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Abstract: We investigate the statistical properties of the foreign exchange (FX) network at
different time scales by two approaches, namely the methods of detrended cross-correlation
coefficient (DCCA coefficient) and minimum spanning tree (MST). The daily FX rates of
44 major currencies in the period of 2007–2012 are chosen as the empirical data. Based
on the analysis of statistical properties of cross-correlation coefficients, we find that the
cross-correlation coefficients of the FX market are fat-tailed. By examining three MSTs
at three special time scales (i.e., the minimum, medium, and maximum scales), we come to
some conclusions: USD and EUR are confirmed as the predominant world currencies; the
Middle East cluster is very stable while the Asian cluster and the Latin America cluster are
not stable in the MSTs; the Commonwealth cluster is also found in the MSTs. By studying
four evaluation criteria, we find that the MSTs of the FX market present diverse topological
and statistical properties at different time scales. The scale-free behavior is observed in the
FX network at most of time scales. We also find that most of links in the FX network survive
from one time scale to the next.
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1. Introduction

It has been a “stylized fact” that financial markets are deemed as complex systems with a mass of
interacting entities [1,2]. The existence of cross-correlations between financial units is a particularly
important feature of market dynamics for financial markets [3–5]. The study on the behavior of
the cross-correlations between financial agents that are beneficial to the optimization of the portfolio
selection and the risk management of assets has been a hot topic [6–9]. From a statistical physics
point of view, a variety of methods have been developed to analyze the cross-correlations between
financial variables, such as correlation network-based approaches [10–12] (e.g., the minimum spanning
tree (MST) [10], the planar maximally filtered graph (PMFG)[11], and the correlation threshold
methods [12–14]), random matrix theory [15–19], and the (multi-)fractal analysis theory [20–22]. In
particular, since Mantegna [10] first introduced the topology network tool of MST for the portfolio
of stocks in the U.S. stock market, the correlation network-based methods have been widely used to
quantify the cross-correlations and market properties in different financial markets [23], such as stock
markets [13,14,24–34] and commodity markets [35].

The foreign exchange (FX) market is the largest and most liquid financial market [4] that directly or
indirectly affects all other financial markets as any asset’s price is defined in form of a currency, which
spurs many scholars to focus their studies on the topological structure and statistical properties of the FX
network by correlation network-based approaches [23,36–44]. Previous works usually choose the MST
method to analyze the topology of the correlation networks in financial markets due to its simplicity
and robustness [25]. The applications of the MST method in the FX market can be divided into two
aspects: on the one hand, the MST is used to analyze the clustering behavior of individual currencies
in the international FX market and to find the predominant world currencies, such as in [37,38]; on the
other hand, combined with the rolling (or moving) widows method [24,25], the dynamic MSTs were
developed and applied to capture the time-varying behavior of the topology of the FX network and
track the dynamic relationships between individual currencies in the FX market, especially during the
financial crisis [42,43]. Generally, the aforementioned works using the MST approach were based on the
Pearson correlation coefficient (PCC), which is used to represent the linear correlation between two time
series that are both assumed to be stable [45]. Nevertheless, in the real world, the financial time series
usually present the non-linear and non-stationary characteristics [23], e.g., the fat-tailed distribution has
been a “stylized fact” in the return series [46,47]. Therefore, PCC may not be suitable to describe the
cross-correlations between financial units that are non-stationary. To quantify the cross-correlations
between two non-stationary time series i and j, a new detrended cross-correlation coefficient ρi j(s)
was developed by Zenbende [48], which is expressed in terms of the detrended fluctuation analysis
(DFA) [49] and the detrended cross-correlation analysis (DCCA) [20] , where s is the time scale. An
outstanding advantage of the DCCA coefficient (another expression of ρi j(s)) is that it can examine
the cross-correlations between non-stationary time series at different time scales [4,45]. After that, the
DCCA coefficient was widely used to investigate the cross-correlations in different fields [50,51], such
as the FX market [4,52] and stock markets [45,53,54].

In this paper, we aim to combine the DCCA coefficient with the MST approach to construct the FX
network at different time scales and analyze its statistical properties. That is to say, we want to answer
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the question of what statistical properties does the FX network have at different time scales, because to
our knowledge there is no study that reports or reveals this issue. To this end, in our empirical analysis,
we first choose 44 major currencies from 2007 to 2012 as the data set and select the special drawing right
(SDR) as the numeraire. Next, we employ the DCCA coefficient to build the empirical cross-correlation
matrices (CCM) of the 44 currencies at different time scales. Then, by using the filter method of the MST,
we transform the empirical CCM into the FX network at different time scales. Finally, we investigate the
FX network’s topological and statistical properties at different time scales.

The rest of the paper is structured as follows. In Section 2, we show the empirical data and the
methodologies of the DCCA coefficient and MST. We construct the FX network at different time scales
by the two methods and present the main empirical results and analysis in Section 3, and in Section 4 we
draw some conclusions.

2. Data and Methodology

2.1. Data Set

The daily FX rates of 44 major currencies in the FX market from January 2, 2007 to December 31,
2012 are selected as the data set. Many previous works discussed the choice of the numeraire, which is
a hard problem in the FX study because currencies are mutually priced and there is thus no independent
numeraire [42]. Mizuno et al. [37] once indicated that the precious metals (e.g., the gold, platinum,
and silver) can be considered as the numeraire for the FX rates. However, the precious metals should be
rejected because of their high volatilities [42,43]. Other numeraire has also been suggested, such as the
minor currency (e.g., the Turkish New Lira) by Keskin et al. [42], and the SDR by Wang et al. [4] and
Jang et al. [43]. In our study, like in [4,43], we use the SDR, which is neither a currency nor a claim
on the international monetary fund (IMF) but “a potential claim on the freely usable currencies of IMF
members” [43], as the numeraire. The 44 currencies and the corresponding currency symbols are shown
in Table 1. We obtain the FX data from the Pacific Exchange Rate Service [55] including 1506 days. Let
Pi(t) denote the daily FX rate of currency i on day t. The logarithmic return ri(t) of currency i on day t is
defined as ri(t) = ln(Pi(t)) − ln(Pi(t − 1)). Therefore, the return of each currency has 1505 observations.

Table 1. 44 currencies and respective symbols.

Continent Currency Symbol Continent Currency Symbol

Africa
Egyptian Pound EGP

Europe

Romanian New Leo RON
South Africa Rand ZAR Russian Rubles RUB

Asia

Chinese Renminbi CNY Swedish Krona SEK
Indian Rupee INR Swiss Franc CHF
Indonesian Rupiah IDR Turkish New Lira TRY
Japanese Yen JPY

Latin America

Argentinian Peso ARS
Malaysian Ringgit MYR Brazilian Real BRL
Pakistani Rupee PKR Chilean Pesos CLP
Philippines Peso PHP Colombian Peso COP
Singapore Dollar SGD Panamanian Balboas PAB
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Table 1. Cont.

Continent Currency Symbol Continent Currency Symbol

Asia

South Korean Won KRW
Latin America

Peruvian New Sole PEN
Sri Lankan Rupee LKR Mexican Peso MXN
Taiwan Dollar TWD Venezuelan Bolı́var Fuerte VEF
Thai Baht THB

Middle East

Israeli New Shekel ILS
Vietnamese Dong VND Jordanian Dinar JOD

Europe

British Pound GBP Kuwaiti Dinar KWD
Czech Koruna CZK Saudi Arabian Riyal SAR
European Euros EUR United Arab Emirates Dirham AED
Hungarian Forint HUF

North America
Canadian Dollar CAD

Icelandic Krona ISK US Dollar USD
Norwegian Krone NOK

Pacific Ocean
Australian Dollar AUD

Polish Zloty PLN New Zealand Dollar NZD

2.2. Methodology

To construct the FX network at different time scales, we employ two approaches of the DCCA
coefficient ρi j(s) and the MST respectively proposed by Zenbende [48] and Mantegna [10]. First, we
introduce the DCCA coefficient as follows:

Step 1. Consider two returns {ri(t)} and {r j(t)} of currencies i and j with the equal length L,
where t = 1, 2, . . . , L. Then, we calculate the “profile” of each return series and obtain two new
sequences [52,56],

Ri(t) =
t∑

k=1

(ri(k) − ⟨ri⟩), R j(t) =
t∑

k=1

(
r j(k) −

⟨
r j

⟩)
, t = 1, 2, . . . , L (1)

where ⟨. . .⟩ denotes the statistical average over the period studied.
Step 2. We divide the both profiles {Ri(k)} and {R j(k)} into Ls=int(L/s) non-overlapping units of the

same length s. Considering that L is usually not a multiple of the time scale s, a short segment at the end
of each profile may be left. To contain this segment of the sequences, we repeat the same procedure but
starting from the opposite end. So we acquire 2Ls segments. In our study, we set 10 ≤ s ≤ L/4, and the
number of s is fixed to be 30.

Step 3. For each segment v (v = 1, 2, . . . , Ls, Ls + 1, . . . , 2Ls), we determine the local trends {R̃v
i (k)}

and {R̃v
j(k)} by a least-squares fit of the sequences {Ri(k)} and {R j(k)}, respectively. Then we obtain the

detrended covariance [3,4,52,56]

f 2
DCCA(s, v) =

1
s

s∑
t=1

(
R(v−1)s+t

i (t) − R̃v
i (t)

) (
R(v−1)s+t

j (t) − R̃v
j(t)

)
(2)

for each segment v, v = 1, 2, . . . , Ls and

f 2
DCCA(s, v) =

1
s

s∑
t=1

(
RL−(v−Ls)s+t

i (t) − R̃v
i (t)

) (
RL−(v−Ls)s+t

j (t) − R̃v
j(t)

)
(3)
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for v = Ls + 1, Ls + 2, . . . , 2Ls.
Step 4. We calculate the detrended covariance fluctuation function F2

DCCA(s) by averaging over
all segments

F2
DCCA(s) =

1
2Ls

2Ls∑
v=1

f 2
DCCA(s, v) (4)

If Ri(k) = R j(k), FDCCA(s) reduces to the detrended variance function FDFA(s) defined in the DFA
approach [49,57], i.e.,

FDFA(s) =

 1
2Ls

2Ls∑
v=1

f 2
DFA (s, v)


1/2

(5)

where f 2
DFA(s, v) = 1/s

∑s
t=1

(
R(v−1)s+t

i (t) − R̃v
i (t)

)2
and f 2

DFA(s, v) = 1/s
∑s

t=1

(
RL−(v−Ls)s+t

i (t) − R̃v
i (t)

)2
for

v = 1, 2, . . . , Ls and v = Ls + 1, Ls + 2, . . . , 2Ls, respectively.
Step 5. For the two returns {ri(t)} and {r j(t)} of currencies i and j, the DCCA coefficient is defined as

the ratio between the detrended covariance function F2
DCCA(s) of Equation (4) and two detrended variance

functions FDFA(s) of Equation (5) [48,50,51,53], i.e.,

ρi j(s) =
F2

DCCA(s)
FDFA{ri(t)}(s)FDFA{r j(t)}(s)

(6)

where ρi j(s) ranges from −1 to 1. A value of ρi j(s) = 1 or ρi j(s) = −1 implies that the two currencies
i and j are completely cross-correlated or anti cross-correlated, at the time scale s, whereas a value of
ρi j(s) = 0 indicates that there is no cross-correlation between the two currencies i and j [48]. Obviously,
the DCCA coefficient ρi j(s) is a function of the time scale s, which means that it can investigate the
cross-correlations between two currencies i and j at different time scales [45].

Next, based on the DCCA coefficient, we simply describe the construction of the FX network using
the MST method at different time scales. If there are N currencies of the same length L, MST is built
by the N × N symmetric cross-correlation matrix Cs of elements ρi j(s) at the time scale s. To construct
the MST network proposed by Mantegna [10], we use the metric distance ds

i j between currencies i and
j at time scale s, which satisfies the three axioms of the Euclidean distance. The metric distance is
defined as ds

i j =
√

2(1 − ρi j(s)), where 0 ≤ ds
i j ≤ 2. Based on the N × N distance matrix Ds of elements

ds
i j, we construct the MST for N currencies in the FX market via using the Kruskal’s algorithm [58,59].

For each time scale s, the MST network of the FX market connects the N currencies (nodes) with N−1
stronger links such that no loops are produced, i.e., the FX network is structured with the strongest
cross-correlations of each currency [23].

Then, we introduce some evaluation criteria to examine the topological and statistical properties of the
FX network. A simple measure of the normalized tree length (NTL) is proposed by Onnela et al. [24,25],
which is used to analyze the temporal state of the financial market, and is defined by

LNTL(s) =
1

N − 1

∑
ds

i j∈Θ
ds

i j (7)

where Θ denotes the set of edges (or links) in the MST at the time scale s.
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The average path length (APL), which can be used to measure the density of the MST network
structure, is defined as the average distance of the shortest path between any two currencies
i and j [32], i.e.,

LAPL(s) =
2

N(N − 1)

N∑
i> j

ls
i j (8)

where ls
i j is denoted as the number of links in the shortest path between two nodes (currencies) i and j at

the time scale s.
Jang et al. [43] and Yang et al. [32] suggested a measure, the maximum number of degrees (or links)

kmax, which is denoted as the number of links (or edges) of the most connected vertex in the MST. The
greater kmax that a vertex has, the larger influence of it on other vertexes is [32].

Onnela et al. [24,25] also introduced a measure of the mean occupation layer (MOL) to describe the
spread of nodes on the MST, which also can be used to quantify the changes in the density of the MST.
For the central vertex (or node) vc at the time scale s, the mean occupation layer is defined by

LMOL(vc, s) =
1
N

N∑
i=1

levs(vi) (9)

where the central vertex in a tree is defined as a vertex that has the maximum degree (or links); levs(vi)
is the level of vertex vi with respect to the central vertex vc at the time scale s; and the level of the central
vertex vc is set to be zero [23].

3. Empirical Results and Analysis

3.1. Statistics of Cross-Correlation Coefficients

In this subsection, we investigate the probability density function (PDF) P(ρi j) of the cross-correlation
matrix Cs with the elements {ρi j; i , j} at the time scale s, and plot the graphical representation of P(ρi j)
in Figure 1. We also present four descriptive statistics (i.e., the mean, standard deviation, skewness,
and kurtosis) of the cross-correlation coefficients {ρi j; i , j} at different time scales s in Figure 2. From
Figures 1 and 2, for each time scale s, we can find that the PDF P(ρi j) is asymmetric with a positive
value as its center, in practical terms, the mean of {ρi j; i , j} is larger than 0.1. This finding means
that positive cross-correlations among the currencies in the FX market are more common than anti
cross-correlations. An interesting observation in Figure 2 is that the volatility (i.e., the standard
deviation) appears to increase with the time scales, which implies that the cross-correlations in the FX
market seem to be unstable as the time scales increase. As shown in Figure 2, it can be found that the
skewness of {ρi j; i , j} is less than 0 and close to −0.2, i.e., P(ρi j) is negative skewness at each time
scale s. The kurtosis of {ρi j; i , j} is close to three, which obeys a normal distribution when s < 100,
but it deviates from three and decreases with the time scales when s > 100. Based on the analysis of the
skewness and kurtosis of {ρi j; i , j}, we can conclude that the cross-correlation coefficients of the FX
market in the period of 2007–2012 are fat-tailed, especially for the large time scale.
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Figure 1. Plot of the probability density function P(ρi j) of the cross-correlation coefficients
{ρi j; i , j} at different time scales s for the FX market in the period of 2007–2012.
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Figure 2. Plots of four descriptive statistics (i.e., the mean, standard deviation, skewness,
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3.2. MST Results

Considering that there are too many MSTs to present for all the time scales s, for the FX market,
we hereby only show and analyze three MSTs at three different time scales, but in the next subsection
we will present the statistical properties of the FX network at different time scales. Suppose we have
si ∈ s ⊆ [10,N/4], where i = 1, 2, ..., 30, the three time scales are chosen as s1 = 10, s15 = 58, and
s30 = 376, which are the minimum, medium, and maximum scales respectively. Figures 3–5 present the
MSTs of 44 currencies in the FX market during the years 2007–2012 at the three time scales s1 = 10,
s15 = 58, and s30 = 376, respectively.

Figure 3. Minimum spanning tree of 44 currencies in the FX market for 2007–2012 at the
time scale s1 = 10. Coding is: Africa, orange ellipses (orange � ); Asia, cyan diamonds
(cyan _ ); Europe, yellow boxes (yellow �); Latin America, blue triangles (blue N); Middle
East, green diamonds (green_); North America, red ellipses (red �); Pacific Ocean, magenta
boxes (magenta �).
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For the time scale s1 = 10, there are the two observably strongest monetary clusters in Figure 3:
one is the international cluster with USD at its center, and the other is the European cluster with EUR
at its center. The former is composed of some currencies directly from Asia, Latin America, Africa,
and Middle East, and some currencies indirectly from Middle East and Asia. The latter is made of
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all the Europe currencies expect for TRY and GBP, which has typical regional or geographical feature.
Possible interpretations of TRY being away from the European cluster include the marginality of the
geographical position of Turkey, which is located at the border of the Europe and Asia, and that TRY
is a minor currency as reported by Keskin et al. [42]. As for GBP, it is interesting to note that AUD
and NZD from Pacific Ocean, CAD from North America, ZAR from Africa, and GBP from Europe are
connected as the Commonwealth cluster because all the five countries come from the Commonwealth of
Nations. From Figure 3, we can also find that the other three monetary clusters in the MST are the Asia
cluster with MYR at its center, the Middle East cluster with AED at its center, and the Latin America
cluster with MXN at its center. The former two clusters are indirectly connected with USD, which is a
predominant currency in the FX market.

Figure 4. Minimum spanning tree of 44 currencies in the FX market for 2007–2012 at the
time scale s15 = 58. Coding is: Africa, orange ellipses (orange � ); Asia, cyan diamonds
(cyan _ ); Europe, yellow boxes (yellow �); Latin America, blue triangles (blue N); Middle
East, green diamonds (green_); North America, red ellipses (red �); Pacific Ocean, magenta
boxes (magenta �).
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Compared with the MST in Figure 3, for the time scale s15 = 58 as plotted in Figure 4, some changes
have happened to the FX network but the two strongest monetary clusters (i.e., the international cluster
and the European cluster whose centers are USD and EUR, respectively) still exist. The Asia cluster, the
Middle East cluster, and the Commonwealth cluster are also presented in the graph. The biggest change
is that the Latin America cluster has disappeared and the four Latin America currencies (i.e., BRL, COP,
MXN, and CLP) as shown in Figure 3 are directly or indirectly linked to the Commonwealth cluster
whose center is still AUD. At this time scale, the Commonwealth cluster becomes bigger than that at
the time scale s1 = 10. The positions of some currencies have also changed but it does not influence the
clustering effect of the FX network.

As illustrated in Figure 5, there are several notably changes of the MST at the time scale s30 = 376.

(1) The international cluster with USD as its center becomes smaller than those of the former two
scales, and only five currencies directly link to USD.
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(2) The Asia cluster splits into two small clusters: one is the linear-linked group in the MST, which
is composed of INR, THB, PHP, and PKR, and the other is the triangle-linked group, which is
composed of SGD, TWD, and MYR.

(3) Compared with Figure 4, the Latin America cluster has appeared again but with BRL as its center.

(4) Although the European cluster still exists in the MST, the center is changed to PLN.

(5) The Commonwealth cluster is separated into two units by KRW but the five currencies (i.e., GBP,
NZD, AUD, ZAR, and CAD) are still on a line.

Figure 5. Minimum spanning tree of 44 currencies in the FX market for 2007–2012 at the
time scale s30 = 376. Coding is: Africa, orange ellipses (orange � ); Asia, cyan diamonds
(cyan _ ); Europe, yellow boxes (yellow �); Latin America, blue triangles (blue N); Middle
East, green diamonds (green_); North America, red ellipses (red �); Pacific Ocean, magenta
boxes (magenta �).

USD

CAD

EUR

JPY

GBP

CHF

AUD

NZD

KRW

MXN

ARS

BRL

CLP

CNY

COP

CZK

EGP

HUF

ISK

INR

IDR

ILS

JOD

KWD

MYR

NOK

PKR

PAB

PEN

PHP

PLN

RON

RUB

SAR

SGD

ZAR

LKR

SEK

TWD

THB
TRY

AED

VEF

VND

From Figures 3–5, we can find some similar results and draw the corresponding conclusions as
follows:

(1) Both the international cluster and the European cluster exist in the MSTs for three different time
scales, which confirms that USD and EUR are the predominant currencies in the FX market and
suggests that the currencies can be clustered by the geographical criterion or the trade criterion.
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(2) Another stable cluster in the three MSTs is the Middle East cluster with AED as its center,
which consists of AED, JOD, SAR, and KWD. Three countries of them are the members of the
Organization of the Petroleum Exporting Countries (OPEC), which causes their currencies to have
a strong relationship with USD because the U.S. is the largest importer and consumer of oil in the
world at present and USD is the main currency of payment.

(3) The Asia and Latin America clusters are not stable, which indicates that countries in these areas
need more cooperation such as in the fields of trade, policy, economy, and currency.

(4) An interesting finding is that the Commonwealth cluster appears in our study. This phenomenon
suggests that the shared values and the shared trade links of the Commonwealth of Nations are
beneficial to the formation of the monetary cluster.

(5) Five currencies (i.e., CNY, PAB, VND, AED, and EGP) always connect to USD as their center.
There are two possible origins to explain the connections: on the one hand, the country is one
of the main trading partners of America or the opposite, such as China; on the other hand, the
currency may be pegged to USD, such as PAB.

Figure 6. Plots of four evaluation criteria of MSTs at different time scales s for the FX
market in the period of 2007–2012. Panels (a)–(d) show the results of LNTL, LAPL, kmax, and
LMOL, respectively. The red solid lines represent the statistical average values over the time
scales studied, corresponding to the four measures.
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3.3. Statistical Properties of MSTs at Different Time Scales

3.3.1. Four Evaluation Criteria

To analyze the topological and statistical properties of the FX network, at different time scales s, we
investigate the four evaluation criteria (i.e., LNTL, LAPL, kmax, and LMOL) of MSTs and show the results in
Figure 6. To make a comparison, we also obtain the CCM of the 44 currencies by the method of PCC and
transform the CCM into the MST for the FX market. Then, based on the MST for PCC, we calculate that
the values of LNTL, LAPL, kmax, and LMOL are equal to 0.8672, 7.1744, 10, and 6.3409, respectively, which
are all larger than the statistical average values over the time scales corresponding to the four measures
of the MSTs for the DCCA coefficient (see Figure 6). As drawn in Figure 6, it can be found that all the
values of LNTL, most of values of LAPL and LMOL of the MSTs for the DCCA coefficient are smaller than
the corresponding results of the MST for PCC. Interestingly, as shown in Figure 6a, the normalized tree
length LNTL decreases with the time scales s. That is to say, the larger the time scales s is, the smaller
the average distance (or length) of the FX network is. As for the average path length LAPL and the mean
occupation layer LMOL, the two measures have a tendency to decrease when s < 40 and do not present
any consistent feature when s > 40. However, one can find that the two curves of LAPL and LMOL have
a similar trend from Figure 6b,d. So, we calculate that the Pearson correlation coefficient between LAPL

and LMOL is 0.8638 at the 1% significance level, which confirms the aforesaid finding. From Figure 6c,
we can find that the maximum number of links kmax represents the same value at a few successive time
scales but shows a descending trend on the whole as the time scales increase. For instance, as shown in
Figures 3–5, it can be found that the values of kmax when s1 = 10, s15 = 58, and s30 = 376 are equal to
12, 10, and 5 respectively, which has a decrease tendency. From the aforementioned analysis based on
Figure 6, we can come to a conclusion that the MSTs of the FX market present diverse topological and
statistical properties at different time scales, which is a new visual to investigate the topology and market
properties of the financial networks.

3.3.2. Distribution of Vertex Degrees

The power-law (or scale-free) behavior has been found in many financial networks [25,40,44,60]. For
example, Vandewall et al. [60] investigated the vertex degrees distribution of the MST for 6358 U.S.
stocks traded at the NYSE, NASDAQ, and AMEX during the year 1999 and found that the scale-free
behavior exist in the stock tree. As for the definition of the scale-free behavior, Vandewall et al. [60]
proposed that the probability distribution of the vertex degrees P(k) obeys a power-law, i.e.,

P(k) ∝ k−α (10)

where k is the vertex degree, and α is the exponent and is found to be 2.2 by Vandewall et al. [60]. A
similar result was obtained by Onnela et al. [25] who examined the dynamic asset trees for 477 stocks
traded at the NYSE from 1980 to 1999. They reported that the exponent α ≈ 2.1 for most of time but
α ≈ 1.8 during the period of Black Monday. Kwapień et al. [40] investigated a set of FX rates of 63
currencies (including 3 precious metals) in the period of 1999–2008 and built different MSTs of the FX
market by using different numeraires. They found that the exponents of cumulative distribution functions
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(CDF) are in the range [1.37, 1.96]. Because there is a difference of unity between the exponent of CDF
and the exponent of the probability distribution, the exponents of the probability distribution in [40]
should be in the interval [2.37, 2.96]. In other words, different MSTs based on different numeraires
present different power-law exponents. From the previous works [25,40,60], we can find that the
scale-free behavior of the FX market is different from that of stock markets due to the particularity
of the FX market. In order to detect the power-law or scale-free behavior of MSTs for the FX market at
different time scales, we introduce and employ a powerful toolbox proposed by Clauset et al. [61], which
is based on the maximum likelihood estimator (MLE) and the Kolmogorov–Smirnov (KS) statistic. The
probability distribution P(k) of the power-law model is defined by [61]

P(k) =
α − 1
kmin

(
k

kmin

)−α
(11)

and the power-law exponent α is estimated by MLE, i.e.,

α̂ = 1 + N

 N∑
i=1

ln
ki

kmin

 (12)

where {ki|i=1,2,. . . ,N} is the set of independent observations (which stand for the vertex degrees, in our
study) with the elements ki such that ki ≥ kmin. kmin is the lower bound on the power-law behavior, which
is estimated by choosing the value of ki such that KS statistic is the smallest, i.e., minimizing the KS
statistic [32],

D = max
k≥kmin

|S (k) −C(k)| (13)

where S (k) and C(k) are the cumulative distribution functions of the data for the observations with value
at least kmin and for the power-law model that best fits the data in the region k ≥ kmin [61], respectively.
Based on the KS statistic, a test of p-value, which can be used to calculate a probability that the data
for the observations come from the hypothesized power-law distribution [32], was proposed in [61]. If
the estimated p-value is smaller than a certain chosen threshold, the power-paw hypothesis should be
rejected. Similar to Clauset et al. [61], in this study, we reject the power-law model if the estimated
p-value is less than 0.1. Moreover, if the estimated p-value is closer to 1, the data for the observations
are more likely to draw from a power-law distribution.
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Figure 7. Plots of the exponents α and the corresponding p-values of MSTs at different time
scales s for the FX market in the period of 2007–2012. Panels (a) and (b) show the results of
α and p-value, respectively. The red solid lines represent the statistical average values over
the time scales studied, corresponding to the two measures. The black dashed line in panel
(b) stands for the value of 0.1.
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Using the abovementioned method proposed by Clauset et al. [61], we estimate the exponents α and
the corresponding p-values of MSTs at different time scales s for the FX market during 2007–2012,
and present the results in Figure 7. From Figure 7a, we can find that the exponents are in the interval
[2.12, 3.50] and calculate their mean as 2.69, which are consistent with the results reported by Kwapień
et al. [40]. About 1/3 of the exponents are in the range [2.12, 2.19], which are close to 2.1 obtained by
Onnela et al. [25]. The rest 2/3 of the exponents fall in the interval [2.71, 3.50], which are much larger
than the average exponent. However, as drawn in Figure 7b, it can be observed that some p-values are
smaller than 0.1, which suggests that the distributions of vertex degrees for certain MSTs do not follow
a power-law distribution at some time scales (i.e., s1, s2, s3, s4, s6, s19, and s29). In addition, one can
see that the power-law exponents of the MSTs for the FX market are different at different time scales.
These findings indicate that the scale-free behavior exists in the FX network at most of time scales. As
a comparison, we also estimate that the power-law exponent of the MST for PCC is equal to 3.5 and the
corresponding p-value reaches to 0.751, which further confirms that scale-free behavior exists in the FX
network. For each time scale, expect for the scale of s28, one can observe that the exponent of the MST
for the DCCA coefficient is less than the exponent for PCC.
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Figure 8. Plot of the LSSR of MSTs at different time scales s (s > 10) for the FX market in
the period of 2007–2012. The red solid lines represent the statistical average value over the
time scales studied.
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3.3.3. Single-Step Survival Ratio

Onnela et al. [24,25] defined two measures, the single-step survival ratio and the multistep survival
ratio, to study the robustness and long-term evolution of the MSTs respectively. Considering that the
number of time scales is limited, it is not suitable to introduce the measure of multistep survival ratio in
our study. Following Onnela et al. [24,25], we hereby only introduce the single-step survival ratio (SSR),
which is defined as the ratio between edges of MST and edges found in common in two consecutive
MSTs at time scales si and si−1, i.e., (# means the number of) [39],

LSSR(si) =
# {E(si) ∩ E(si−1)}

N − 1
(14)

where E(si) and E(si−1) stand for the set of edges of MST at time scale si and si−1 respectively, ∩ is the
intersection operator [25], and N−1 denotes the number of edges in the MST.

We calculate the single-step survival ratio of MSTs at different time scales for the FX market by
Equation (14) and show the graphical representation of LSSR in Figure 8. The average value of LSSR is
equal to 0.8212, which is similar to the result reached by Onnela et al. [25] who studied the dynamic
asset trees for the U.S. stock market. Moreover, there are 13/30 of LSSR larger than the average value of
LSSR; especially the maximum value reaches 0.9767, which is closes to 1. These findings imply that a
great majority of links in the FX network survive from one time scale to the next. However, as a whole,
the ratio decreases with increases in the time scales.

4. Conclusions

In summary, we present outcomes of this study of the FX network at different time scales based
on the daily FX rates of 44 major currencies in the range from the beginning of 2007 to the end of
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2012. The FX network at different time scales is constructed by two approaches, namely the methods
of DCCA coefficient and MST. In the empirical process, we examine the statistical properties of
cross-correlation coefficients, and three MSTs at three special time scales. We also investigate the
statistical properties of MSTs for the FX market at different time scales. In practical terms, the statistical
properties including four evaluation criteria (i.e., measures of the normalized tree length, the average
path length, the maximum number of degrees, and the mean occupation layer), the distribution of vertex
degrees, and a measure of the single-step survival ratio are analyzed.

The basic findings of the statistical properties of the FX market in our study can be summarized as
follows:

(1) Based on the analysis of statistical properties of cross-correlation coefficients, we find that the
cross-correlation coefficients of the FX market in the period of 2007–2012 are fat-tailed.

(2) From the three MSTs in Section 3.2, we draw some conclusions. For instance, USD and EUR
are confirmed as the predominant world currencies in the three MSTs. The Asian cluster and the
Latin America cluster are not stable while the Middle East cluster is very stable in the MSTs. It is
interesting to note that the Commonwealth cluster is found in the MSTs.

(3) By analyzing the four evaluation criteria, we find that the MSTs of the FX market present diverse
topological and statistical properties at different time scales.

(4) The scale-free (or power-law) behavior is also found in the FX network at most of time scales.

(5) Through quantifying the single-step survival ratio of the MSTs at different time scales, we
conclude that a great majority of links in the FX network survive from one time scale to the
next.

One of the important contributions of this study is that we combine the method of DCCA coefficient
with a correlation network-based method of MST to investigate the statistical properties of the FX market
at different time scales. However, some open topics are not discussed in our work but can be used for the
future study, which are presented as follows:

(1) An important application of the MST is in the portfolio optimization problem, such as in [10,25].
Therefore, the different MSTs at different time scales are useful for the diversity of the asset
portfolio and the optimal portfolio selection.

(2) Our analysis based on the two methods of DCCA coefficient and MST can be employed to analyze
the statistical properties of other financial markets at different time scales, such as stock markets
and commodity markets.

(3) The DCCA coefficient method also can be combined with other correlation
network-based approaches to study the topology of the networks at different time scales,
such as PMFG, and correlation threshold methods.
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