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Abstract: In this paper, the spatiotemporal dynamics of a diffusive Leslie-Gower predator-prey 

model with prey refuge are investigated analytically and numerically. Mathematical theoretical 

works have considered the existence of global solutions, population permanence and the 

stability of equilibrium points, which depict the threshold expressions of some critical parameters. 

Numerical simulations are performed to explore the pattern formation of species. These results 

show that the prey refuge has a profound effect on predator-prey interactions and they have the 

potential to be useful for the study of the entropy theory of bioinformatics. 

Keywords: diffusive predator-prey system; Leslie-Gower; Holling type III schemes; refuge; 

stability; pattern formation 

 

1. Introduction 

The dynamic relationship between predators and their prey has fascinated mathematical biologists for 

a long time. A variety of mathematical models are devoted to exploring the predator-prey interaction [1–4]. 

To understand well the population dynamics, many biological factors are included such as time delay, 

impulsive effect, seasonal perturbation [5–9]. Recently, many authors [10,11] have focused on the 

dynamics of a class of the semi-ratio-dependent predator-prey models, in which one of the salient 

features is that the carrying capacity of predator is proportional to the number of prey and such models 
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were initially introduced by Leslie and Gower [12,13]. In 2003, Aziz-Alaoui and Okiye [14] analyzed 

the dynamics of the following model: 
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where u  and w  represent the densities of prey and predator, respectively. Furthermore, it is 

assumed that the prey grows logistically with the limited factor k  of considering realistic 
surroundings and innate growth rate r . In Equation (1), 1k  is the average saturation rate, which 

indicates the quality of the food that provides prey to predator, 2k  indicates the quality of the 

alternative that provides the environment, s  is the intrinsic growth rate of predator, e  is the 

maximum reduction of prey due to predation and h  measures the ration of prey to support one 

predator. Here the functional response of predator is Holling type II schemes, which usually depicts the 

uptake of substrate by the microorganisms in microbial kinetics [15]. Oftentimes Holling type III 

schemes is used to describe the dynamical behavior of the invertebrate feeding on the prey and this 

functional response of predator has been widely included in mathematic ecological models [16–19]. In 

fact, if the predator is the invertebrate, Holling type III functional response can fit better [20]. On the 

other hand, the effect of a constant proportion of prey refuge on predator-prey models has become a 

pretty hot issue in mathematical ecology in the recent years. By investigating the theoretical models, 

most of theoretical conclusions show that the prey refuge has a stabilizing effect on predator-prey 

systems, but the dynamics of the Kolmogorov type model incorporating a constant proportion of prey 

refuge is qualitatively equivalent to the original system [21–26]. Thus, we consider the following system: 
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where ))1,0[( mm  is a constant and um)1(   reflects the prey available to the predator, a  is the 

half-saturation constant for the predator and b  indicates the quality of the alternative that provides 

the environment. 

On the other hand, all living beings live in a spatial world, which can cause that the spatial component 

of ecological interactions exhibits ranging from individual behavior to species abundance, diversity and 

population dynamics. Therefore, the spatial factor is one of the most important elements in ecosystem. 

Lately, Camera [27] has specified the spatiotemporal dynamics of Equation (1) with diffusion of species. 

Meanwhile, a large amount of literatures mainly study this theme in reaction-diffusion systems since 

Turing [28] pointed out that this kind of system could yield many complex patterns, which are usually 

consistent with a wide variety of phenomena that have been observed in chemistry, physics and 

biology [29–31]. Thus, Equation (2) with the spatial factor can be described as following: 
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where ),( xtu  and ),( xtw  denote the densities of prey and predator at time t  and position x , 

respectively.   is the Laplacian operator, 1d  and 2d  are the diffusion coefficients of prey and 

predator, and 
n


 is differentiation in the direction of the outward unit normal to  . In Equation (3), 

all the parameters are assumed to be positive. 

The rests of the paper are structured as follows: in Section 2, the existence of the global solutions and 

the population permanence of Equation (3) are proved. In Section 3, the local stability of the equilibrium 

points and the global stability of the interior equilibrium point are investigated. Furthermore, the Turing 

instability and the conditions of its occurrence are analyzed. In Section 4, under the condition of Turing 

instability, numerical simulations are illustrated to show how the prey refuge affects spatiotemporal 

dynamics of Equation (3). In the end, some discussions are given. 

2. Existence of Global Solutions and Permanence 

2.1. Existence of Global Solutions 

Theorem 1. For 0)(0 xu , 0)(0 xw , there is a unique global solution of Equation (3) such that 

0),( xtu , 0),( xtw  for 0t  and x . 

Proof: Equation (3) is mixed quasi-monotone since: 
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in }0,0{2  wuR . 

Consider that )ˆ,ˆ( wu  is the unique solution of: 
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where )(sup 0
* xuu  , )(sup 0

* xww  . 

Let )0,0()),(),,(( xtwxtu  and )ˆ,ˆ()),(),,(( wuxtwxtu  . There exist: 
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Clearly, the boundary conditions are satisfied. Then )),(),,(( xtwxtu  and )),(),,(( xtwxtu  are the 

lower-solution and upper-solution of Equation (3), respectively. Thus, Equation (3) has a unique global 

solution, which can satisfy )(ˆ),(0 tuxtu  , )(ˆ),(0 twxtw   for 0t . 

2.2. Permanence 

Definition 1. Equation (3) is said to be permanence if for any solution with nonnegative initial 
functions )(0 xu  and )(0 xw )0)(,0)(( 00  xwxu , there exist positive constants im  and iM  ( 2,1i ) 

such that: 
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Theorem 2. For any solution )),(),,(( xtwxtu of Equation (3): 
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Consider that )(tW


 is any solution of: 
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. This completes the proof. 

Remark 1. From Theorem 2 and Theorem 3, it is clear that Equation (3) is permanent. 



Entropy 2013, 15 2436 
 

3. Stability Analysis of Equilibrium Points and Turing Instability 

3.1. Stability 

It is clear that Equation (3) has the following equilibrium points: (a) )0,0(0 E  (total extinction),  

(b) )0,(1 kE   (extinction of the predator), (c) ),0(2 h

b
E   (extinction of the prey), (d) ),( *** wuE   

(coexistence of prey and predator), where ),( ** wu  is the positive solution of 0),(  wu , 0),(  wu . 

In order to investigate the linear stability of equilibrium solutions 2,1,0)( iiE  and *E  of Equation (3), 

we consider the corresponding eigenvalue problem of the linearized operator around every  

equilibrium point. 

Substituting )),(),,((),()),(),,(( 21 xtzxtzExtExtwxtu   into Equation (3) and picking up 

all the terms which are linear in  , there is: 
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Proposition 1. 0E  is unstable. 

Proof: From above, the linearized result of Equation (3) around 0E  is: 
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Assume that   is an eigenvalue of Equation (22) with the eigenfunction ),( 21 zz  and 01 z , 

then   is an eigenvalue of rd 1  with homogeneous Neumann boundary condition. Furthermore, 

it follows that   must be real. In the same way,   is also real provided that 02 z . Then all 

eigenvalues of Equation (22) must be real. Let max denote the largest eigenvalue. Consider the 

principal eigenvalue ̂  of: 
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then it shows that its principal eigenvalue ̂  is positive and the associated eigenfunction 01̂ z .  

Let us substitute )0,ˆ(),( 121 zzz   into Equation (22), then it satisfies Equation (22) with  ˆ . Thus, 

it is clear that 0ˆ   is an eigenvalue of Equation (22), and there is 0ˆ
max   . This exhibits that 0E  

is unstable. 

Proposition 2. 1E  is unstable. 

Proof: From Equation (20), the linearized result of Equation (3) around 1E  is: 
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As the previous case, all eigenvalues of Equation (25) are real. Assume that max is the largest 

eigenvalue of Equation (25). Consider the principal eigenvalue ̂  of: 
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then it shows that its principal eigenvalue ̂  is positive and the associated eigenfunction 0ˆ2 z . 

Furthermore, assume that 1̂z  which is positive, is the solution of: 
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then )ˆ,ˆ( 21 zz  satisfies Equation (25) with 0ˆ   . Thus there is 0ˆ
max   . This exhibits that 

1E  is unstable. 

Similarly, it can be concluded that E2 is unstable. 
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Proposition 3. Assume that 1
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 , where Dii  . Thus, 3E  is locally asymptotically stable for 

Equation (3) if and only if each )(ti  decays to zero as t . Then, it follows that each i  has 

two eigenvalues with negative real parts, which are determined by: 
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Since 0i , 0B  and 0Q , it is clear that 0)( itr  and 0)det(  i  if 0A . Taking into 

account the assumption in Theorem, 0A  holds. This completes the proof. 
For purpose of proving the global stability of *E , let us introduce the following lemmas from [32]. 
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Lemma 2. Consider the following equation: 
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This above result and the local stability conditions can yield that 2E  is globally asymptotically stable. 

3.2. Turing Instability 

In order to investigate the transition of the equilibrium state, we consider small space- and 

time-dependent perturbations for any solution of Equation (3): 

*

*

( , ) exp(( ) )

( , ) exp(( ) )

u x t u x i t

w x t w x i t

 
 

  
   

k

k
 (44)

where  ,   are small enough, k  is the wave number. Substituting Equation (44) into Equation (3), 

we linearize the system around *E  and further obtain its characteristic equation: 
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Turing instability requires that the stable interior equilibrium point is driven unstable by the local 

dynamics and diffusion of species. The conditions for the homogeneous state of Equation (2) to be stable 

is 00  RAtr , 00  BQAR . It is clear that 0trtrk  . Then the stability of the homogeneous 
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If 2
2,1  have positive values, we can obtain the range of instability for a local stable equilibrium, 

which is called as the Turing space. In order to show the Turing space, the dispersion relation is plotted 
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corresponding to several values of the bifurcation parameter m  while in Figure 1 the other parameters 

are fixed as: 

12,25.0,02.0,55.0,75.0,2.0,3.0,5.0,7.1 21  kddhebasr  (49)

It should be stressed from Figure 1 that the available Turing modes are further reduced when the 

value of prey refuge m  is increasing. Nonetheless, it is interesting to notice that Equation (3) will occur 

the Turing instability when the value of m  less than 2512032.0 . 

Figure 1. Variation of dispersion relation of Equation (3) around the interior equilibrium 

point. The red line corresponds to 08.0m , the green is 25.0m  and the blue is 35.0m . 

 

4. Turing Pattern Formation 

To better investigate how the prey refuge affects the spatiotemporal dynamics of Equation (3), the 

spatial distribution diagrams are obtained as change of m . All numerical simulations are carried out in a 

discrete two-dimensional domain with 200200  lattice sites. The step between each lattice point is 

defined as 25.0 . The time evolution of Equation (3) is resorted to the forward Euler integration with 

a step 01.0 . The initial value of Equation (3) is placed in the stationary state ),( ** wu  and the 

perturbation for this value is 0005.0  space units per time unit. As the initial perturbation propagates, 

Equation (3) under the condition of Turing instability evolves a steady state, which is stationary in time 

and oscillatory in space. Moreover, it should be stressed that the spatial patterns of predator and prey 

under the condition of Turing instability are always the same type, this is because that it is assumed that 

the carrying capacity of predator is proportional to the number of prey, and the steady state of predator is 

equal to this carrying capacity. Thus, only the spatial patterns of prey are shown. 

It is interesting to note from Figure 2 that some snapshots have been taken of numerical simulations 

when the value of m  increases from 0  to 35.0 . It should be pointed out that in these snapshots the 

enclosed color bars denote the range of the changing densities of prey, where higher values correspond 

to higher prey densities. Figure 1 clearly shows that Equation (3) leads to the Turing instability for 

2512032.0m . The snapshots for 0m , 08.0m , 15.0m and 22.0m  are chosen to report the 

spatial (oscillatory) and temporal ( stationary) dynamics of Equation (3) around the interior equilibrium 
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point, but the snapshots for 27.0m and 35.0m  stand for the stable spatiotemporal behavior. By 

comparing the first four diagrams, it can be observed that the spatiotemporal dynamical behaviors of 

Equation (3) are very rich and complex. When the value of m  is 0 , the spatial distribution of prey is 

mainly some interconnected strips and nonuniform, which shows that the habits of prey are the main 

type of community survival, so it is easy to evade predator-capturing. When the values of m  are 08.0  

and 15.0 , the collective survival population expands gradually and the spatial distribution of prey tends 

to be uniform. When the value of m  is 22.0 , the spatial distribution of prey is almost uniform and the 

prey can survive in any space. On the other hand, from Figure 2 the maximum values on color bars 

exhibit decreasing states as the effect of prey refuge is strengthened. Inversely, the interior equilibrium 

density value of prey will increase as the increase of m . In order to relieve the crowed space, the 

competitive pressure between individuals of prey is intensified. From the biological point of view, the 

effect of prey refuge may be to help prey relieve the pressure of predation during diffusion. Thus, the 

patches of high density prey diffuse into the low. Finally, the distributions of prey tend to be uniform as 

the effect of prey refuge increases. However, when the value of m  is more than 2512032.0 , the prey 

and the predator will be involved into a stable state, so the prey can live in any space, which can be 

shown in behind two diagrams of Figure 2. These results show that the prey refuge not only promotes an 

increase in the number of prey, but also is conducive to their living space extension. 

For further analysis of the effect of prey refuge on the dynamical behavior of one population, the 

spatiotemporal evolutions of prey have been obtained at 100x , which correspond to Figure 2. It 

should be stressed from Figure 3 that these results are consistent with Figure 2, which show the accuracy 

and effectiveness of numerical simulations. Moreover, the comparison of the first four diagrams in 

Figure 3 suggests that when the value of m  gradually increases and is close to 2512032.0 , oscillations 

in space diminish gradually. These results show that a suitable prey refuge has a positive effect on 

predator-prey interactions. It is easy to see that if the effect of prey refuge is strengthened in living 

surroundings, predation risk is relatively reduced in the habitat and consequently the density of prey is 

bound to increase. And the densities of predator and prey will obtain the new balance. 

Based on the above analysis, it can be seen that a suitable prey refuge can enhance the specie biomass 

level and promote the uniformness of the population distribution, which agree with some results of the 

real world. Furthermore, it is interesting to point out that the lower value of prey refuge can come into 

rich spatiotemporal dynamics. Moreover, the use of mathematical model with a prey refuge and 

diffusion is considered to explore some biological problems, and the numerical simulation can provide 

an approximation of the real biological behaviors. Hence, these results can promote the study of 

ecological patterns.  
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Figure 2. Spatial distributions of prey obtained with Equation (3) for (a) 0m , (b) 08.0m , 

(c) 15.0m , (d) 22.0m , (e) 27.0m , (f) 35.0m . Other parameters are fixed as 

Equation (49). 
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Figure 3. The spatiotemporal evolutions of prey obtained with Equation (3) at 100x .  

(a) 0m , (b) 08.0m , (c) 15.0m , (d) 22.0m , (e) 27.0m , (f) 35.0m . Other 

parameters are fixed as Equation (49).  

 

 

 

5. Conclusions 

In this paper, a diffusive predator-prey system with Holling type III scheme has been studied 

analytically and numerically. Mathematical theoretical works have considered the existence of global 

solutions and the stability of equilibrium points and population permanence. On the basis of these 

results, we obtain the threshold expressions of some critical parameters which in turn provide a 

theoretical basis for the numerical simulation. Numerical simulations indicate that the prey refuge has a 

strong and positive effect on the spatiotemporal dynamics according to the spatial patterns and 

spatiotemporal evolution of prey. Furthermore, it should be stressed that the spatial pattern diagrams 

show that the prey refuge has a profound effect on predator-prey interactions. Using the spatiotemporal 

evolution of prey, the spatial distribution of prey and the accuracy effectiveness of numerical simulation 

can be further confirmed. All these results are expected to be of significance in the exploration of the 

entropy theory of bioinformatics. 
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