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Abstract: We investigate entanglement of a quantum field in de Sitter spacetime using a
particle detector model. By considering the entanglement between two comoving detectors
interacting with a scalar field, it is possible to detect the entanglement of the scalar field by
swapping it to detectors. For the massless minimal scalar field, we find that the entanglement
between the detectors cannot be detected when their physical separation exceeds the Hubble
horizon scale. This behavior supports the appearance of the classical nature of quantum
fluctuations generated during the inflationary era.
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1. Introduction

According to the inflationary scenario of cosmology, all structure in the Universe can be traced back
to primordial quantum fluctuations during an accelerated expanding phase of the very early universe.
Short wavelength quantum fluctuations generated during inflation are considered to lose quantum nature
when their wavelengths exceed the Hubble horizon length. Then, the statistical property of generated
fluctuations can be represented by classical distribution functions. This is the assumption of the quantum
to classical transition of quantum fluctuations generated by the inflation. As the structure in the present
Universe is classical objects, we must explain or understand how this transition occurred and how the
quantum fluctuations changed to classical fluctuations [1]. When we calculate a correlation function of
observables between two spatially separated regions, we have a possibility that the quantum correlation
function cannot be reproduced using a local classical probability distribution function if these two regions
are entangled [2–4] and the classical locality is violated. In other words, we cannot regard the quantum
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fluctuations as the classical stochastic fluctuations as long as the system is entangled. Therefore, it is
important to clarify the relation between the entanglement and the appearance of the classical nature to
fully understand the mechanism of the quantum to classical transition of primordial fluctuations.

We have investigated the problem of quantum to classical transition from the viewpoint of
entanglement [5–7]. In our previous study, we considered the intrinsic entanglement of quantum
fields [5,6]. We defined two spatially separated regions in the inflationary universe and investigated
the bipartite entanglement between these regions. It was found that the entanglement between these two
regions becomes zero after their physical separation exceeds the Hubble horizon. This behavior of the
bipartite entanglement confirms our expectation that the long wavelength quantum fluctuations during
inflation behave as classical fluctuations and can become seed fluctuations for the structure formation
in the Universe. These analysis concerning the entanglement of quantum fluctuations in the inflationary
universe relies on the separability criterion for continuous bipartite systems [8,9] of which dynamical
variables are continuous. The applicability of this criterion is limited to systems with Gaussian states: the
wave function or the density matrix of the system is represented in a form of Gaussian functions. Thus,
we cannot say anything about the entanglement for the system with non-Gaussian state such as excited
states and thermal states. Furthermore, from a viewpoint of observation or measurement, information on
quantum fluctuations can be extracted via interaction between quantum fields and measurement devices.
Hence, it is more natural to consider a setup that the entanglement of quantum field is probed using
particle detectors [10,11].

In this direction, we considered the detection of the entanglement of scalar fields using particle
detectors with two internal energy levels interacting with fields [7]. By preparing two spatially separated
equivalent detectors interacting with the scalar field, we can extract the information on entanglement
of the scalar field by evaluating the entanglement between these two detectors. Since a pair of such
detectors is a two-qubit system, we have the necessary and sufficient condition for entanglement of this
system [12,13]. Using this setup, B. Reznik el al. [14,15] studied the entanglement of the Minkowski
vacuum. They showed that an initially non-entangled pair of detectors evolved to an entangled state
through interaction with the scalar field. Because the entanglement cannot be created by local operations,
this implies that the entanglement of the quantum field is transferred to a pair of detectors. M. Cliche
and A. Kempf [16] constructed the information-theoretic quantum channel using this setup and evaluated
the classical and quantum channel capacities as a function of the spacetime separation. G. V. Steeg and
N. C. Menicucci [17,18] investigated the entanglement between detectors in de Sitter spacetime and
they concluded that the conformal vacuum state of the massless scalar field can be discriminated from
the thermal state using the measurement of entanglement. Recently, a protocol to extract past-future
vacuum entanglemnt is proposed [19]. In our paper [7], it was found that the entanglement between
the detectors becomes zero after their physical separation exceeds the Hubble horizon. Furthermore,
the quantum discord, which is defined as the quantum part of total correlation, approaches zero on the
super-horizon scale. These behaviors support the appearance of the classical nature of the quantum
fluctuation generated during the inflationary era.

In this article, we present our study on the entanglement structure of the quantum field in the
expanding universe using the particle detector model. The main purpose is to introduce the detail of
our investigation on this subject. This paper is organized as follows. In Section 2, we present our setup
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of the detector system. Then, in Section 3, we summarize the Wightman functions of the scalar field.
In Section 4, we evaluate entanglement and correlations for quantum fields in de Sitter spacetime using
asymptotic approximation. In Section 5, we present our result of the negativity obtained using numerical
calculation. The result covers almost all parameter range of the model. In Section 6, we discuss the
relation between the structure of detector and the observable strength of spatial correlation. Section 7 is
devoted to summary. We use units in which c = ~ = G = 1 throughout the paper.

2. Detector Model

In this section, we explain the detail of the particle detector model [10,11] that we use to measure the
entanglement of the quantum field. We consider a detector interacting with a scalar field φ. The detector
has two energy level states | ↑〉, | ↓〉 with energy difference Ω. The Hamiltonian of the detector is

H0 =
Ω

2

(
| ↑〉〈↑ | − | ↓〉〈↓ |

)
(1)

Thus our detector model is a qubit system. The interaction Hamiltonian is

V = g(t)(σ+ + σ−)φ(x(t)) (2)

where x(t) is the world line (location) of the detector and σ+, σ− are raising and lowering operators for
the detector’s state: σ+ = | ↑〉〈↓ |, σ− = | ↓〉〈↑ |. A function g(t) represents the strength of the coupling
between the detector and the scalar field. The total Hamiltonian of the system is

H = H0 + V +Hφ (3)

where Hφ is the Hamiltonian for the scalar field. Under the Schrödinger representation, the state of the
total system composed of the detector and the scalar field obeys

i
∂

∂t
|Ψ(t)〉 = (H0 + V +Hφ)|Ψ(t)〉 (4)

By introducing the evolution operator for the free part of the total Hamiltonian as

i
∂

∂t
U0(t, t0) = (H0 +Hφ)U0(t, t0), U0(t0, t0) = 1 (5)

we can define the interaction representation of the state |Ψ̃(t)〉 = U †0(t)|Ψ(t)〉. This state obeys

i
∂

∂t
|Ψ̃(t)〉 = U †0V U0|Ψ̃(t)〉 = Ṽ |Ψ̃(t)〉, Ṽ = g(eiΩtσ+ + e−iΩtσ−)φ(t,x(t)) (6)

The solution of this equation is

|Ψ̃(t)〉 =

(
1− i

∫ t

t0

dt1Ṽ (t1)− 1

2

∫ t

t0

dt1

∫ t

t0

dt2T [Ṽ (t1)Ṽ (t2)] + · · ·
)
|Ψ̃(t0)〉 (7)

where the time ordering is defined by

T [A(t1)A(t2)] =

A(t1)A(t2), t1 > t2

A(t2)A(t1), t2 > t1
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Let us introduce the following operators:

Φ± =

∫ t

t0

dt1g(t1)e±iΩt1φ(t1,x(t1)), (8)

S = −i
∫ t

t0

dt1Ṽ (t1) = −i
∑
j=±

Φj(t)σj (9)

To detect vacuum fluctuation of the scalar field, we prepare the initial state |Ψ0〉 = | ↓〉|0〉
where |0〉 =

∏
k |0k〉 is the vacuum state of the scalar field. Up to the leading order of perturbation,

only the one particle state of the scalar field contributes and

Φ+|0〉 = |1〉〈1|Φ+|0〉,
Φ−Φ+|0〉 = Φ−|1〉〈1|Φ+|0〉 = |0〉〈0|Φ−|1〉〈1|Φ+|0〉+ (two particle state).

Then using Equation (7), the final state of the total system up to the lowest order of the perturbation
including the interaction between the detector and the scalar field is

|Ψ̃f〉 =

(
1 + S +

1

2
T [SS]

)
|Ψ̃0〉

=

(
1− 1

2
〈0|T [Φ−Φ+]|0〉

)
| ↓〉|0〉 − i〈1|Φ+|0〉 | ↑〉|1〉 (10)

The total system can be represented by the pure state density operator ρT = |Ψ̃〉〈Ψ̃|. By tracing over the
degrees of freedom of the scalar field, the density matrix for the detector becomes

ρ ≡ trφρT =
∑
n

〈n|Ψ̃f〉〈Ψ̃f|n〉

= (1− E)| ↓〉〈↓ |+ E| ↑〉〈↑ | =

(
E 0

0 1− E

)
(11)

where the basis {| ↑〉, | ↓〉} is used for the matrix representation of the state. We have introduced the
response function [11]

E ≡
∫ ∞
−∞

dt1

∫ ∞
−∞

dt2g1g2e
−iΩ(t1−t2)〈0|φ1φ2|0〉 (12)

This quantity represents the transition probability from the down state to the up state of the detector.
To measure quantum correlations of the scalar field, we consider two equivalent detectors interacting

with the scalar field. In this case, the interaction Hamiltonian is

Ṽ = g(eiΩtσ+
A + e−iΩtσ−A)φ(t,xA(t)) + g(eiΩtσ+

B + e−iΩtσ−B)φ(t,xB(t)) (13)

where xA,B(t) represent the world lines of each detector. In the same way as the single detector case, we
introduce the following operators:

S = −i
∫ t

t0

dt1Ṽ (t1) = −i
∑
j=±

∑
k=A,B

Φj
k(t)σ

j
k

Φ±k =

∫ t

t0

dt1g(t1)e±iΩt1φ(t1,xk(t1)), k = A,B
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We prepare the initial state |Ψ0〉 = | ↓↓〉|0〉 to detect the entanglement of the vacuum state of the scalar
field. Then using Equation (7), the final state of the total system up to the lowest order of the perturbation
including the interaction between the detectors and the scalar field is

|Ψ̃f〉 =

(
1 + S +

1

2
T [SS]

)
|Ψ̃0〉

=
(
| ↓↓〉+ d3| ↑↑〉+ d4| ↓↓〉

)
|0〉+

(
d1| ↑↓〉+ d2| ↓↑〉

)
|1〉 (14)

where the coefficients are defined by (Figure 1)

d1 = −i〈1|Φ+
A|0〉, d2 = −i〈1|Φ+

B|0〉,

d3 = −〈0|T [Φ+
AΦ+

B]|0〉, d4 = −1

2

(
〈0|T [Φ−AΦ+

A]|0〉+ 〈0|T [Φ−BΦ+
B]|0〉

)

Figure 1. Emission and absorption processes contribute to the final state (14). These
diagrams represent virtual processes and do not conserve energy.

A B A B

↑

↓ ↓

↓

↓ ↓

↓ ↑

d1 d2

A A AB B B
↓ ↓ ↓ ↓ ↓ ↓

↑ ↑ ↓ ↓ ↓ ↓

d3 d4

By tracing over the scalar field, the density matrix for the detectors system is given by

ρAB =
∑
n

〈n|Ψ̃〉〈Ψ̃|n〉

=


0 0 0 d3

0 d1d
∗
1 d1d

∗
2 0

0 d∗1d2 d2d
∗
2 0

d∗3 0 0 1 + d4 + d∗4

 ≡


0 0 0 X

0 E EAB 0

0 EAB E 0

X∗ 0 0 1− 2E

 (15)

where we use the basis |AB〉 = {| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉}. The components of the density matrix are
given by

E = d1d
∗
1 = 〈0|Φ−AΦ+

A|0〉 =

∫
dt1dt2g1g2e

−iΩ(t1−t2)〈φ1φ2〉 = d2d
∗
2

EAB = d1d
∗
2 = 〈0|Φ−AΦ+

B|0〉 =

∫
dt1dt2g1g2e

−iΩ(t1−t2)〈φ1Aφ2B〉 (16)

X = d3 = −2

∫
t1>t2

dt1dt2g1g2e
iΩ(t1+t2)〈φ1Aφ2B〉

For the purpose of detecting entanglement of quantum fields, we consider the negativity of the system.
The negativity is defined using the eigenvalues of the partially transposed density matrix. For the bipartite
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state ρAB, let us consider the partial transpose of the state with respect to B. Then, assuming that the
dimension of the system is 2× 2 or 3× 3, the following theorem holds for the partially transposed state
ρ′AB [20]:

All eigenvalues of ρ′ are positive ⇔ The bipartite state is separable

For the state (15), eigenvalues of the partially transposed state are 0, 1 − 2E,E ± |X|. Thus, for the
state satisfying

|X| ≥ E

the theorem says that the bipartite system is entangled. As a measure of the entanglement between two
detectors, we adopt the negativity [21]. The negativity is defined using the eigenvalues of the partially
transposed density matrix. In the present case, the negativity is

N = max [0, |X| − E] (17)

In this paper, we designate the following quantity as the negativity

N = |X| − E (18)

The negativity gives the necessary and the sufficient condition of the entanglement for two-qubit
systems [20]. Two detectors are entangled when N > 0 and separable when N < 0. For separable
initial states of detectors, N > 0 after interaction with the scalar field implies the scalar field is
entangled because entanglement cannot be generated by local operations provided that two detectors
are spatially separated.

3. Scalar Fields and Wightman Functions

We consider the scalar field in de Sitter spacetime with a spatially flat slice. The metric is

ds2 = −dt2 + e2Htdx2 = a2(η)(−dη2 + dx2), η = −e
−Ht

H

where η is the conformal time andH is the Hubble constant. The equation of motion of the scalar field is

φ̈+ 3Hφ̇− 1

a2
∇2φ+ (m2 + ξR(t))φ = 0 (19)

A constant ξ represents the coupling between the scalar field and the spacetime curvature. The quantized
field is represented as

φ(t,x) =

∫
d3k

(2π)3/2

(
fk(t)âk + f ∗k â

†
−k
)
eik·x

where [âk1 , â
†
k2

] = δ3(k1−k2), [âk1 , âk2 ] = [â†k1
, â†k2

] = 0 and the vacuum state is defined by âk|0〉 = 0.
The mode function fk(t) obeys

f̈k + 3Hḟk +
k2

a2
fk +

(
m2 + ξR

)
fk = 0 (20)

with the normalization fkḟ ∗k − f ∗k ḟk = i/a3. The Wightman function is defined by

D+(t1,x1; t2,x2) = 〈φ(t1,x1)φ(t2,x2)〉 (21)

=
1

2π2

∫ ∞
0

dkk2j0(kr)fk(t1)f ∗k (t2), r = |x1 − x2|
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Using the rescaled field variable ϕ = aφ and the conformal time, the equation of motion of the massless
scalar field is

ϕ′′ −∇2ϕ+ (6ξ − 1)
a′′

a
ϕ = 0, ′ =

∂

∂η
(22)

For ξ = 1/6, the field ϕ obeys the same equation as the massless scalar field in the Minkowski spacetime
(the conformal invariant scalar field) and ξ = 0 corresponds to the minimally coupled scalar field. We
assume that the detectors are comoving with respect to the cosmic expansion and the physical distance
between them increases with time proportional to the scale factor.

3.1. Minkowski Vacuum and Thermal State

In Minkowski spacetime, the Wightman functions for the vacuum state and the thermal state with
temperature T are

D+
M =

−1

4π2

1

(∆t− iε)2 − r2
, ∆t = t1 − t2 (23)

D+
T =

T

8πr
[cothπT (r −∆t+ iε) + coth πT (r + ∆t− iε)] (24)

where we introduced a small parameter ε > 0 to regularize ultraviolet divergence of the k integral (21).
By introducing new time variables

x =
t1 + t2

2
, y =

t1 − t2
2

they become

D+
M = − 1

8π2

1

(y − iε)2 − (r/2)2
(25)

D+
T =

T

8πr
[cothπT (r − 2y + iε) + coth πT (r + 2y − iε)] (26)

3.2. Conformal Vacuum

For the conformal massless scalar field ξ = 1/6, the Wightman function is

D+
C (x1, x2) = −H

2

4π2

[
4 sinh2

(
H

2
(∆t− iε)

)
− eH(t1+t2)r2

]−1

=
H2

16π2

[
− sinh2(H(y − iε)) + e2Hx(Hr/2)2

]−1
(27)

3.3. Minimal Scalar

For the minimal scalar field, we present the detail of the derivation of the Wightman function.
Assuming the Bunch–Davies vacuum state, the mode function of the minimal massless scalar field in de
Sitter spacetime is

φk = − H√
2k

(
η − i

k

)
e−ikη (28)
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The Wightman function is

D+
dS(t1,x1, t2,x2)

=
H2η1η2

4π2r

∫ ∞
0

dk sin kr e−εke−ik∆η +
H2

4π2r

∫ ∞
k0

dk sin kr

(
− ∂

∂k

)(
e−ik∆η−kε

k

)
≡ D1 +D2, ∆η = η1 − η2

where we introduced a small ε > 0 to regularize the ultraviolet divergence of the k integral and a small
positive constant k0 � H to regularize infrared divergence of the k integral. Physically, k−1

0 corresponds
to the horizon scale at the onset of the inflation. D1 and D2 are given by

Ei(−x) = −
∫ ∞
x

dt

t
e−t

D1(x, y, r) =
H2

16π2

[
− sinh2(H(y − iε)) + e2Hx(Hr/2)2

]−1
(29)

D2(x, y, r) = −H
2

8π2

{
Ei

[
−ik0

H

(
−Hr + 2e−Hx sinh(H(y − iε))

)]
(30)

+ Ei

[
−ik0

H

(
Hr + 2e−Hx sinh(H(y − iε))

)]}
+
H2

4π2

D1 is the same as the Wightman function for the conformal invariant massless scalar field.
An equal time correlation function 〈φ(t,x1)φ(t,x2)〉 is obtained by taking y = 0:

D1(t, r) =
H2

4π2

e−2Ht

(Hr)2
=

1

4π2

1

r2
p

, rp = reHt

D2(t, r) = −H
2

8π2
[Ei(ik0r) + Ei(−ik0r)] +

H2

4π2

For k0r � 1,

D2 ≈ −
H2

4π2
[ln(k0r) + γ − 1] = −H

2

4π2
[ln(Hrp)−N + γ − 1]

where we have introduced the onset time t0 of the inflation by

k0/H = eHt0 (31)

The e-foldings from t0 to t is N = H(t− t0).
As we can observe in Figure 2, the correlation on the sub-horizon scale is ∝ 1/r2

p and this behavior is
the same as the Minkowski vacuum and the conformal vacuum. At the Hubble horizon scale rp = H−1,
the amplitude of the correlation is 〈φφ〉 ∼ H2. On the super-horizon scale, the correlation does not
decay and remains nearly constant. This value explains the primordial density fluctuations needed for
the formation of large-scale structures in our present universe.
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Figure 2. Behavior of the equal time correlation function of the massless minimal scalar
field (H = 1).
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4. Behavior of the Negativity

4.1. Causal Structure

We explain our setup of the entanglement detection of the scalar field using detectors (Figure 3). We
consider an experiment that detects entanglement of the scalar field using the detectors. The inflationary
universe begins at t = t0 < 0 with physical size H−1. At t = 0, the size of the universe is k−1

0 where
k0 represents the infrared cut-off in the Wightman function for the minimal scalar field. We fix the value
of the infrared cutoff k0. For example, we take k0/H = exp(−20). Then we choose a specific value of
the comoving distance r < k−1

0 between two detectors. This corresponds to fixing the physical distance
between the detectors at t = 0. At t = 0, the switches of the detectors are “on” and the measurement of
entanglement is performed.

Figure 3. Setup of our thought experiment of detecting the entanglement in the inflationary
universe.

tt0 0

scale

r
H

�1

k�1
0

measurement
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In our analysis, the following Gaussian window function is adopted to represent “on” and “off”
of detectors:

g(t) = g0 exp

(
− t2

2σ2

)
(32)

The detector is “on” with duration |t| . σ and “off” for the rest of time. This form of the window
function approximates the detector being “on” for −σ ≤ t ≤ σ. In the Minkowski spacetime, the
spacetime diagram with two detectors is showin in Figure 4:

Figure 4. Causal structure of two detectors system in the Minkowski spacetime. Shaded
regions represent causal diamonds for each detector. Two detectors are causally disconnected
for r/σ > 2 (left panel). Two detectors are causally connected for r/σ < 2 (right panel).

A B A B

In the Minkowski spacetime, two detectors are spatially separated and causally disconnected for

2σ < r (33)

For two detectors with initial separable state satisfying this relation, we can detect the intrinsic
entanglement of the scalar field because the entanglement between spatially disconnected regions cannot
be produced via local process of measurement. On the other hand, for r/σ < 2, causal interaction
between two detectors is possible and it is unlikely to interpret the entanglement in this case as non-local
correlations of the scalar field.

In de Sitter spacetime, the comoving size of the each causal diamond is

rnull =

∫ σ

−σ

dt

a
=

2

H
sinh(Hσ)

Thus the two comoving detectors are causally disconnected for

2

H
sinh(Hσ) < r (34)

For the super-horizon scale r > H−1, this condition reduces to

Hσ . 0.48 (35)

and for the sub-horizon scale r < H−1, this condition reduces to2 . r/σ (Hσ . 0.48)

1
Hσ

. r/σ (Hσ & 0.48)
(36)
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By fixing the value of the Hubble constant H , the negativity is obtained as a function of (r, σ,Ω) in
our setup.

4.2. X and E

To investigate the entanglement structure of the detectors system, we must evaluate X and E defined
by integrals (16). Using the Wightman function and the Gaussian window function (32), they are

EAB = 2g2
0

∫ ∞
−∞

dxe−x
2/σ2

∫ ∞
−∞

dye−y
2/σ2−2iΩyD+(x, y, r)

E = 2g2
0

∫ ∞
−∞

dxe−x
2/σ2

∫ ∞
−∞

dye−y
2/σ2−2iΩyD+(x, y, 0) (37)

X = −4g2
0

∫ ∞
−∞

dxe−x
2/σ2+2iΩx

∫ ∞
0

dye−y
2/σ2

D+(x, y, r)

These quantities are necessary to obtain the negativity of the detectors system. For this purpose, using
the contour integral on the complex plane and the method of residue, we rewrite the integral form of
E,X for numerical evaluation. The detail of the derivation is summarized in Appendix.

4.2.1. Minkowski Vacuum and Thermal State

For the Minkowski vacuum, X,E can be obtained exactly:

E =
g2

0

4π

[
e−Ω2σ2 − Ωσ

√
π erfc(Ωσ)

]
(38)

X = − g2
0σ

4
√
πr
e−r

2/(4σ2)−Ω2σ2
[
erfi
( r

2σ

)
− i
]

(39)

where
erf(x) =

2√
π

∫ x

0

dte−t
2

, erfc(x) =
2√
π

∫ ∞
x

dte−t
2

, erfi(x) = −i erf(i x)

For thermal state with temperature T , after evaluating contribution of poles in the Wightman function,
we obtain the following integral formulas:

E =
g2

0

2π
e−Ω2σ2

∫ ∞
0

dkke−k
2 cosh

[
πk
h

(1− 2
π
hΩσ)

]
sinh

[
πk
h

] (40)

X = i
g2

0σ

2πr
e−Ω2σ2

∫ ∞
0

dke−k
2 sinh

[
πk
h

(1 + ihr
σ

)
]

sinh
[
πk
h

] (41)

where h ≡ 2πTσ.
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4.2.2. De Sitter

For the massless minimal scalar field in de Sitter spacetime, after evaluating contributions of poles in
the Wightman function by contour integration, we obtain E = E1 + E2, X = X1 +X2, where

E1 =
g2

0

2π
e−Ω2σ2

∫ ∞
0

dkke−k
2 cosh

[
πk
h

(
1− 2hΩσ

π

)]
sinh

[
πk
h

] (42)

X1 =
ig2

0

4π3/2

∫ ∞
−∞

dx
e−x

2+2iΩσx

a
√
a2h2 + 1

∫ ∞
0

dke−k
2 sinh

[
πk
h

(
1 + 2i

π
ln b
)]

sinh
[
πk
h

] (43)

a = ehx
r

2σ
, b = ah+

√
a2h2 + 1, h = Hσ,

E2 = −g
2
0h

2

2π2

∫ ∞
−∞

dxe−x
2

∫ ∞
−∞

dye−y
2−2iΩσy

{
Ei

[
−2i

k0

H
e−hx sinh(h(y − iε))

]
− 1

}
(44)

X2 =
g2

0h
2

2π2

∫ ∞
−∞

dxe−x
2+2iΩσx

∫ ∞
0

dye−y
2

×
{

Ei

[
−ik0

H

(
−Hr + 2e−hx sinh(h(y − iε))

)]
+Ei

[
−ik0

H

(
Hr+2e−hx sinh(h(y − iε))

)]
−2

}
(45)

E1 andX1 represent these quantities for the massless conformal scalar field. The negativity for conformal
scalar is

N = |X1| − E1 (46)

The negativity for the minimal scalar is

N = |X1 +X2| − (E1 + E2) (47)

4.3. Asymptotic Analysis

We can evaluate x, y integral in (16) using the saddle point method [7]. After rescaling the integration
variables x, y,

EAB = 2g2
0(Ωσ2)2

∫ ∞
−∞

dxe−(Ωσ)2x2
∫ ∞
−∞

dye−(Ωσ)2(y2+2iy)D+(Ωσ2x,Ωσ2y, r)

E = 2g2
0(Ωσ2)2

∫ ∞
−∞

dxe−(Ωσ)2x2
∫ ∞
−∞

dye−(Ωσ)2(y2+2iy)D+(Ωσ2x,Ωσ2y, 0) (48)

X = −4g2
0(Ωσ2)2

∫ ∞
−∞

dxe−(Ωσ)2(x2−2iΩx)

∫ ∞
0

dye−(Ωσ)2y2D+(Ωσ2x,Ωσ2y, r)

We assume the following parameter ranges:

Ωσ � 1,
π

h
� 1,

r

2σ
� 1

These parameter ranges correspond to the analysis adopted in the paper [17]. The third condition means
two detectors are causally disconnected. The second condition means that the separation of the poles in
the complex y plane is sufficiently large and the saddle points x = 0, y = −i provide main contribution
to the y integral of E. The third condition also means the separation between two poles y = ±r/2σ is
sufficiently large and y integral in X can be evaluated by the saddle points x = i, y = 0. The physical
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meaning of these conditions is that detectors are causally disconnected and the Hubble time scale is
sufficiently larger than detector’s duration time σ. Then, the asymptotic forms of integrals are

X ≈ −2πg2
0σ

2e−(Ωσ)2D+(iΩσ2, 0, r) (49)

E ≈ 2πg2
0σ

2e−(Ωσ)2D+(0,−iΩσ2, 0) (50)

Using these expressions, the negativity for the Minkowski vacuum is given by

N ≈ g2
0

8π
e−(Ωσ)2

[(
2σ

r

)2

− 1

(Ωσ)2

]
(51)

The negativity for the thermal state is

N ≈ 2πg2
0σ

2e−Ω2σ2 × H2

16π2

[
2

Hr

cosh(Hr/2)

sinh(Hr/2)
− 1

sin2(hΩσ)

]
(52)

For the conformal massless scalar field,

X1 ≈ −2πg2
0σ

2e−Ω2σ2 H2

4π2
× e−2ihΩσ

(Hr)2

EAB1 ≈ 2πg2
0σ

2e−Ω2σ2 H2

4π2
× 1

(Hr)2 + 4 sin2(hΩσ)

E1 ≈ 2πg2
0σ

2e−Ω2σ2 H2

4π2
× 1

4 sin2(hΩσ)

Thus, the negativity is

N ≈ 2πg2
0σ

2e−Ω2σ2 × H2

4π2

[
1

(Hr)2
− 1

4 sin2(hΩσ)

]
(53)

We summarize the behaviors of negativities for these three types of scalar fields. In Figure 5, the
negativity is positive in regions on the left side of the each N = 0 lines. In these regions, two detectors
are entangled.

Figure 5. N = 0 lines for h = 0.3. Detectors are entangled in regions enclosed by N = 0

lines. The maximal spatial size of the entangled region is obtained for Ωσ = π/(2h).
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For the Minkowski vacuum, it is always possible to find parameters (r/σ,Ωσ) with which the
negativity is positive, which means that the Minkowski vacuum state is entangled. For the thermal
state and the conformal vacuum state, the entangled regions in the parameter space become compact.
Therefore, for sufficiently large separation of two detectors, we cannot detect positive negativity for any
value of detector’s parameter Ω, σ. The maximal spatial size of the entangled region for the thermal state
is 2.4H−1 and 2.0H−1 for the conformal scalar field. These behaviors reproduce the result of analysis
done by G. V. Steeg and N. C. Menicucci [17], which was obtained by asymptotic approximation with
numerical estimation. The authors claim that the thermal nature of the quantum field due to cosmic
expansions can be distinguished from the finite temperature effect in the Minkowski spacetime with the
equivalent temperature.

For the minimal scalar field, we have the following additional terms in X,E besides X1, E1:

X2 ≈ 2πg2
0σ

2e−(Ωσ)2
(
H2

4π2

)
[ln(k0r) + γ − 1] (54)

E2 ≈ 2πg2
0σ

2e−(Ωσ)2
(
H2

4π2

)[
− ln

(
2k0

H
sin(hΩσ)

)
− γ + 1

]
where we have assumed k0r � 1 and k0/H � 1. For k0/H → 0 limit, these quantities diverge.
Using these asymptotic form of X1,2 and E1,2, the negativity for the detectors system interacting with
the minimal scalar field is

N ≈ 2πg2
0σ

2e−Ω2σ2 H2

4π2

[
ln

(
2 sin(hΩσ)

Hr

)
+

cos(2hΩσ)

(Hr)2
− 1

4 sin2(hΩσ)

]
+O

(
1

ln(k0/H)

)
(55)

For k0/H → 0, although the Wightman function has the infrared divergence and X,E diverge, the
negativity does not depend on the infrared cutoff k0 and its value is finite. This infrared finiteness of the
negativity was discussed in different context [22]. The maximal spatial size of the entangled region is
obtained (see Figure 6)

Hr ≈ 0.86 for hΩσ =
π

4
(56)

Figure 6. N = 0 line for minimal scalar field for h = 0.3. The scalar field is entangled in
the region enclosed by the N = 0 line.
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Thus, we do not detect the entanglement of the scalar field for the super-horizon scale H−1 < r. This
result is contrasted with the result of the conformal scalar field, which has the maximal entangled size
2.0H−1 and the quantum correlation extends beyond the Hubble horizon scale.

5. Numerical Evaluation of Negativity

To confirm the result of the asymptotic analysis and investigate the behavior of the negativity for
wider parameter ranges, we numerically calculated X,E and the negativity.

5.1. Thermal State

For the thermal state, the numerical result is shown in Figure 7. The entangled region is “compact”
in (r/σ,Ωσ) space and there exists the maximal distance rc. Beyond that distance, two detectors do
not catch the entanglement of the scalar field. This feature must be contrasted with the result for the
Minkowski vacuum; in that case, the entangled region is not compact and the entanglement persists on
all spatial scales.

Figure 7. The negativity of the massless scalar field with thermal state with temperature
T = H/2π. Two detectors are entangled with parameters in the shaded regions.
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The numerical results for h < 1 are consistent with the asymptotic analysis presented in Section IV.
For h� 1, rcH approaches infinity as Ω/H → 0 (Figure 8).
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Figure 8. The maximal spatial size rc of the entangled region as a function of Ω/H . For a
given value Ω/H , the maximal entangled size rc is obtained in (Hr,Hσ) space.
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5.2. De Sitter

This case corresponds to the scalar field in the inflationary universe. For the conformal scalar field,
the result is shown in Figure 9.

Figure 9. The negativity of the massless conformal scalar field. Two detectors are entangled
with parameters in the shaded region. The dotted lines represent the Hubble horizon scale
r = H−1.
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The structure of entanglement for the massless conformal scalar field is as follows:
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• For h < 1, it is possible to detect entanglement of the scalar field for r < 2H−1. For larger
separation r > 2H−1, the detectors are separable; however, this does not imply the scalar field is
separable. Because the initial separable state evolves to the final separable state and we cannot say
anything about the separability of the scalar field in this case.
• For sufficiently large value of h � 1, two detectors can be entangled for any value of spatial

separation (Figure 8). In this parameter regime, the maximal spatial size of the entangled region
becomes infinite for Ω/H < 1/2. For h � 1, the causal diamonds of two detectors can have
overlap even for r > H−1 and two detectors are causally connected. Hence the entanglement
between two detectors in this case does not mean non-local quantum correlation. The entanglement
between detectors is established via causal contact between detectors.

For the minimal scalar field, the result is shown in Figure 10.

Figure 10. The negativity of the massless minimal scalar field. Two detectors are entangled
with parameters in the shaded region (k0/H = e−20). The dotted lines represent the Hubble
horizon scale r = H−1.
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The structure of the entanglement for the massless minimal scalar field is as follows:

• The critical value rc is always about rc ∼ 0.4H−1 and it is not possible to find out detector’s
parameters Ω, σ with which the two detectors are entangled beyond this scale. This result implies
that the Bunch–Davies vacuum state for the massless minimal scalar field is not entangled for the
large scale r & H−1 .
• Our numerical evaluation of the negativity for the minimal scalar field strongly suggests that the

minimal scalar field does not have the entanglement for the super-horizon scale. This is precisely
our expected feature for classical behavior of the scalar field in the inflationary universe.



Entropy 2013, 15 1864

6. Strength of Observable Correlation

We can extract information on the correlation of the scalar field indirectly by analyzing the detectors’
state. For this purpose, we consider the relation between the detectors’ state and the observable
(measurable) correlation between detectors in this section.

Using the Bloch representation [23], the detectors’ state (15) can be written as follows

ρAB =
1

4

(
I ⊗ I + a · σ ⊗ I + I ⊗ b · σ +

3∑
`,m=1

c`mσ` ⊗ σm

)
(57)

where σ1, σ2, σ3 are the Pauli matrices and the vectors a, b and the matrix c are defined by

a = b = (0, 0,−1 + 2E),

c`m =

2(EAB + Re(X)) −2Im(X) 0

−2Im(X) 2(EAB − Re(X)) 0

0 0 1− 4E


We perform a local projective measurement of detectors’ state and derive the information on the quantum
correlation of the scalar field. Of course, it is not possible to perform measurement of the scalar
field in the inflationary era directly. We consider the following measurement procedure as a gedanken
experiment to explore the nature of quantum fluctuation of the scalar field. The measurement operators
for each detector are

M±
A =

I ± nA · σ
2

, M±
B =

I ± nB · σ
2

, |nA| = |nB| = 1

where ± denotes the output of the measurement. The vectors nA,B represent the internal directions of
the measurement for each detector. The joint probability pjk attaining measurement result j for detector
A and k for detector B (j, k = ±1) is obtained as

pjk = tr
(
M j

A ⊗M
k
B ρAB

)
=

1

4

[
(1 + (j)azn

A
z )(1 + (k)bzn

B
z ) + (jk)

∑
`m

(c`m − a`bm)nA` n
B
m

]

c`m − a`bm =

2(EAB +XR) −2XI 0

−2XI 2(EAB −XR) 0

0 0 0


The probability pj attaining a result j for detector A and pk attaining a result k for detector B are

pj =
∑
k

pjk, pk =
∑
j

pjk

By the local projective measurement of the state, we obtain the following expectation values for
qubit variables:

〈nA · σ〉 = a · nA, 〈nB · σ〉 = b · nB, 〈nA · σ ⊗ nB · σ〉 =
∑
`,m

c`m(nA)`(nB)m
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For fluctuating parts of qubit variables ∆σn = n · σ − 〈n · σ〉, the correlation function is

〈∆σnA
∆σnB

〉 =
∑
`,m

(c`m − a`bm)(nA)`(nB)m

For nA = (cos θA, sin θA, 0),nB = (cos θB, sin θB, 0), the observable correlation of qubit variables is

C ≡ 〈∆σθA∆σθB〉 = 2(EAB + |X|) cos θA cos θB + 2(EAB − |X|) sin θA sin θB (58)

The amplitude of the correlation C depends on the behavior of X,EAB and the detectors’ internal
directions θA, θB. Using the result of the asymptotic estimation of X,EAB,

X ≈ −2πg2
0σ

2e−(Ωσ)2〈φ(t+ iΩσ2, 0)φ(t+ iΩσ2, r)〉 (59)

EAB ≈ 2πg2
0σ

2e−(Ωσ)2〈φ(t, 0)φ(t+ iΩσ2, r)〉 (60)

The behaviors of these functions for the massless minimal scalar field are shown in Figure 11. The
function X is the equal time correlation function of the scalar field and reflects amplitude H2 on the
super-horizon scale.

Figure 11. The spatial dependence ofX,EAB and the negativityN for the massless minimal
scalar field. The vertical dotted line represents the Hubble horizon scale.
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Let us accept that we do not know the internal angles of detectors θA, θB and consider the amplitude
of the quantum correlation obtained by the measurement using these detectors. We first assume they
are independent uniform random variables in [0, 2π]. The distribution of the correlation C is shown in
Figure 12 (left panel).

The values of the most probable correlations are

C = EAB + |X|, EAB − |X| (61)

and they are realized with equal probability. Therefore, the expected amplitude of the correlation is

〈C〉 = EAB (62)

This correlation explains the super-horizon scale correlation required for the structure formation.
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Figure 12. Histogram for the correlation C. Left panel: θA and θB are assumed to be
independent random variables. The most probable correlation is EAB ± |X|. Right panel:
θA and θB are assumed to be random variables with θA = θB. The most probable correlation
is ±(|X| − EAB).

Next, we consider other distribution of θA, θB. If we assume they are random variables with θA = θB,
the most probable correlation is (see the right panel in Figure 12)

C = ±(|X| − EAB) (63)

and the least probable correlation is C = ±(|X| + EAB). As is shown in Figure 13, the most probable
correlation decays on large scale and cannot predict super-horizon scale correlation required for structure
formation. Furthermore, the expected strength of correlation becomes 〈C〉 = 0 in this case and we cannot
acquire preferable correlation for primordial classical fluctuations. Measurable correlation strongly
depends on the model of detector and the method of measurement. Thus we must specify the detail
of detector models to predict observable correlation based on detector models.

Figure 13. The spatial dependence of |X| ± EAB and |X| for the massless minimal scalar
field. The vertical dotted line represents the Hubble horizon scale.
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7. Summary

We investigated entanglement and quantum correlations of the quantum field in de Sitter spacetime
using the detector model. Entanglement of the scalar field is swapped to two detectors interacting with
the scalar field and we can measure the entanglement of the quantum field by this experimental setup.
Entanglement structure of the scalar field depends on the type of the scalar field. For the massless
conformal scalar field, we found that super-horizon scale entanglement is detected by suitably choosing
detector’s parameters. For the massless minimal scalar field, detectors cannot catch the entanglement of
the scalar field on the super-horizon scale. This behavior is consistent with our previous analysis using
the lattice model and the coarse-grained model of the scalar field [5,6]. In these analyses, by following
the evolution of entanglement between two spatially separated regions, it was found the classicality of
the quantum field appears as follows. Initially, when the size of the considered region is smaller than
the Hubble horizon, the quantum field is in the entangled state. As the Universe expands, the quantum
state becomes separable when the size of the region equals the size of the Hubble horizon. At this
stage, the quantum correlation between neighboring regions is lost. Then, within about one Hubble
time after the horizon crossing, noncommutativity of operators becomes negligible and the system
can be treated as classical. In this article, we also discussed the outputs of detectors, which provide
measurable or observable quantities, depend on the detail of internal structure of detectors. Thus, it is
required to specify a reasonable model of detector and measurement process to predict nature of classical
fluctuations originated from quantum fluctuations in the inflation.

As an application of our analysis presented in this paper, it is interesting to consider quantum effects
in analogue curved spacetimes proposed using Bose–Einstein condensates or ion traps [24]. In these
experiential setups of analogue models, we can directly measure entanglement and classical and quantum
correlations of quantum fluctuation using detectors in the laboratory. We expect that investigation in this
direction will increase understanding of the quantum and classical nature generated during the inflation.
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Appendix

A. Contour Integration

To calculate functions X,E in the form of double integral numerically, we rewrite them by evaluating
contributions of poles in the integrants. We present details of contour integrations for X,E.

A.1. Minkowski vacuum

The Wightman function is

D+ = − 1

16π2

1

(y − iε)2 − r2/4
(64)

The response function E is

E = − g2
0

8π3/2

∫ ∞
−∞

dy
e−y

2−2iΩσy

(y − iε)2
(65)

Using the identity

e−y
2

=
1√
π

∫ ∞
−∞

dke−k
2+2iky

E can be written

E = − g2
0

8π2

∫ ∞
−∞

dke−(k+Ωσ)2
∫ ∞
−∞

dy
e2iky

(y − iε)2

The y integral

I(k) =

∫ ∞
−∞

dy
e2iky

(y − iε)2

can be calculated using the contour C1C2 in the complex y plane (Figure A1).

Figure A1. The pole is y = iε. The radius of the contour C2 is taken to be infinite.

The residue is

Res

[
e2iky

(y − iε)2

]
= 2ik
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For k < 0, IC1 = 0 and for k > 0, IC1 = 2πi× (2ik) = −4πk. Thus,

E =
g2

0

2π2

∫ ∞
0

dke−(k+Ωσ)24πk

=
g2

0

4π

[
e−Ω2σ2 −

√
πΩσerfc(Ωσ)

]
(66)

X is

X =
g2

0

4π3/2
e−Ω2σ2

∫ ∞
0

e−y
2

(y − iε)2 − (r/(2σ))2
(67)

=
g2

0

4π2
e−Ω2σ2

∫ ∞
−∞

dke−k
2

∫ ∞
0

dy
e2iky

y2 − (r/(2σ))2

We first evaluate y integral with the contour C1C2C3 (Figure A2):

I(k) ≡
∫ ∞

0

dy
e2iky

(y − iε)2 − ( r
2σ

)2
=
σ

r

∫ ∞
0

dy

(
1

y − iε− r
2σ

− 1

y − iε+ r
2σ

)
e2iky

Figure A2. Poles are y = ±r/(2σ) + iε. The radius of the contour C2 is taken to be infinite.

The residue for y > 0 is

Res

[
e2iky

y − iε− r
2σ

]
= eikr/σ

By taking the radius of C2 to infinity, IC2 = 0. For k > 0,

IC1 + IC3 =
σ

r
× 2πi× eikr/σ

For k < 0, IC1 + IC3 = 0. On the other hand,

IC3(k) = −isign(k)

∫ ∞
0

dy
e−2|k|z

y2 + (r/2σ)2

This is an odd function of k and does not contribute to k integral. Thus, we obtain

X =
ig2

0σ

2πr
e−Ω2σ2

e2iΩt0

∫ ∞
0

dke−k
2+irk/σ

= − g2
0σ

4
√
πr
e−Ω2σ2

e−r
2/(4σ2)e2iΩt0 [erfi(r/(2σ))− i] (68)
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A.2. The Thermal State

For the thermal state, the Wightman function is

D+
T (x, y, r) =

1

8πrβ

[
coth

π(r − 2y + iε)

β
+ coth

π(r + 2y − iε)
β

]
, β =

1

T
(69)

and

D+
T |r=0 = −T

2

4

1

sinh2(2πT (y − iε))
= −H

2

16π

1

sinh2(H(y − iε))
, H ≡ 2πT

The response function is

E = −
(
g2

0h
2

8π3/2

)∫ ∞
−∞

dy
e−y

2−2iΩσy

sinh2(h(y − iε))
, h ≡ Hσ (70)

= − g2
0

8π2

∫ ∞
−∞

dke−(k+Ωσ)2
∫ ∞
−∞

dy

∞∑
n=−∞

e2iky(
y − iε− iπn

h

)2

The integral

I1(k) =

∫ ∞
−∞

dy
∞∑

n=−∞

e2iky

(y − iε− iπn/h)2

can be calculated using the contour C1C2 in the complex y plane (Figure A3).

Figure A3. The integration contour for I1(k). The radius of the contour C2 is taken to
be infinite.

The residue for each pole is

Res

[
e2iky

(y − iπn/h)2

]
= 2ike−2πkn/h

and collecting all contribution from poles in the closed contour, the integral becomes

I1(k > 0) = 2πi×
∞∑
n=0

2ike−2πkn/h = − 4πk

1− e−2πk/h

I1(k < 0) = −2πi×
−1∑

n=−∞

2ike−2πkn/h = − 4πk

1− e−2πk/h
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Thus, the response function is obtained as

E =
g2

0

2π

∫ ∞
−∞

dke−(k+Ωσ)2 k

1− e−2πk/h

=
g2

0

2π
e−Ω2σ2

∫ ∞
0

dkke−k
2 cosh

[
πk
h

(
1− 2Ωσh

π

)]
sinh

[
πk
h

] , h = 2πTσ (71)

X is
X = −4g2

0σ
2e−Ω2σ2

∫ ∞
−∞

dke−k
2

∫ ∞
0

dye2ikyD+
T (σy) (72)

We first evaluate y integral using contour integral:

I2(k) =

∫ ∞
0

dye2ikyD+
T (σy)

=
1

16π2rσ

∫ ∞
0

dye2iky

∞∑
n=−∞

[
−1

y − iε−
(
r

2σ
+ in

2Tσ

) +
1

y − iε−
(
− r

2σ
+ in

2Tσ

)]

We use the contour C1C2C3. The residue for poles in y > 0 is

Res

[
e2iky

y −
(
r
2

+ in
2Tσ

)] = eikr/σe−kn/(Tσ)

For k > 0,

I2(C1) + I2(C3) =
1

16π2rσ
× 2πi×

∞∑
n=0

eikr/σe−kn/(Tσ) = − i

8πr

eikr/σ

1− e−k/(Tσ)

For k < 0,

I2(C1) + I2(C3) =
1

16π2rσ
× (−2πi)×

−1∑
n=−∞

eikr/σe−kn/(Tσ) = − i

8πr

eikr/σ

1− e−k/(Tσ)

As I2(C3)k>0 = −I2(C3)k<0, the integral I2(C3) does not contribute to X after k integration. Therefore,

X = i
g2

0σ

2πr
e−Ω2σ2

∫ ∞
−∞

dk
e−k

2+ikr/σ

1− e−k/(Tσ)

= i
g2

0σ

2πr
e−Ω2σ2

∫ ∞
0

dke−k
2 sinh

[
πk
h

(
1 + irh

πσ

)]
sinh

[
πk
h

] , h = 2πTσ (73)

A.3. The Conformal Scalar Field

The integrals are

E1 = 2
√
π g2

0σ

∫ ∞
−∞

dye−(y/σ)2−2iΩyD+
C (x, y)|r=0

X1 = 4g2
0

∫ ∞
−∞

dxe−(x/σ)2+2iΩx

∫ ∞
0

dye−(y/σ)2D+
C (x, y) (74)

D+
C (x, y) = −H

2

4π2

[
4 sinh2(H(y − iε))− e2HxH2r2

]−1
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The response function is

E1 = − g
2
0h

2

8π3/2

∫ ∞
−∞

dy
e−y

2−2iΩσy

sinh2(h(y − iε))
, h = Hσ

= − g2
0

8π2

∫ ∞
−∞

dke−(k+Ωσ)2
∫ ∞
−∞

dy

∞∑
n=−∞

e2iky

(y − iε− iπn/h)2
(75)

This is the same as the thermal state with h = Hσ and the result of the integration is given by (71) with
h = Hσ.

The X1 is

X1 =
g2

0

4π5/2

∫ ∞
−∞

dxe−x
2+2iΩσx

∫ ∞
−∞

dke−k
2

∫ ∞
0

e2iky

(sinhh(y − iε)/h)2 − e2hx(r/(2σ))2
(76)

The integral

I2(k) =

∫ ∞
0

e2iky

(sinhh(y − iε)/h)2 − a2

=
1

2a
√
a2h2 + 1

∫ ∞
0

dye2iky

∞∑
n=−∞

[
1

y − iε− (ln b/h+ inπ/h)
− 1

y − iε− (− ln b/h+ inπ/h)

]
a = ehxr/(2σ), b = a+

√
a2 + 1

can be calculated using the contour C1C2C3 in the complex y plane (Figure A4). The residue of poles
for y > 0 is

Res

[
e2iky

y − (ln b/h+ inπ/h)

]
= e(2ik/h) ln be−(2πk/h)n

For k > 0, the contribution of the contours C1, C3 to the integral is

I2(C1) + I2(C3) = 2πi×
∞∑
n=0

e(2ik/h) ln be−(2πk/h)n × 1

2a
√
a2h2 + 1

=
2πie(2ik/h) ln b

1− e−2πk/h

1

2a
√
a2h2 + 1

For k < 0,

I2(C1) + I2(C3) = −2πi×
−∞∑
n=−1

e(2ik/h) ln be−(2πk/h)n × 1

2a
√
a2h2 + 1

=
2πie(2ik/h) ln b

1− e−2πk/h

1

2a
√
a2h2 + 1

The contribution of the contour C3 is

I2(C3) = isign(k)

∫ ∞
0

dy
e−2|k|y

(sinhhy/h)2 + a2

This is an odd function with respect to k and does not contribute to X1 after the k integration. We finally
obtain

X1 =
ig2

0

4π3/2

∫ ∞
−∞

dx
e−x

2+2iΩσx

a
√
a2h2 + 1

∫ ∞
−∞

dk
e−k

2+(2i ln b/h)k

1− e−2πk/h

=
ig2

0

4π3/2

∫ ∞
−∞

dx
e−x

2+2iΩσx

a
√
a2h2 + 1

∫ ∞
0

dke−k
2 sinh

[
πk
h

(
1 + 2i

π
ln b
)]

sinh
[
πk
h

] (77)
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If the limit h→ 0 is taken in (75) and (77), we obtain the expression for the Minkowski vacuum.
For the minimal scalar field, we also have to calculate the integrals X2, E2 given by (44) and (45).

They are evaluated numerically in that form.

Figure A4. The integration contour for I2(k). The radius of the contour C2 is taken to
be infinite.
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