality based on entropy. The first is an information gain associated with an attribute a and
defined by

I(a) = Hd(U)−H(d|a)

the second is information gain ratio, for simplicity called gain ratio, defined by

G(a) =
I(a)

Ha(U)

Both criteria were introduced by J. R. Quinlan, see, e.g., [22] and used for decision tree generation.
For a cut point q for an attribute a, the conditional entropy, defined by a cut point q that splits the set

U of all cases into two sets S1 and S2, is defined as follows

Ha(q, U) =
|S1|
|U |

Ha(S1) +
|S2|
|U |

Ha(S2)

where |X| denotes the cardinality of the set X . The cut point q for which the conditional entropy
Ha(q, U) has the smallest value is selected as the best cut point. The corresponding information gain is
the largest.
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2.1. Stopping Criterion for Discretization

A stopping criterion of the process of discretization, described in this paper, is the level of
consistency [3], based on rough set theory [23,24]. For any subset B of the set A of all attributes,
an indiscernibility relation IND(B) is defined, for any x, y ∈ U , in the following way

(x, y) ∈ IND(B) if and only if a(x) = a(y) for any a ∈ B

where a(x) denotes the value of the attribute a ∈ A for the case x ∈ U . For example, in Table 1,
Weight(1) = 0.8.

For Table 1, let B = {Weight, Length}. Cases 2 and 3 are B-indiscernible, i.e., (2, 3) ∈ IND(B),
since Weight(2) = Weight(3) and Length(2) = Length(3). On the other hand, (1, 2) 6∈ IND(B) since
Length(1) 6= Length(2).

The relation IND(B) is an equivalence relation. The equivalence classes of IND(B) are denoted
by [x]B and are called B-elementary sets. For Table 1, B-elementary classes are {1}, {2, 3}, {4}, {5}
and {6, 7}.

Any finite union of B-elementary sets is B-definable. A partition on U constructed from all
B-elementary sets of IND(B) will be denoted by B∗. {d}-elementary sets are called concepts, where
d is a decision. For example, for Table 1, {d}∗ = {{1}, {2}, {3, 4, 5}, {6}, {7}}. In general, arbitrary
X ∈ {d}∗ is not B-definable. For example, the concept {3, 4, 5} is not B-definable. However, any
X ∈ {d}∗ may be approximated by a B-lower approximation of X , denoted by BX and defined
as follows:

{x | x ∈ U, [x]B ⊆ X}

and by B-upper approximation of X , denoted by BX and defined as follows

{x | x ∈ U, [x]B ∩X 6= ∅}

In our example, B{3, 4, 5} = {4, 5} and B{3, 4, 5} = {2, 3, 4, 5}.
The B-lower approximation of X is the greatest B-definable set contained in X . The B-upper

approximation of X is the least B-definable set containing X . A B-rough set of X is the family of
all subsets of U having the same B-lower and B-upper approximations of X . For the set X = {3, 4, 5},
the corresponding B-rough set is {{2, 4, 5}, {3, 4, 5}}. Finally, a level of consistency [3], denoted by
L(A), is defined as follows

L(A) =

∑
X∈{d}∗ |AX|
|U |

Practically, the requested level of consistency for discretization is 1.0, i.e., we want the discretized
data set to be consistent. For example, for Table 1, the level of consistency L(A) is equal to one, since
{A}∗ = {{1}, {2}, {3}, {4}, {5}, {6}, {7}} and, for any X from {Price}∗ = {{1}, {2}, {3, 4, 5}, {6},
{7}}, we have AX = X . On the other hand, L(B) = 0.857.
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2.2. Dominant Attribute Strategy

We will discuss two basic discretization techniques based on entropy. The first discretization
technique is called Dominant Attribute (or Starting from One Attribute [11]). A similar idea for a
decision tree generation is used in the C4.5 system [22]. In addition, for numerical attributes, C4.5 uses
discretization similar to the Dominant Attribute approach, yet C4.5 not only does not use the measure
L(A) as stopping condition but also does not use merging of intervals created during such discretization
either.

The Dominant Attribute algorithm is recursive:

• for a given set of cases (initially it is U ), we identify the best attribute (i.e., the attribute with the
largest information gain or the attribute with the largest gain ratio),
• for the best attribute, we are looking for the best cut point, i.e., the cut point with the smallest

conditional entropy,
• the best cut point divides the data set into two smaller data sets, S1 and S2.
• we apply the same strategy for both smaller data sets separately,
• the algorithm stops when L(AD) = 1, where AD is the discretized set of attributes,

We need to take into account that the order in which we process smaller data sets may affect the
discretization. We will illustrate this method by discretizing the data set from Table 1. We will use
the information gain as the criterion to select the best attribute.

The conditional entropy H(Price|Weight) is

3

7
(−1

3
· log 1

3
)(3) +

2

7
(0) +

2

7
(−1

2
· log 1

2
)(2) = 0.965

Similarly, the conditional entropies H(Price|Length) = 1.250 and H(Price|Height) = 0.749. The
minimal conditional entropy is associated with attribute Height. What is the best cut point for attribute
Height is the next question. This attribute has two potential cut points (averages between sorted values
of the attribute Height): 8.7 and 12.7. The conditional entropy HHeight(8.7, U) is

2

7
(−1

2
· log 1

2
)(2) +

5

7
(−3

5
· log 3

5
+ (−1

5
· log 1

5
)(2)) = 1.265

similarly, the conditional entropy HHeight(12.7, U) = 1.536. Thus we will select the cut point 8.7.
Obviously, the current discretization of attribute Height into two intervals 7.2..8.7 and 8.7..15.2 is not
sufficient, since if we will use only discretized attribute HeightD and A = {HeightD}, {A}∗ = {{1, 2}, {3,
4, 5, 6, 7}}, we have AX = ∅ for any member X of {Price}∗, so L(A) = 0. The current discretization
splits Table 1 into two sub-tables, Tables 2 and 3.

It is also obvious that for Table 2 the only attribute that may be discretized is Length, with the cut
point is equal to 0.7. Table 4 presents the current situation: discretized are attributes Length and Height,
with cut points 0.7 and 8.7, respectively.

For Table 4 and AD = {LengthD, HeightD}, where LengthD and HeightD denote currently discretized
attributes, (AD)∗ = {{1}, {2}, {3, 5, 6, 7}, {4}}, and L(AD) = 0.429, so further discretization is
necessary. However, by analysis of Table 4 we may easily discover that all what we need to do is to
distinguish cases 3 and 5 from cases 6 and 7 and that cases 3 and 4 do not need to be distinguished.
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Thus, our next table to be discretized is presented as Table 5 (note that Table 5 is simpler than Table 3).
We will continue discretization by recursion. Our final choice of cut points is 1.6 for Weight, 0.7 for
Length, and 8.7 and 12.7 for Height. The final discretized table is presented as Table 6.

Table 2. The first sub-table of Table 1.

Case
Attributes

Decision Price
Weight Length Height

1 0.8 0.3 7.2 very small

2 0.8 1.1 7.2 small

Table 3. The second sub-table of Table 1.

Case
Attributes

Decision Price
Weight Length Height

3 0.8 1.1 10.2 medium

4 1.2 0.3 10.2 medium

5 1.2 2.3 10.2 medium

6 2.0 2.3 10.2 high

7 2.0 2.3 15.2 very high

Table 4. Table 1, partially discretized, with attributes Length and Height.

Case
Attributes

Decision Price
Length Height

1 0.3..0.7 7.2..8.7 very small

2 0.7..2.3 7.2..8.7 small

3 0.7..2.3 8.7..15.2 medium

4 0.3..0.7 8.7..15.2 medium

5 0.7..2.3 8.7..15.2 medium

6 0.7..2.3 8.7..15.2 high

7 0.7..2.3 8.7..15.2 very high
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Table 5. A new sub-table of Table 1.

Case
Attributes

Decision Price
Weight Length Height

3 0.8 1.1 10.2 medium

5 1.2 2.3 10.2 medium

6 2.0 2.3 10.2 high

7 2.0 2.3 15.2 very high

Table 6. Table 1 discretized by the Dominant Attribute discretization technique.

Case
Attributes

Decision Price
Weight Length Height

1 0.8..1.6 0.3..0.7 7.2..8.7 very small

2 0.8..1.6 0.7..2.3 7.2..8.7 small

3 0.8..1.6 0.7..2.3 8.7..12.7 medium

4 0.8..1.6 0.3..0.7 8.7..12.7 medium

5 0.8..1.6 0.7..2.3 8.7..12.7 medium

6 1.6..2.0 0.7..2.3 8.7..12.7 high

7 1.6..2.0 0.7..2.3 12.7..15.2 very high

2.3. Multiple Scanning Strategy

The second discretization technique needs some parameter denoted by t and called the total number
of scans. In Multiple Scanning Algorithm,

• for the entire set A of attributes the best cut point is computed for each attribute a ∈ A based on
minimum of conditional entropy H(d|a), a new discretized attribute set is AD, and the original
data set is partitioned into a partition (AD)∗,
• if the number of scans t is not reached, the next scan is conducted: we need to scan the entire set

of partially discretized attributes again; for each attribute we need only one cut point, the best cut
point for each block X ∈ (AD)∗ is computed, the best cut point among all such blocks is selected,
• if the requested number of scans t is reached and the data set needs more discretization, the

Dominant Attribute technique is used for the remaining sub-tables,
• the algorithm stops when L(AD) = 1, where AD is the discretized set of attributes.

We will illustrate this technique by scanning all attributes, Weight, Length, and Height once. First we
are searching for the best cut point for attributes Weight, Length, and Height. The best cut points are 1.6,
1.7, and 8.7, respectively. Table 1, partially discretized this way, is presented as Table 7.
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Table 7. Partially discretized Table 1 using Multiple Scanning.

Case
Attributes

Decision Price
Weight Length Height

1 0.8..1.6 0.3..1.7 7.2..8.7 very small

2 0.8..1.6 0.3..1.7 7.2..8.7 small

3 0.8..1.6 0.3..1.7 8.7..15.2 medium

4 0.8..1.6 0.3..1.7 8.7..15.2 medium

5 0.8..1.6 1.7..2.3 8.7..15.2 medium

6 1.6..2.0 1.7..2.3 8.7..15.2 high

7 1.6..2.0 1.7..2.3 8.7..15.2 very high

The level of consistency for Table 7 is 0.429 since A∗ = {{1, 2}, {3, 4}, {5}, {6, 7}}, we need
to distinguish cases 1 and 2, and, separately, cases 6 and 7. Therefore we need to use the Dominant
Attribute technique for two sub-tables, first with two cases, 1 and 2, and second with also two cases, 6
and 7. As a result, we will select cut points 0.7 and 12.7 for attributes Length and Height, respectively.

2.4. Globalized Versions of Equal Interval Width and Equal Frequency per Interval

Two discretization methods, called Equal Interval Width and Equal Frequency per Interval are
frequently used in data mining. Both methods are local. In the Equal Interval Width method, the domain
of a numerical attribute a is divided into k equal intervals, where k is a real number set up by the user.
In the Equal Frequency per Interval method, attribute values are distributed in such a way that in all k
intervals the number of attribute values is approximately equal to each other. This method is sometimes
called a Maximum Entropy Discretization [21].

For our experiments, both methods were converted to global by using entropy. In this approach, the
first step is to discretize all attributes, by computing a cut point for all attributes, assuming k = 2. If the
level of consistency satisfies requirements, the process is completed. If not, we need to select an attribute
a whose initial distribution is the worst. A measure of quality for such distribution is the average block
entropy of an attribute defined by the following formula

M(a) =

∑
B∈{a}∗

|B|
|U |H(B)

|{a}∗|

An attribute a for which M(a) is maximum is considered to be the worst and, as such, is selected
for re-discretization with k incremented by one. As follows from [12], the Globalized Versions of Equal
Interval Width and Equal Frequency per Interval methods are successful and competitive.

Let us discretize Table 1 using the globalized version of the Equal Interval Width method. First we
need to compute cut points for all attributes using the Equal Interval Width principle. Such cut points
are: 1.4 for Weight, 1.3 for Length and 11.2 for Height. The corresponding partially discretized table is
presented in Table 8. Partitions on U defined by partially discretized attributes are:
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{Weight}∗ = {1, 2, 3, 4, 5}, {6, 7}},
{Length}∗ = {1, 2, 3, 4}, {5, 6, 7}},
{Height}∗ = {1, 2, 3, 4, 5, 6}, {7}},

the level of consistency is L(A) = 0.429 since A∗ = {{1, 2, 3, 4}, {5}, {6}, {7}}. We need to compute
the average block entropy for all attributes. For example,

M(WeightD) =
1

2
(
5

7
((−1

5
· log1

5
)(2) + (−3

5
· log3

5
)) +

2

7
(−1

2
· log1

2
)(2)) = 0.632

Table 8. Partially discretized Table 1 using Equal Interval Width.

Case
Attributes

Decision Price
Weight Length Height

1 0.8..1.4 0.3..1.3 7.2..11.2 very small

2 0.8..1.4 0.3..1.3 7.2..11.2 small

3 0.8..1.4 0.3..1.3 7.2..11.2 medium

4 0.8..1.4 0.3..1.3 7.2..11.2 medium

5 0.8..1.4 1.3..2.3 7.2..11.2 medium

6 1.4..2.0 1.3..2.3 7.2..11.2 high

7 1.4..2.0 1.3..2.3 11.2..15.2 very high

Table 9. Table 1 discretized by Equal Interval Width.

Case
Attributes

Decision Price
Weight Length Height

1 0.8..1.4 0.3..0.967 7.2..9.867 very small

2 0.8..1.4 0.967..1.633 7.2..9.867 small

3 0.8..1.4 0.967..1.633 9.867..12.533 medium

4 0.8..1.4 0.3..0.967 9.867..12.533 medium

5 0.8..1.4 1.633..2.3 9.867..12.533 medium

6 1.4..2.0 1.633..2.3 9.867..12.533 high

7 1.4..2.0 1.633..2.3 12.533..15.2 very high

Similarly, M (LengthD) = 0.768 and M (HeightD) = 0.768. The worst attributes are Length and Height.
We need to select, heuristically, one attribute, say the first one, i.e., Length. Obviously, any heuristic
step like this one changes the outcome, but we cannot explore all possibilities due to computational
complexity. We compute new cut points for Length and k = 3. These cut points are 1.2 and 1.6.
This time {Length}∗ = {1, 4}, {2, 3}, {5, 6, 7}}, so A∗ = {{1, 4}, {2, 3}, {5}, {6}, {7}} and the new
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level of consistency L(A) is still 0.429 and the average block entropy, for the new attribute (LengthD),
with three intervals, is M (LengthD) = 0.417. The worst attribute is Height. The new cut points for
Height are 9.867 and 12.533. The level of consistency for the new discretized table is L(A) = 1.0 since
A∗ = {{1}, {2}, {3}, {4}, {5}, {6}, {7}}, so the discretization is completed. Table 9 presents the final,
discretized table.

2.5. Interval Merging

In all our discretization techniques, the last step of discretization was the merging of intervals, to
reduce their number and, at the same time, preserve consistency. The algorithm for merging intervals
consists of two steps:

• safe merging: for any attribute and for any two neighboring intervals i..j and j..k of the same
discretized attribute, if both intervals are labeled by the same decision value, both intervals are
merged, i.e., replaced by a new interval i..k,
• proper merging: for any attribute and for any two neighboring intervals i..j, j..k of the same

discretized attribute, if a result i..k of merging does not reduce the level of consistency L(AD),
where AD is the current set of discretized attributes, both intervals are merged (replaced by a new
interval i..k).

If neighboring intervals i..j and j..k are merged, we say that the cut point j was eliminated. Obviously,
the order in which pairs of neighboring intervals are selected for proper merging affects the final outcome.
In our experiments, we selected two neighboring intervals with the smallest conditional entropy, taking
all attributes and all intervals into account. Using interval merging, we may eliminate the cut points 1.7
and 1.633 for attribute Length, in Tables 7 and 9, respectively.

2.6. LEM2 Algorithm for Rule Induction

The discretized data were fed into the data system LERS (Learning from Examples based on Rough
Sets) [25] for rule induction. LERS uses rough set theory to compute lower and upper approximations
for concepts involved in conflicts with other concepts [23].

Rules induced from the lower approximation of the concept certainly describe the concept, hence
such rules are called certain. On the other hand, rules induced from the upper approximation of the
concept describe the concept possibly, so these rules are called possible.

The LEM2 algorithm (Learning from Examples Module, version 2) of LERS is most frequently used
for rule induction. LEM2 explores the search space of attribute–value pairs. Its input data set is a lower or
upper approximation of a concept, so its input data set is always consistent. In general, LEM2 computes
a local covering and then converts it into a rule set [25]. Recently, a new, improved version of LEM2,
called MLEM2, was developed [26].

3. Experiments

Our experiments were conducted on 17 data sets, summarized in Table 10. All of these data sets,
with the exception of bankruptcy, brain and spectrometry, are available on the University of California
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at Irvine Machine Learning Repository. The bankruptcy data set is a well-known data set used by E. I.
Altman to predict a bankruptcy of companies [27]. The leukemia data set describes penetration across
the blood–brain barrier [28]. The spectrometry data set describes human proteins used in the mass
spectrometry [29].

Table 10. Data sets.

Data set
Number of

cases attributes concepts

Abalone 4,177 8 29

Australian 690 14 2

Bankruptcy 66 5 2

Bupa 345 6 2

Connectionist Bench 208 60 2

Echocardiogram 74 7 2

Ecoli 336 8 8

Glass 214 9 6

Image Segmentation 210 19 7

Ionosphere 351 34 2

Iris 150 4 3

Leukemia 415 175 2

Pima 768 8 2

Spectrometry 25,931 15 2

Wave 512 21 3

Wine 178 13 3

Yeast 1484 8 9

Every discretization method was applied to all data sets, with the level of consistency equal to 100%.
For a choice of the best attribute, we used gain ratio. Rule sets were induced using the LEM2 algorithm
of the LERS data mining system.

Table 11 presents results of ten-fold cross validation, for all data sets except spectrometry, using
increasing number of scans. For the spectrometry data set hold-out, with split of the original data set into
70% for training and 30% for testing was applied due to its size. Obviously, for any data set, after some
fixed number of scans, an error rate is stable (constant). For example, for the Australian data set, the
error rate will be 15.65% for the scan number 4, 5, etc. Thus, any data set from Table 11 is characterized
by two error rates: minimal and stable. For a given data set, the smallest error rate from Table 11 will
be called minimal and the last entry in the row that corresponds to the data set will be called stable. For
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example, for the Australian data set, the minimal error rate is 14.93% and the stable error rate is 15.65%.
For some data sets (e.g., for bankruptcy), minimal and stable error rates are identical.

Table 11. Error rates for Multiple Scanning.

Data set
Error rate for scan number

0 1 2 3 4 5 6

Abalone 76.92 78.91 78.48 77.95 77.90 77.83 78.12

Australian 34.49 15.22 14.93 15.65

Bankruptcy 3.03 9.09 1.52

Bupa 31.30 29.28 30.14 26.67

Connectionist Bench 29.33 27.88

Echocardiogram 24.32 16.22

Ecoli 19.64 20.54 18.75 20.83 21.43 20.54 20. 83

Glass 24.77 34.58 20.56 25.70 24.77 25.70 26.64

Image Segmentation 29.52 19.52 16.19 17.14

Ionosphere 10.83 6.27 9.69 7.12

Iris 5.33 2.67 4.67

Leukemia 22.41 19.52 20.48

Pima 27.21 26.04 25.65 26.30 26.82 26.69 26.43

Spectrometry 6.04 1.92 1.74 1.83 1.84 1.95

Wave 27.10 19.53 20.70 19.53 24.77 19.53

Wine Recognition 11.24 2.81

Yeast 56.74 50.47 48.99 48.92 51.28 52.83

It is clear from Table 11 that the minimal error rate is associated with 0 scans (i.e., with the method
Dominant Attribute) only for the abalone data set. Using the Wilcoxon matched-pairs signed-ranks test,
we conclude that the following two statements are statistically highly significant (i.e., the significance
level is equal to 1% for a two-tail test):

• the minimal error rate associated with Multiple Scanning is smaller than the error rate associated
with Dominant Attribute,
• the minimal error rate associated with Multiple Scanning is smaller than the smaller error rate

associated with Globalized Equal Interval Width and Globalized Equal Frequency per Interval
(Table 12).
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Table 12. Error rates for Globalized Equal Interval Width and Globalized Equal Frequency
per Interval.

Data set
Error rate

Equal Width Equal Frequency

Abalone 78.33 77.50

Australian 15.94 14.93

Bankruptcy 7.58 3.03

Bupa 33.33 39.71

Connectionist Bench 23.08 22.60

Echocardiogram 34.23 35.14

Ecoli 25.60 27.68

Glass 32.71 35.05

Image Segmentation 20.48 20.48

Ionosphere 14.81 13.96

Iris 5.33 10.67

Leukemia 22.54 22.65

Pima 30.60 30.21

Spectrometry 1.71 2.21

Wave 27.93 24.80

Wine Recognition 11.24 6.18

Yeast 57.68 55.39

For completeness we present run time for all four approaches: Dominant Attribute, Multiple
Scanning, and Globalized Equal Interval Width and Equal Frequency per Interval (Table 13). Our
experiments were conducted on a machine with 34 GB of RAM with Inter(R) Xeon Processor X5650
(12 MB cache, 2.66 GHz, 6 Cores) under Fedora 17 Linux operating system. For large data sets, such as
abalone and spectrometry, both Dominant Attribute and Multiple Scanning algorithms, based on entropy,
were faster than Globalized Equal Interval Width and Equal Frequency per Interval methods.

Additionally, the effects of scanning during discretization are presented in Tables 14 and 15. We
selected the echocardiogram and iris data sets not only because their all attributes are numerical with
real numbers as values but also because they have small number of attributes. For example, for the
echocardiogram data set, for 0 scans, i.e., for Dominant Attribute, it is clear that attribute Age was
selected as the best and that during discretization eight cut points were selected. After a single scan, the
same attribute was selected as the best attribute. The Wall-score attribute was redundant for 0 scans, but
it became essential after the first scan.
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Table 13. Run time for all four approaches: Dominant Attribute, Multiple Scanning,
Globalized Equal Interval Width and Globalized Equal Frequency per Interval.

Data set

Run time

Dominant Multiple Globalized Globalized

Attribute Scanning Equal Width Equal Frequency

Abalone 0 m 11. 620 s 0 m 26.277 s 8 m 13.661 s 4 m 8.623 s

Australian 0 m 0.915 s 0 m 0.185 s 0 m 0.613 s 0 m 0.226 s

Bankruptcy 0 m 0.004 s 0 m 0.004 s 0 m 0.007 s 0 m 0.002 s

Bupa 0 m 0.023 s 0 m 0.036 s 0 m 0.007 s 0 m 0.040 s

Connectionist Bench 0 m 0.075 s 0 m 0.811 s 0 m 0.439 s 0 m 0.415 s

Echocardiogram 0 m 0.005 s 0 m 0.005 s 0 m 0.003 s 0 m 0.004 s

Ecoli 0 m 0.024 s 0 m 0.040 s 0m 0.065 s 0 m 0.047 s

Glass 0 m 0.024 s 0 m 0.042 s 0 m 0.026 s 0 m 0.024 s

Image Segmentation 0 m 0.035 s 0 m 0.174 s 0 m 0.087 s 0 m 0.054 s

Ionosphere 0 m 0.087 s 0 m 0.480 s 0 m 0.538 s 0 m 0.498 s

Iris 0 m 0.006 s 0 m 0.003 s 0 m 0.008 s 0 m 0.009 s

Leukemia 0 m 0.520 s 0 m 15.304 s 0 m 8.860 s 0 m 8.950 s

Pima 0 m 0.131 s 0 m 0.134 s 0 m 0.494 s 0 m 0.203 s

Spectrometry 3 m 36.673 s 3 m 58.913 s 8 m 46.789 s 7 m 58.871 s

Wave 0 m 0.155 s 0 m 0.479 s 0 m 0.128 s 0 m 0.086 s

Wine Recognition 0 m 0.011 s 0 m 0.034 s 0 m 0.020 s 0 m 0.017 s

Yeast 0 m 0.915 s 0 m 0.970 s 0 m 3.336 s 0 m 1.662 s

Table 14. Number of intervals for scanning data set echocardiogram.

Attribute
Number of scans

0 1
before merging after merging before merging after merging

Age 8 6 6 6

Pericardial 1 1 2 2

Fractional 3 3 3 2

EPSS 2 2 2 1

LVDD 4 3 2 2

Wall-score 1 1 2 2

Wall-index 2 2 2 2



Entropy 2013, 15 1500

Table 15. Number of intervals for scanning data set iris.

Attribute
Number of scans

0 1 2
before merging after merging before merging after merging before merging after merging

Sepal length 4 3 4 3 6 5
Sepal width 5 4 4 3 4 3
Petal length 4 4 4 3 4 4
Petal width 4 2 3 3 3 2

4. Conclusions

This paper presents results of experiments in which four different techniques were used for
discretization. All four techniques were validated by conducting experiments on 17 data sets with
numerical attributes. Our discretization techniques were combined with rule induction using the LEM2
rule induction algorithm. The results of our experiments show that the Multiple Scanning technique is
significantly better than: Dominant Attribute and the better results of Globalized Equal Interval Width
and Equal Frequency per Interval methods (using two-tailed test and 0.01 level of significance). Thus,
we show that there exists a new successful technique for discretization.
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