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Abstract: Measures of the direction and strength of the interdependence among time
series from multivariate systems are evaluated based on their statistical significance and
discrimination ability. The best-known measures estimating direct causal effects, both
linear and nonlinear, are considered, i.e., conditional Granger causality index (CGCI),
partial Granger causality index (PGCI), partial directed coherence (PDC), partial transfer
entropy (PTE), partial symbolic transfer entropy (PSTE) and partial mutual information
on mixed embedding (PMIME). The performance of the multivariate coupling measures
is assessed on stochastic and chaotic simulated uncoupled and coupled dynamical systems
for different settings of embedding dimension and time series length. The CGCI, PGCI and
PDC seem to outperform the other causality measures in the case of the linearly coupled
systems, while the PGCI is the most effective one when latent and exogenous variables are
present. The PMIME outweighs all others in the case of nonlinear simulation systems.
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1. Introduction

The quantification of the causal effects among simultaneously observed systems from the analysis of
time series recordings is essential in many scientific fields, ranging from economics to neurophysiology.
Estimating the inter-dependence among the observed variables provides valuable knowledge about
the processes that generate the time series. Granger causality has been the leading concept for the
identification of directional interactions among variables from their time series, and it has been widely
used in economics [1]. However, the last few years, it has become popular also in many different fields,
e.g., for the analysis of electroencephalograms.

The mathematical formulation of linear Granger causality is based on linear regression modeling
of stochastic processes. Many modifications and extensions of the Granger causality test have been
developed; see e.g., [2–7]. Most of the non-causality tests, built on the Granger causality concept and
applied in economics, are therefore based on the modeling of the multivariate time series. Despite
the success of these strategies, the model-based methods may suffer from the shortcomings of model
mis-specification.

The majority of the measures determining the interrelationships among variables that have
been developed so far are for bivariate data, e.g., state-space based techniques [8,9], information
measures [10–12] and techniques based on the concept of synchronization [13,14].

Bivariate causality tests may erroneously detect couplings when two variables are conditionally
independent. To address this, techniques accounting for the effect of the confounding variables have
been introduced, termed direct causality measures, which are more appropriate when dealing with
multivariate time series [15–17]. Direct causality methods emerged as extensions of bivariate Granger
causality. For example, the Granger causality index (GCI), implementing the initial idea for two variables
in the time domain, has been extended to the conditional and partial Granger causality index (CGCI and
PGCI) [2,18]. Directed coherence (DC) was introduced in the frequency domain, and being a bivariate
measure, it cannot discriminate between direct and indirect coupling. The direct transfer function
(DTF) is similarly defined as DC [19]. The partial directed coherence (PDC) is an extension of DC
to multivariate time series measuring only the direct influences among the variables [20]. Similarly,
direct Directed Transfer Function (dDTF) modified DTF to detect only direct information transfer [21].

Information theory sets a natural framework for non-parametric methodologies of several classes
of statistical dependencies. Several techniques from information theory have been used in the last
few years for the identification of causal relationships in multivariate systems, and the best known is
transfer entropy (TE) [11]. Test for causality using the TE has also been suggested [22]. However,
the TE is, again, bivariate and its natural extension to account for the presence of confounding
variables has been recently introduced, namely, the partial TE (PTE), under different estimating schemes,
using bins [23], correlation sums [24] and nearest neighbors [25]. The TE and PTE are actually
expressions of conditional mutual information, and with this respect, an improved version of TE making
use of a properly restricted non-uniform state space reconstruction was recently developed, termed
mutual information on mixed embedding (MIME) [26]. Later, a similar approach to TE/PTE was
implemented, which takes into consideration the conditional entropy [27]. Recently MIME was extended
for multivariate time series to the partial MIME (PMIME) [28]. Other coupling methods have also
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been suggested, such as Renyi’s information transfer [29]. In a different approach, the TE has been
defined on rank vectors instead of sample vectors, called the symbolic transfer entropy (STE) [30], and,
respectively, to the multivariate case termed partial STE (PSTE) (for a correction of STE and PSTE,
see, respectively, [31,32]).

Most comparative works on the effectiveness of causality measures concentrate on bivariate tests,
e.g., [33–36], while some works evaluating multivariate methodologies include only model-based tests,
see, e.g., [37–39], or compare direct and indirect causality measures, e.g., [36,40].

In this work, we compare model-based methods, both in the time and frequency domain, and
information theoretic multivariate causality measures that are able to distinguish between direct and
indirect causal effects. We include in the study most of the known direct causality measures of these
classes, i.e., CGCI and PGCI (linear in time domain), PDC (linear in frequency domain), PTE, PSTE
and PMIME (from information theory). The statistical significance of the test statistics is assessed with
resampling methods, bootstraps or randomization tests using appropriate surrogates, whenever it is not
theoretically known.

The structure of the paper is as follows. The multivariate causality measures considered in this study
are presented in Section 2. The statistical significance of the coupling measures is assessed on simulated
systems. The simulation systems and the setup of the simulation study are presented in Section 3, while
the results of this study and the performance of the causality measures are discussed in Section 4. Finally,
the conclusions are drawn in Section 5.

2. Direct Causality Measures

Let {x1,t, . . . , xK,t}, t = 1, . . . , n, denote a K-variate time series, consisting of K

simultaneously observed variables, X1, . . . , XK , belonging to a dynamical system or representing
respective subsystems of a global system. The reconstructed vectors of each Xi are formed as
xi,t = (xi,t, xi,t−τi , . . . , xi,t−(mi−1)τi)

′, where t = 1, . . . , n′, n′ = n − maxi{(mi − 1)τi}, and mi and
τi are, respectively, the reconstruction parameters of embedding dimension and time delay for Xi. The
notation, X2 → X1, denotes the Granger causality from X2 to X1, while X2 → X1|Z denotes the direct
Granger causality from X2 to X1, accounting for the presence of the other (confounding) variables, i.e.,
Z = {X3, . . . , XK}. The notation of Granger causality for other pairs of variables is analogous.

Almost all of the causality measures require the time series be stationary, i.e., their mean and variance
do not change over time. If the time series are non-stationary, then the data should be pre-processed,
e.g., for time series that are non-stationary in mean, one can apply the measures on the first or higher
order differences. Different transformations are needed in case of non-stationary data in variance or
co-integrated time series.

2.1. Conditional Granger Causality Index

Granger causality is based on the concept that if the value of a time series, X1, to be predicted is
improved by using the values of X2, then we say that X2 is driving X1. A vector autoregressive model
(VAR) in two variables and of order P , fitted to the time series, {x1,t}, is:



Entropy 2013, 15 2638

x1,t+1 =
P−1∑
j=0

a1,jx1,t−j +
P−1∑
j=0

b1,jx2,t−j + ε1,t+1 (1)

where a1,j, b1,j are the coefficients of the model and ε1 the residuals from fitting the model with variance
s21U . The model in Equation (1) is referred to as the unrestricted model, while the restricted model is
obtained by omitting the terms regarding the driving variable [the second sum in Equation (1)] and has
residual variance, s21R. According to the concept of Granger causality, the variable, X2, Granger causes
X1 if s21R > s21U [1]. The magnitude of the effect of X2 on X1 is given by the Granger Causality
Index (GCI), defined as:

GCIX2→X1 = ln(s21R/s
2
1U) (2)

Considering all K variables, the unrestricted model for X1 is a VAR model in K variables and involves
the P lags of all K variables [K sum terms instead of two in Equation (1)]; the restricted model
will have all but the P lags of the driving variable, X2. Likewise, the conditional Granger causality
index (CGCI) is:

CGCIX2→X1|Z = ln(s21R/s
2
1U) (3)

where s21U and s21R are the residual variances for the unrestricted and restricted model defined for all
K variables.

A parametric significance test for GCI and CGCI can be conducted for the null hypothesis that variable
X2 is not driving X1, making use of the F -significance test for all P coefficients, b1,j [41]. When we
want to assess collectively the causal effects among all pairs of the K variables, a correction for multiple
testing should be performed, e.g., by means of the false discovery rate [42].

The order, P , of the VAR model is usually chosen using an information criterion, such as the
Akaike Information Criterion (AIC) [43] and the Bayesian Information Criterion (BIC) [44]. The
estimation of the coefficients of the VAR models and the residual variances of the models are described
analytically in [45].

2.2. Partial Granger Causality Index

The partial Granger causality index (PGCI) is associated with the concept of Granger causality and
partial correlation [18]. The PGCI addresses the problem of exogenous inputs and latent variables.
The intuition is that the influence of exogenous and/or latent variables on a system will be reflected by
correlations among the residuals of a VAR model of the measured variables. Thus, in the PGCI, one
makes use of the residual covariance matrix of the VAR unrestricted and restricted model, denoted Σ

and ρ, respectively, and not only of the residual variance of the response variable, X1, s21U and s21R,
subsequently. For example, for X2 → X1|X3, denoting the components of Σ as Σij , i, j = 1, 2, 3 and
the components of ρ as ρij , i, j = 1, 2, the PGCI is given as:

PGCIX2→X1|X3 = ln
ρ11 − ρ12ρ−122 ρ21

Σ11 − Σ13Σ
−1
33 Σ31

(4)
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Note that Σ11 = s21U and ρ11 = s21R. The PGCI constitutes an improved estimation of the direct Granger
causality as compared to the CGCI when the residuals of the VAR models are correlated; otherwise, it is
identical to the CGCI. The estimation procedure for the PGCI is described analytically in [18].

2.3. Partial Directed Coherence

The partial directed coherence (PDC) is related to the same VAR model as the CGCI, but is defined
in the frequency domain [20]. Denoting the K ×K matrix of the Fourier transform of the coefficients
of the VAR model in K variables and order P by A(f), the PDC from X2 to X1 at a frequency f is
given by [20]:

PDCX2→X1|Z(f) =
|A1,2(f)|√∑K
k=1 |Ak,2(f)|2

(5)

where Ai,j(f) is the component at the position, (i, j), in the matrix, A(f). PDCX2→X1|Z(f) provides a
measure for the directed linear influence of X2 on X1 at frequency, f , conditioned on the other K − 2

variables in Z and takes values in the interval, [0, 1]. The PDCX2→X1(f) is computed at each frequency,
f , within an appropriate range of frequencies. Parametric inference and significance tests for PDC have
been studied in [46,47].

2.4. Partial Transfer Entropy

The transfer entropy (TE) is a nonlinear measure that quantifies the amount of information explained
in X1 at h steps ahead from the state of X2, accounting for the concurrent state of X1 [11]. The TE is
given here in terms of entropies. For a discrete variable, X (scalar or vector), the Shannon entropy is
H(X) = −

∑
p(xi) ln p(xi), where p(xi) is the probability mass function of variable,X , at the value, xi.

Further, the TE is expressed as:

TEX2→X1 = I(x1,t+h; x2,t|x1,t) = H(x1,t+h|x1,t)−H(x1,t+h|x2,t, x1,t) (6)

= H(x2,t, x1,t)−H(x1,t+h, x2,t, x1,t) +H(x1,t+h, x1,t)−H(x1,t)

The first equality is inserted to show that the TE is equivalent to the conditional mutual information
(CMI), where I(X, Y ) = H(X) + H(Y ) − H(X, Y ) is the mutual information (MI) of two variables,
X and Y . The time horizon, h, is introduced here instead of the single time step, originally used in the
definition of TE.

The partial transfer entropy (PTE) is the extension of the TE designed for the direct causality of X2

to X1 conditioning on the remaining variables in Z

PTEX2→X1|Z = H(x1,t+h|x1,t, zt)−H(x1,t+h|x2,t, x1,t, zt) (7)

The entropy terms of PTE are estimated here using the k-nearest neighbors method [48].

2.5. Symbolic Transfer Entropy

The symbolic transfer entropy (STE) is the continuation of the TE estimated on rank-points formed
by the reconstructed vectors of the variables [30]. For each vector, x2,t, the ranks of its components
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assign a rank-point, x̂2,t = [r1, r2, . . . , rm2 ], where rj ∈ {1, 2, . . . ,m2} for j = 1, . . . ,m2. Following
this sample-point to rank-point conversion, the sample, x1,t+h, in Equation (7) is taken as the rank point
at time, t+ h, x̂1,t+h, and STE is defined as:

STEX2→X1 = H(x̂1,t+h|x̂1,t)−H(x̂1,t+h|x̂2,t, x̂1,t) (8)

where the entropies are computed based on the rank-points.
In complete analogy to the derivation of the PTE from the TE, the partial symbolic transfer entropy

(PSTE) extends the STE for multivariate time series and is expressed as:

PSTEX2→X1|Z = H(x̂1,t+h|x̂1,t, ẑt)−H(x̂1,t+h|x̂2,t, x̂1,t, ẑt) (9)

where the rank vector, ẑt, is the concatenation of the rank vectors for each of the embedding vectors of
the variables in Z.

2.6. Partial Mutual Information on Mixed Embedding

The mutual information on mixed embedding (MIME) is derived directly from a mixed embedding
scheme based on the conditional mutual information (CMI) criterion [26]. In the bivariate case and for
the driving of X2 on X1, the scheme gives a mixed embedding of varying delays from the variables, X1

and X2, that explains best the future of X1, defined as xh1,t = [x1,t+1, . . . , x1,t+h]. The mixed embedding
vector, wt, may contain lagged components of X1, forming the subset, wX1

t , and of X2, forming wX2
t ,

where wt = [wX1
t ,wX2

t ]. The MIME is then estimated as:

MIMEX2→X1 =
I(xh1,t; wX2

t |wX1
t )

I(xh1,t; wt)
(10)

The numerator in Equation (10) is the CMI as for the TE in Equation (7), but for non-uniform embedding
vectors of X1 and X2. Therefore, the MIME can be considered as a normalized version of the TE for
optimized non-uniform embedding of X1 and X2 [26].

For multivariate time series, the partial mutual information on mixed embedding (PMIME) has been
developed in analogy to the MIME [28]. The mixed embedding vector that best describes the future of
X1, xh1,t, is now formed potentially by all K lagged variables, i.e., X1, X2 and the other K − 2 variables
in Z, and it can be decomposed to the three respective subsets as wt = (wX1

t ,wX2
t ,wZ

t ). The PMIME is
then estimated as:

PMIMEX2→X1|Z =
I(xh1,t; wX2

t |wX1
t ,wZ

t )

I(xh1,t; wt)
(11)

Similarly to the MIME, the PMIME can be considered as a normalized version of the PTE for optimized
non-uniform embedding of all K variables. Thus, the PMIME takes values between zero and one, where
zero indicates the absence of components of X2 in the mixed embedding vector and, consequently, no
direct Granger causality from X2 to X1.

A maximum lag to search for components in the mixed embedding vector is set for each variable, here
being the same maximum lag, Lmax, for all variables. Lmax can be set equal to a sufficiently large number
without affecting the performance of the measure; however, the larger it is, the higher the computational
cost is. For the estimation of the MI and the CMI, the k-nearest neighbors method is used [48].
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3. Simulation Study

The multivariate causality measures are evaluated in a simulation study. All the considered direct
coupling measures are computed on 100 realizations of multivariate uncoupled and coupled systems, for
increasing coupling strengths and for all directions. The simulation systems that have been used in this
study are the following.

• System 1: A vector autoregressive process of order one [VAR(1)] in three variables withX1 → X2

and X2 → X3

x1,t = θt

x2,t = x1,t−1 + ηt

x3,t = 0.5x3,t−1 + x2,t−1 + εt

where θt, ηt and εt are independent to each other Gaussian white noise processes, with standard
deviations one, 0.2 and 0.3, respectively.

• System 2: A VAR(5) process in four variables withX1 → X3,X2 → X1,X2 → X3 andX4 → X2

(Equation 12 in [49])

x1,t = 0.8x1,t−1 + 0.65x2,t−4 + ε1,t

x2,t = 0.6x2,t−1 + 0.6x4,t−5 + ε2,t

x3,t = 0.5x3,t−3 − 0.6x1,t−1 + 0.4x2,t−4 + ε3,t

x4,t = 1.2x4,t−1 − 0.7x4,t−2 + ε4,t

where εi,t, i = 1, . . . , 4 are independent to each other Gaussian white noise processes with unit
standard deviation.

• System 3: A VAR(4) process in five variables with X1 → X2, X1 → X4, X2 → X4, X4 → X5,
X5 → X1, X5 → X2 and X5 → X3 [46]

x1,t = 0.4x1,t−1 − 0.5x1,t−2 + 0.4x5,t−1 + ε1,t

x2,t = 0.4x2,t−1 − 0.3x1,t−4 + 0.4x5,t−2 + ε2,t

x3,t = 0.5x3,t−1 − 0.7x3,t−2 − 0.3x5,t−3 + ε3,t

x4,t = 0.8x4,t−3 + 0.4x1,t−2 + 0.3x2,t−3 + ε4,t

x5,t = 0.7x5,t−1 − 0.5x5,t−2 − 0.4x4,t−1 + ε5,t

and εi,t, i = 1, . . . , 5, as above.

• System 4: A coupled system of three variables with linear (X2 → X3) and nonlinear causal effects
(X1 → X2 and X1 → X3) (Model 7 in [50])

x1,t = 3.4x1,t−1(1− x1,t−1)2 exp (−x21,t−1) + 0.4ε1,t

x2,t = 3.4x2,t−1(1− x2,t−1)2 exp (−x22,t−1) + 0.5x1,t−1x2,t−1 + 0.4ε2,t

x3,t = 3.4x3,t−1(1− x3,t−1)2 exp (−x23,t−1) + 0.3x2,t−1 + 0.5x21,t−1 + 0.4ε3,t

and εi,t, i = 1, . . . , 3, as above.
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• System 5: Three coupled Hénon maps with nonlinear couplings, X1 → X2 and X2 → X3

x1,t = 1.4− x21,t−1 + 0.3x1,t−2

x2,t = 1.4− cx1,t−1x2,t−1 − (1− c)x22,t−1 + 0.3x2,t−2

x3,t = 1.4− cx2,t−1x3,t−1 − (1− c)x23,t−1 + 0.3x3,t−2

with equal coupling strengths, c, and c = 0, 0.05, 0.3, 0.5.

The time series of this system become completely synchronized for coupling strengths, c ≥ 0.7.
In order to investigate the effect of noise on the causality measures, we also consider the case of
addition of Gaussian white noise to each variable of System 5, with standard deviation 0.2 times
their standard deviation.

• System 6: Three coupled Lorenz systems with nonlinear couplings, X1 → X2 and X2 → X3

ẋ1 = 10(y1 − x1)
ẏ1 = 28x1 − y1 − x1z1
ż1 = x1y1 − 8/3z1

,

ẋ2 = 10(y2 − x2) + c(x1 − x2)
ẏ2 = 28x2 − y2 − x2z2
ż2 = x2y2 − 8/3z2

,

ẋ3 = 10(y3 − x3) + c(x2 − x3)
ẏ3 = 28x3 − y3 − x3z3
ż3 = x3y3 − 8/3z3

The first variables of the three interacting systems are observed at a sampling time of 0.05 units.
The couplings, X1 → X2 and X2 → X3, have the same strength, c, and c = 0, 1, 3, 5. The time
series of the system become completely synchronized for coupling strengths, c ≥ 8. For a more
detailed description of the synchronization of the coupled Systems 5 and 6, see [51].

• System 7: A linear coupled system in five variables with X1 → X2, X1 → X3, X1 → X4,
X4 ↔ X5 with latent end exogenous variables [18]

x1,t = 0.95
√

2x1,t−1 − 0.9025x1,t−2 + ε1,t + a1ε6,t + b1ε7,t−1 + c1ε7,t−2

x2,t = 0.5x1,t−2 + ε2,t + a2ε6,t + b2ε7,t−1 + c2ε7,t−2

x3,t = −0.4x1,t−3 + ε3,t + a3ε6,t + b3ε7,t−1 + c3ε7,t−2

x4,t = −0.5x1,t−2 + 0.25
√

2x4,t−1 + 0.25
√

2x5,t−1 + ε4,t + a4ε6,t + b4ε7,t−1 + c4ε7,t−2

x5,t = −0.25
√

2x4,t−1 + 0.25
√

2x5,t−1 + ε5,t + a5ε6,t + b5ε7,t−1 + c5ε7,t−2

where εi,t are zero mean uncorrelated processes with variances 0.8, 0.6, 1, 1.2, 1, 0.9, 1,
respectively, a1 = 5, a2 = a3 = a4 = a5 = 1 and bi = 2, ci = 5, i = 1, . . . , 5.

The time series lengths considered in the simulation study are n = 512 and n = 2048. Regarding
the CGCI, the PGCI and the PDC, the order, P , of the VAR model is selected by combining the Akaike
Information Criterion (AIC), the Bayesian Information Criterion (BIC), as well as our knowledge for the
degrees of freedom of each coupled system, as follows. The range of model orders, for which the AIC
and the BIC are calculated, is selected to be at the level of the ‘true’ model order based on the equations
of each system. Specifically, for Systems 1, 4, 5, 6 and 7, we considered the range of model orders, [1, 5],
for the calculation of AIC and BIC, and for Systems 2 and 3, we considered the range, [1, 10]. Further,
we estimate the PDC for a range of frequencies determined by the power spectrum of the variables of
each system. We specify this range by selecting those frequencies that display the highest values in the
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auto-spectra of the variables [52]. The p-values from a non-parametric test for the PDC are estimated
for the selected range of frequencies (using bootstraps [53]), and in order to decide whether a coupling
is significant, at least 80% of the p-values from this range of frequencies should be significant.

The embedding dimension,m, for the PTE and the PSTE and the maximum lag, Lmax, for the PMIME
are set equal to P and τ = 1 for the PTE and the PSTE. Note that this choice of Lmax may be very
restrictive, and the PMIME may not be optimal; but, we adopt it here to make the choice for VAR order
and embedding uniform. The time step ahead, h, for the estimation of the PTE, PSTE and PMIME is set
to one for the first five systems and System 7 (the common choice for discrete-time systems), while for
the continuous-time system (System 6), h is set to be equal to m. The number of nearest neighbors for
the estimation of the PTE and the PMIME is set to k = 10. We note that the k-nearest neighbors methods
for the estimation of the measures is found to be stable and not significantly affected by the choice of
k [48]. The threshold for the stopping criterion for the mixed embedding scheme for the PMIME is set
to A = 0.95 (for details, see [26]).

3.1. Statistical Significance of the Causality Measures

In the simulation study, we assess the statistical significance of the causality measures by means of
parametric tests, when applicable, and nonparametric (resampling) tests, otherwise, in the way these
have been suggested in the literature for each measure. The correction for multiple testing regarding
the significance of a measure on all possible variable pairs is not considered here, as the interest is
in comparing the performance of the different direct causality measures rather than providing rigorous
statistical evidence for the significance of each coupling.

Starting with the CGCI, it bears a parametric significance test, and this is the F -test for the null
hypothesis that the coefficients of the lagged driving variables in the unrestricted VAR model are all
zero [41]. If P1 and P2 are the numbers of variables in the restricted and the unrestricted autoregressive
model, respectively, (P2 > P1), and n is the length of the time series, then the test statistic is
F = ((RSS1 − RSS2)/(P1 − P2))/(RSS2/(n − P2)), where RSSi is the residual sum of squares
of model, i. Under the null hypothesis that the unrestricted model does not provide a significantly
better fit than the restricted model, the F -statistic follows the Fisher-Snedecor, or F , distribution with
(P2−P1, n−P2) degrees of freedom. The null hypothesis is rejected if the F -statistic calculated on the
data is greater than the critical value of the F -distribution for some desired false-rejection probability
(here α = 0.05).

The statistical significance of the PGCI is assessed by means of confidence intervals formed by
bootstrapping [53], since the null distribution is unknown. The empirical distribution of any statistic
using bootstrapping is formed from the values of the statistic computed on a number of new samples
obtained by random sampling with replacement from the observed data. In the context of vector
autoregressive models, this can be realized by subdividing the data matrix (of the predictor and response
jointly) into a number of windows, which are repeatedly sampled with replacement to generate bootstrap
data matrices. By this procedure, the causal relationships within each window are not affected. The
PGCI is computed for each bootstrapped data matrix. The confidence interval of the PGCI is formed
by the lower and upper empirical quantiles of the bootstrap distribution of the PGCI for the significance
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level, α = 0.05. The bootstrap confidence interval for the PGCI can be considered as a significance test,
where the test decision depends on whether zero is included in the confidence interval. The details for
the estimation of the bootstrap confidence intervals of the PGCI can be found in [18].

The statistical significance of the PDC can be determined using both parametric testing [46,47],
and randomization (surrogate) testing [54]. Here, we choose the parametric approach. The statistical
significance of a nonzero value, PDCX2→X1(f), is investigated by means of a critical value, cPDC . Under
the null hypothesis that there is no Granger causality, X2 → X1, it holds |A12(f)| = 0, and cPDC can be
derived from theoretical considerations for each frequency, f , at a given α-significance level by:

cPDC(f) = ((Ĉij(f)χ2
1,1−a)/(N

∑
k

|Âkj(f)|2))1/2

The term, χ2
1,1−a, denotes the (1 − α)-quantile of the χ2 distribution with one degree of freedom, and

Ĉij(f) is an estimate of the expression:

Cij(f) = Σii(
P∑

k,l=1

Σ−1jj [cos(kf) cos(lf) + sin(kf) sin(lf)])

where Σ−1jj denotes the entries of the inverse of the covariance matrix, Σ, of the VAR process [47].
The statistical significance of the PTE and the PSTE is evaluated assuming a randomization test with

appropriate surrogate time series, as their null distribution is not known (for the PSTE, in [32], analytic
approximations were built, but found to be inferior to approximations using surrogates). We create M
surrogate time series consistent with the non-causality null hypotheses, H0, i.e., X2 does not Granger
causes X1. To destroy any causal effect of X2 on X1 without changing the dynamics in each time series,
we randomly choose a number, d, less than the time series length, n, and the d-first values of the time
series of X2 are moved to the end, while the other series remain unchanged. The random number, d,
for the time-shifted surrogates is an integer within the range, [0.05n, 0.95n], where n is the time series
length. This scheme for generating surrogate time series is termed time-shifted surrogates [55]. We
estimate the causality measure (PTE or PSTE) from the original multivariate time series, let us denote
it q0, and for each of the M multivariate surrogate time series, let us denote them q1, q2, . . . , qM . If
q0 is at the tail of the empirical null distribution formed by q1, q2, . . . , qM , then H0 is rejected. For
the two-sided test, if r0 is the rank of q0 in the ordered list of q0, q1, . . . , qM , the p-value for the test
is 2(r0 − 0.326)/(M + 1 + 0.348) if r0 < (M + 1)/2 and 2[1 − (r0 − 0.326)/(M + 1 + 0.348)] if
r0 ≥ (M + 1)/2, by applying the correction for the empirical cumulative density function in [56].

Finally, PMIME does not rely on any significance test, as it gives zero values in the uncoupled case
and positive values, otherwise. This was confirmed using time-shifted surrogates also for the PMIME in
the simulation study, and the PMIME values of the surrogate time series were all zero.

For the estimation of CGCI and PGCI and their statistical significance, we used the ’Causal
Connectivity Analysis’ toolbox [57]. The programs for the computations of the remaining causality
measures have been implemented in Matlab.

4. Evaluation of Causality Measures

In order to evaluate the multivariate causality measures, the percentage of rejection of the null
hypothesis of no causal effects (H0) in 100 realizations of the system is calculated for each possible pair
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of variables and for different time series lengths and free parameters of the measures. The focus when
presenting the results is on the sensitivity of the measure or, respectively, the power of the significance
test (the percentage of rejection at the significance level 5% or α = 0.05 when there is true direct
causality), as well as the specificity of the measure or size of the test (the percentage of rejection at
α = 0.05 when there is no direct causality) and how these properties depend on the time series length
and the measure-specific parameter.

4.1. Results for System 1

For the estimation of the linear measures, the order of the model, P , is set to one, as indicated from
the Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC), while for the
estimation of PTE, m is also set to one. The PDC is estimated for the range of frequencies [0, 0.5],
since the auto-spectra of the variables do not suggest a narrower range. Indeed, the p-values of PDC
are all significant in [0, 0.5], when there is direct causality, and not significant, when there is no direct
causality. The CGCI, PGCI, PDC and PTE correctly detect the direct causal effect for both time series
lengths, n = 512 and 2048. All the aforementioned measures indicate 100% rejection of H0 for the true
couplings, X1 → X2 and X2 → X3, and low percentages for all other couplings. Their performance is
not affected by the time series length, for the time series lengths considered. The estimated percentages
are displayed for both n in Table 1.

Table 1. Percentage of statistically significant values of the causality measures for System 1,
P = m = Lmax = 1 [m = 2 for partial symbolic transfer entropy (PSTE)]. The directions of
direct causal effects are pointed out in bold. When the same percentage has been found for
both n, a single number is displayed in the cell.

n = 512/2048 CGCI PGCI PDC PTE PSTE PMIME

X1 → X2 100 100 100 100 100 1 / 0
X2 → X1 4 / 3 2 / 1 2 / 3 8 / 5 58 / 100 2 / 7
X2 → X3 100 100 100 100 100 100
X3 → X2 7 / 6 8 / 1 3 3 / 5 7 / 25 0
X1 → X3 3 / 5 0 / 2 2 / 3 5 / 7 93 / 100 0
X3 → X1 2 / 7 0 3 3 / 2 14 / 43 7 / 7

The PSTE can only be estimated for m ≥ 2, and therefore, results are obtained for m = 2. The PSTE
correctly detects the direct causalities form = 2; however, it also indicates the indirect effect, X1 → X3,
and the spurious causal effect, X2 → X1.

Only for this system, the PMIME with the threshold of A = 0.95 failed to detect the true direct
effects, and the randomization test gave partial improvement (detection of one of the two true direct
effects, X2 → X3). This is merely a problem of using the fixed threshold, A = 0.95, in this system,
and following the adapted threshold proposed in [28], the two true direct effects could be detected for all
realizations with n = 512 and n = 2048 with the largest rate of false rejection being 8%.
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4.2. Results for System 2

For the second simulation system, the model order is set to P = 5, as indicated both by BIC and
AIC. The embedding dimension, m, and Lmax are also set to five. The PDC is estimated for the range
of frequencies, [0, 0.4], since the auto-spectra of all the variables are higher in the range, [0, 0.2], while
variable, X3, exhibits a peak in the range, [0.2, 0.4]. Indicatively, the p-values from one realization of the
system for the range of frequencies, [0, 0.5], is displayed in Figure 1a.

Figure 1. Graph summarizing the causal influences for one realization of System 2
(rows → columns) in (a) and System 3 in (b). The p-values from the partial directed
coherence (PDC) are displayed for the range of frequencies, [0, 0.5], while the dotted vertical
lines indicate the frequency, 0.4. The horizontal cyan lines indicate the 5%-significance level.
The auto-spectra are shown on the diagonal.
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The CGCI, PGCI, PDC and PMIME correctly detect the direct couplings (X2 → X1, X1 → X3,
X2 → X3, X4 → X2), as shown in Table 2. The performance of the CGCI and PDC is not affected by
the time series length. The PGCI is also not affected by n, except for the causal effect, X2 → X4, where
the PGCI falsely indicates causality for n = 2048 (20%). The PMIME indicates lower power of the test
compared to the linear measures only for X2 → X3 and n = 512.

Table 2. Percentage of statistically significant values of the causality measures for System 2,
P = m = Lmax = 5. The directions of direct causal effects are displayed in bold face.
CGCI, conditional Granger causality index; PGCI, partial Granger causality index; PDC,
partial directed coherence; PTE, partial transfer entropy; PSTE, partial symbolic transfer
entropy; PMIME, partial mutual information on mixed embedding.

n = 512/2048 CGCI PGCI PDC PTE PSTE PMIME

X1 → X2 6 / 2 1 0 6 / 11 7 / 20 0
X2 → X1 100 100 100 100 5 / 11 100
X1 → X3 100 100 100 100 7 / 15 100
X3 → X1 5 / 3 0 0 6 / 14 6 / 9 0
X1 → X4 6 / 7 0 0 7 / 50 2 / 24 3 / 0
X4 → X1 3 / 2 0 0 2 / 5 5 0
X2 → X3 100 98 / 100 94 / 100 14 / 39 9 / 18 64 / 99
X3 → X2 8 / 5 0 0 4 / 16 5 / 3 1 / 0
X2 → X4 7 / 6 3 / 20 0 5 / 8 1 / 20 2 / 0
X4 → X2 100 100 100 100 7 / 2 100
X3 → X4 4 / 3 0 / 2 0 8 / 29 2 / 8 3 / 0
X4 → X3 4 / 5 0 0 7 5 / 6 0

Table 3. Mean PTE values from 100 realizations of System 2, for P = 5 and n = 512, 2048.
The values of the true direct couplings are highlighted.

mean X1 → X2 X2 → X1 X1 → X3 X3 → X1 X1 → X4 X4 → X1

n = 512 0.0042 0.0920 0.0772 0.0034 0.0067 0.0043
n = 2048 0.0029 0.1221 0.0965 0.0016 0.0034 0.0020

X2 → X3 X3 → X2 X2 → X4 X4 → X2 X3 → X4 X4 → X3

n = 512 0.0060 0.0052 0.0095 0.0998 0.0071 0.0033
n = 2048 0.0059 0.0032 0.0061 0.1355 0.0042 0.0013

The PTE detects the direct causal relationships, apart from the coupling, X2 → X3, although the
percentage of rejection in this direction increases with n (from 14% for n = 512 to 39% for n = 2048).
Further, the erroneous relationships, X1 → X4 (50%) and X3 → X4 (29%), are observed for n = 2048.
Focusing on the PTE values, it can be observed that they are much higher for the directions of direct
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couplings than for the remaining directions. Moreover, the percentages of significant PTE values increase
with n for the directions with direct couplings and decrease with n for all other couplings (see Table 3).

We note that the standard deviation of the estimated PTE values from the 100 realizations are low (on
the order of 10−2). Thus, the result of having falsely statistically significant PTE values for X1 → X4

and X3 → X4 is likely due to insufficiency of the randomization test.
PSTE fails to detect the causal effects for the second coupled system for both time series lengths,

giving rejections at a rate between 1% and 24% for all directions. The failure of PSTE may be due to the
the high dimensionality of the rank vectors (the joint rank vector has dimension 21).

4.3. Results for System 3

The CGCI, PGCI, PDC, PTE and PMIME correctly detect all direct causal effects (X1 → X2,
X1 → X4, X5 → X1, X2 → X4, X5 → X2, X5 → X3, X4 → X5) for P = m = Lmax = 4

(based on BIC and AIC), as shown in Table 4.

Table 4. Percentages of statistically significant values of causality measures for System 3,
for P = m = Lmax = 4.

n = 512/2048 CGCI PGCI PDC PTE PSTE PMIME

X1 → X2 100 86 / 100 92 / 100 81 / 100 8 / 7 100
X2 → X1 7 / 3 2 / 0 0 7 / 2 3 / 8 18 / 0
X1 → X3 6 / 5 2 / 0 0 3 / 4 4 / 10 2 / 0
X3 → X1 1 / 2 0 0 5 / 4 2 / 4 14 / 0
X1 → X4 100 100 100 52 / 100 2 / 9 100
X4 → X1 7 / 4 1 / 0 0 6 / 4 4 / 10 12 / 0
X1 → X5 5 2 0 6 / 10 7 / 12 16 / 0
X5 → X1 100 98 / 100 99 / 100 100 2 / 16 100
X2 → X3 4 2 / 0 0 4 / 6 9 / 5 2 / 0
X3 → X2 6 / 2 1 / 0 0 4 / 2 5 / 4 9 / 1
X2 → X4 100 99 / 100 96 / 100 18 / 77 7 94 / 100
X4 → X2 5 / 9 0 0 5 / 4 2 / 4 9 / 0
X2 → X5 6 / 4 2 / 3 0 5 / 4 4 / 6 22 / 0
X5 → X2 100 96 / 100 99 / 100 99 / 100 3 / 8 100
X3 → X4 3 / 7 1 / 0 0 3 / 4 5 / 8 0
X4 → X3 4 1 / 0 0 3 / 6 4 / 5 4 / 0
X3 → X5 4 / 3 1 0 7 / 4 6 14 / 0
X5 → X3 100 87 / 100 84 / 100 49 / 97 3 / 15 100
X4 → X5 100 100 100 100 6 / 4 100
X5 → X4 5 / 2 0 0 17 / 37 6 / 14 1 / 0

The PDC is again estimated in the range of frequencies, [0, 0.4], (see in Figure 1b the auto-spectra
of the variables and the p-values from the parametric test of PDC from one realization of the system).
The CGCI, PGCI and PDC perform similarly for the two time series lengths. The PTE indicates 100%

significant values for n = 2048 when direct causality exists. However, the PTE also indicates the
spurious causality, X5 → X4, for n = 2048 (37%). The specificity of the PMIME is improved by the
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increase of n, and the percentage of positive PMIME values in case of no direct causal effects varies
from 0% to 22% for n = 512, while for n = 2048, it varies from 0% to 1%. The PSTE again fails to
detect the causal effects, giving very low percentage of rejection at all directions (2% to 16%).

Since the linear causality measures CGCI, PGCI and PDC have been developed for the detection of
direct causality in linear coupled systems, it was expected that these methods would be successfully
applied to all linear systems. The nonlinear measures PMIME and PTE also seem to be able to capture
the direct linear couplings in most cases, with PMIME following close the linear measures both in
specificity and sensitivity.

In the following systems, we investigate the ability of the causality measures to correctly detect direct
causal effects when nonlinearities are present.

4.4. Results for System 4

For the fourth coupled system, the BIC and AIC suggest to set P = 1, 2 and 3. The performance of the
linear measures does not seem to be affected by the choice of P . The PDC is estimated for frequencies
in [0.1, 0.4]. The auto-spectra of the three variables do not display any peaks or any upward/downward
trends. No significant differences in the results are observed if a wider or narrower range of frequencies
is considered. The linear measures, CGCI, PGCI and PDC, capture only the linear direct causal effect,
X2 → X3, while they fail to detect the nonlinear relationships, X1 → X2 and X1 → X3, for both time
series lengths.

The PTE and the PMIME correctly detect all the direct couplings for the fourth coupled system for
m = Lmax = 1, 2 and 3. The percentage of significant values of the causality measures are displayed
in Table 5. The PTE gives equivalent results for m = 1 and m = 2. The PTE correctly detects the
causalities for m = 3, but at a smaller power of the significance test for n = 512 (63% for X1 → X2,
46% for X2 → X3 and 43% for X1 → X3). The percentage of significant PMIME values is 100% for
the directions of direct couplings, and falls between 0% and 6% for all other couplings, and this holds
for any Lmax = 1, 2 or 3 and for both n.

Table 5. Percentage of statistically significant values of the causality measures for System 4,
P = m = Lmax = 2.

n = 512/2048 CGCI PGCI PDC PTE PSTE PMIME

X1 → X2 12 / 7 1 2 97 / 100 10 / 69 100
X2 → X1 2 / 7 0 / 1 1 / 0 8 / 9 4 / 8 3 / 0
X2 → X3 100 73 / 100 100 76 / 100 69 / 100 100
X3 → X2 7 / 4 3 / 1 1 4 3 / 9 4 / 0
X1 → X3 7 1 / 0 0 / 1 86 / 100 1 / 7 100
X3 → X1 4 / 5 0 0 4 / 6 8 / 21 0

The PSTE indicates the link X2 → X3 for both time series lengths, while X1 → X2 is detected only
for n = 2048. The PSTE fails to point out the causality, X1 → X3. The results for m = 2 and 3
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are equivalent. In order to investigate whether the failure of PSTE to show X1 → X3 is due to finite
sample data, we estimate the PSTE also for n = 4096. For m = 2, it indicates the same results as for
n = 2048. Form = 3, the PSTE detects all the direct causal effects,X1 → X2 (99%),X2 → X3 (100%),
X1 → X3 (86%), but X3 → X1 (62%) is also erroneously detected.

4.5. Results for System 5

For the fifth coupled simulation system, we set the model order, P = 2, based on the complexity of
the system, and P = 3, 4 and 5 using the AIC and BIC. The auto-spectra of the variables display peaks
in [0.1, 0.2] and [0.4, 0.5]. The PDC is estimated for different ranges of frequencies to check its sensitivity
with respect to the selection of the frequency range. When small frequencies are considered, the PDC
seems to indicate larger percentages of spurious couplings; however, also, the percentages of significant
PDC values at the directions of true causal effects are smaller. The results are presented for System 5
considering the range of frequencies, [0.4, 0.5].

The CGCI seems to be sensitive to the selection of the model order P , indicating some spurious
couplings for the different P . The best performance for CGCI is achieved for P = 3; therefore, only
results for P = 3 are shown. On the other hand, the PGCI turns out to be less dependent on P , giving
similar results for P = 2, 3, 4 and 5. The PTE is not substantially affected by the selection of the
embedding dimension,m (at least for the examined coupling strengths); therefore, only results form = 2

are discussed. The PSTE is sensitive to the selection of m, performing best for m = 2 and 3, while for
m = 4 and 5, it indicates spurious and indirect causal effects. The PMIME does not seem to depend on
Lmax. Results are displayed for Lmax = 5. The percentage of significant values for each measure are
displayed in Figure 2, for all directions, for increasing coupling strength and for both n.

Figure 2. Percentage of significant (a) CGCI (P = 3); (b) PGCI (P = 3); (c) PDC (P = 3);
(d) PTE (m = 2); (e) PSTE (m = 2); and (f) PMIME (Lmax = 5) values, for System 5, for
increasing coupling strengths, c, at all directions and for both n (for n = 512, solid lines, for
n = 2048, dotted lines).



Entropy 2013, 15 2651

Figure 2. Cont.

Most of the measures show good specificity, and the percentage of rejection for all pairs of the
variables of the uncoupled system (c = 0) is at the significance level, α = 0.05, with only CGCI
scoring a somehow larger percentage of rejection up to 17%.

For the weak coupling strengths, c = 0.05 and 0.1, the causality measures cannot effectively detect the
causal relationships or have a low sensitivity. The CGCI and the PTE seem to have the best performance,
while the PMIME seems to be effective only for n = 2048 and c = 0.1.

As the coupling strength increases, the sensitivity of the causality measures is improved. For c = 0.2,
the CGCI, PTE and PMIME correctly indicate the true couplings for both n, while the PGCI and the
PSTE do this only for n = 2048. The PDC has low power, even for n = 2048. For c = 0.3, nearly all
measures correctly point out the direct causal effects (see Table 6). The best results are obtained with the
PMIME, while the CGCI and PTE display similar performance. The PGCI and the PSTE are sensitive
to the time series length and have a high power only for n = 2048. The PDC performs poorly, giving
low percentage of significant PDC values, even for n = 2048. All measures have good specificity, with
CGCI and PTE giving rejections well above the nominal level for some non-existing couplings.

Considering larger coupling strengths, the causality measures correctly indicate the true couplings,
but also some spurious ones. The PMIME outperforms the other measures giving 100% positive values
for both n for X1 → X2 and X2 → X3 and 0% at the remaining directions for c ≥ 0.2. Indicative results
for all measures are displayed for the strong coupling strength c = 0.5 in Table 7.
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In order to investigate the effect of noise on each measure, we consider the coupled Hénon map
(System 5) with the addition of Gaussian white noise with standard deviation 0.2 times the standard
deviation of the original time series. Each measure is estimated again from 100 realizations from the
noisy system for the same free parameters as considered in the noise-free case.

The CGCI is not significantly affected by the addition of noise, giving equivalent results for P = 3

as for the noise-free system. The CGCI detects the true causal effects even for weak coupling strength
(c ≥ 0.05). For different P values (P = 2, 4 or 5), some spurious and/or indirect causal effects are
observed for c > 0.3.

Table 6. Percentage of statistically significant values of the causality measures for System 5
for c = 0.3, where P = 3, m = 2 and Lmax = 5.

n = 512/2048 CGCI PGCI PDC PTE PSTE PMIME

X1 → X2 100 36 / 100 20 / 94 100 19 / 88 100
X2 → X1 10 / 13 0 / 1 0 / 2 7 / 24 7 / 6 0
X2 → X3 94 / 100 16 / 75 12 / 19 100 18 / 98 100
X3 → X2 16 / 17 2 / 0 12 / 4 9 8 0
X1 → X3 5 / 8 0 0 / 1 8 / 17 4 / 7 0
X3 → X1 5 / 7 0 2 / 0 3 / 7 5 / 4 0

Table 7. Percentages of statistically significant values of the causality measures for System 5
for c = 0.5, where P = 3, m = 2 and Lmax = 5.

n = 512/2048 CGCI PGCI PDC PTE PSTE PMIME

X1 → X2 100 84 / 100 11 / 99 100 67 / 100 100
X2 → X1 1 / 5 0 0 / 1 9 / 18 16 / 31 0
X2 → X3 100 60 / 100 7 / 13 100 79 / 100 100
X3 → X2 2 / 17 0 / 2 2 / 8 8 7 / 31 0
X1 → X3 12 / 52 0 / 3 1 / 11 16 / 92 3 / 7 0
X3 → X1 6 / 5 0 2 / 0 8 / 5 7 / 0 0

The PGCI is also not considerably affected by the addition of noise. The causal effects are detected
only for coupling strengths, c ≥ 0.3, for n = 512, and for c ≥ 0.2, for n = 2048, while the power of the
test increases with c and with n (see Figure 3a).

The PDC fails in the case of the noisy coupled Hénon maps, detecting only the coupling X1 → X2,
for coupling strengths, c ≥ 0.2 and n = 2048 (see Figure 3b).

The PTE seems to be significantly affected by the addition of noise, falsely detecting the coupling,
X2 → X1, X3 → X2, and the indirect coupling, X1 → X3, for strong coupling strengths. The
performance of PTE is not significantly influenced by the choice of m. Indicative results are presented
in Table 8 for m = 2.
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Noise addition does not seem to affect the performance of PSTE. Results for m = 2 are equivalent
to the results obtained for the noise-free case. The power of the significance test increases with c and n.
The PSTE is sensitive to the selection of m; as m increases, the percentage of significant PSTE values
in the directions of no causal effects also increases.

The PMIME outperforms the other measures also for the noisy coupled Hénon maps, detecting the
true couplings for c ≥ 0.2 for n = 512 (100%) and for c ≥ 0.1 for n = 2048 (for coupling strength
c = 0.1 the percentages are 22% and 23% for X1 → X2, X2 → X3, respectively, and for c ≥ 0.2, the
percentages are 100%, for both couplings).

Figure 3. Percentage of significant (a) PGCI (P = 3) and (b) PDC (P = 3) values, for
System 5 with addition of noise (solid lines for n = 512, dotted lines for for n = 2048).

Table 8. Percentages of statistically significant PTE (m = 2) values for System 5 with the
addition of noise.

n = 512/2048 X1 → X2 X2 → X1 X2 → X3 X3 → X2 X1 → X3 X3 → X1

c = 0 2 / 5 5 / 6 4 5 / 7 10 / 1 7 / 6
c = 0.05 6 / 17 3 5 / 20 4 / 5 3 / 6 7 / 1
c = 0.1 22 / 98 6 / 2 22 / 98 3 / 7 4 / 5 5 / 8
c = 0.2 100 6 / 11 99 / 100 4 / 7 1 / 5 4 / 2
c = 0.3 100 10 / 52 100 8 / 22 12 / 27 4 / 8
c = 0.4 100 9 / 79 100 6 / 50 24 / 97 7 / 10
c = 0.5 100 23 / 95 100 7 / 48 39 / 100 8 / 13

4.6. Results for System 6

For System 6, we set P = 3 based on the complexity of the system and P = 5 regarding the AIC and
BIC. The PTE, PSTE and PMIME are estimated for four different combinations of the free parameters, h
andm (Lmax for PMIME), i.e., for h = 1 andm = 3, for h = 3 andm = 3, for h = 1 andm = 5 and for
h = 5 and m = 5. The PDC is computed for the range of frequencies, [0, 0.2], based on the auto-spectra
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of the variables. As this system is a nonlinear flow, the detection of causal effects is more challenging
compared to stochastic systems and nonlinear coupled maps. Indicative results for all causality measures
are displayed for increasing coupling strengths in Figure 4.

Figure 4. Percentage of significant (a) CGCI (P = 5); (b) PGCI (P = 5); (c) PDC (P = 5);
(d) PTE (h = 1, m = 5); (e) PSTE (h = 3, m = 3); and (f) PMIME (h = 1, Lmax = 5)
values, for System 6, for increasing coupling strengths, c, at all directions and for both n
(solid lines for n = 512, dotted lines for n = 2048).

The CGCI has poor performance, indicating many spurious causalities. The PGCI improves the
specificity of the CGCI, but still, the percentages of statistically significant PGCI values increase with c
for non-existing direct couplings (less for larger n). Similar results are obtained for P = 3 and 5. On
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the other hand, the PDC is sensitive to the selection of P , indicating spurious causal effects for all P . As
P increases, the percentage of significant PDC values at the directions of no causal effects is reduced.
However, the power of the test is also reduced.

The PTE is sensitive to the embedding dimensionm and the number of steps ahead h, performing best
for h = 1 and m = 5. It fails to detect the causal effects for small c; however, for c > 1, it effectively
indicates the true couplings. The size of the test increases with c (up to 36% for c = 5 and n = 2048),
while the power of the test increases with n.

The PSTE is also affected by its free parameters, performing best for h = 3 and m = 3. It is unable to
detect the true causal effects for weak coupling strengths (c ≤ 1) and for small time series lengths. The
PSTE is effective only for c > 2 and n = 2048. Spurious couplings are observed for strong coupling
strengths c and n = 2048.

The PMIME is also influenced by the choice of h and Lmax, indicating low sensitivity when setting
h = 1, but no spurious couplings, while for h = Lmax, the percentage of significant PMIME values for
X1 → X2 and X2 → X3 is higher, but the indirect coupling X1 → X3 is detected for strong coupling
strengths. The PMIME has a poor performance for weak coupling strength (c < 2).

As c increases, the percentages of significant values of almost all the causality measures increase, but
not only at the true directions, X1 → X2 and X2 → X3. Indicative results are presented in Table 9 for
strongly coupled systems (c = 5). The CGCI gives high percentages of rejection of H0 for all couplings
(very low specificity). This also holds for the PGCI, but at a lower significance level. The PTE correctly
detects the two true direct causal effects for h = 1 and m = 5, but at some significant degree, also the
indirect coupling, X1 → X3, and the non-existing coupling, X3 → X2. The PSTE does not detect the
direct couplings for n = 512, but it does when n = 2048 (97% forX1 → X2 and 80% forX2 → X3), but
then it detects also spurious couplings, most notably X3 → X2 (35%). The PMIME points out only the
direct causal effects, giving, however, a lower percentage than the other measures for h = 1, Lmax = 5.
Its performance seems to be affected by the selection of h and Lmax. The nonlinear measures turn out to
be more sensitive to their free parameters.

Table 9. Percentage of statistically significant values of the causality measures for System 6
with c = 5, where P = 5, h = 1 and m = 5 for PTE, h = 3 and m = 3 for PSTE and h = 1

and Lmax = 5 for PMIME.

n = 512/2048 CGCI PGCI PDC PTE PSTE PMIME

X1 → X2 99 / 100 38 / 86 26 / 95 96 / 100 18 / 97 39 / 41
X2 → X1 55 / 94 20 / 26 4 / 6 8 / 6 8 / 18 0
X2 → X3 89 / 100 47 / 61 36 / 56 70 / 100 12 / 80 35 / 51
X3 → X2 59 / 84 12 / 21 29 / 16 19 / 24 5 / 35 0
X1 → X3 54 / 80 11 / 6 7 / 7 28 / 36 6 / 15 0
X3 → X1 19 / 20 9 / 8 13 / 1 9 / 5 4 / 5 0
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4.7. Results for System 7

For the last coupled simulation system, we set the model order P = 2, 3, 4 based on AIC and BIC,
while the PDC is estimated in the range of frequencies, [0.1, 0.2]. The embedding dimension, m, for the
estimation of PTE and PSTE, as well as Lmax for the estimation of PMIME, are set equal to P . Results
for all causality measures are displayed in Table 10.

The CGCI (for P = 5) correctly indicates the causal effects for n = 512, giving 100% percentage
of significant values at the direction X1 → X2 and X1 → X4, but lower percentage at the directions
X1 → X3 (63%), X4 → X5 (37%) and X5 → X4 (42%). The power of the test increases with n,
but spurious couplings are also detected for n = 2048. For P = 2, 3 and 4, the CGCI indicates more
spurious couplings than for P = 5.

Table 10. Percentage of statistically significant values of the causality measures for
System 7, where P = m = Lmax = 3.

n = 512/2048 CGCI PGCI PDC PTE PSTE PMIME

X1 → X2 100 100 47 / 100 100 47 / 31 100
X2 → X1 8 / 26 0 7 / 23 6 / 9 86 / 100 0
X1 → X3 63 / 100 100 57 / 100 36 / 91 100 100
X3 → X1 6 / 8 1 / 8 1 / 2 98 / 100 32 / 26 100
X1 → X4 100 100 73 / 100 100 31 / 84 100
X4 → X1 6 0 2 / 0 54 / 96 73 / 100 87 / 23
X1 → X5 13 / 75 3 / 8 2 / 11 0 / 1 100 20 / 9
X5 → X1 9 / 5 0 1 / 2 5 / 16 100 1 / 0
X2 → X3 14 / 36 0 7 / 30 49 / 75 40 / 24 3 / 41
X3 → X2 9 / 12 0 4 / 3 40 / 66 100 1 / 0
X2 → X4 11 / 38 3 / 0 7 / 29 36 / 81 91 / 92 0
X4 → X2 7 / 10 18 / 22 2 / 1 0 / 2 100 0
X2 → X5 10 / 37 0 5 / 29 47 / 69 100 86 / 94
X5 → X2 5 / 7 0 1 / 3 20 / 49 72 / 96 1 / 0
X3 → X4 12 0 5 / 3 88 / 100 100 0
X4 → X3 5 / 10 0 2 / 2 14 / 59 98 / 100 15 / 0
X3 → X5 8 / 13 0 4 / 1 1 / 2 100 0
X5 → X3 7 / 11 0 1 / 3 14 / 43 100 5 / 0
X4 → X5 37 / 94 83 / 100 23 / 88 6 / 7 94 / 100 100
X5 → X4 42 / 100 6 / 4 20 / 76 100 78 / 75 100

System 7 favors the PGCI, as it has been specifically defined for systems with latent and exogenous
variables. The PGCI denotes the couplings, X1 → X2, X1 → X3, X1 → X4 and X4 → X5, even for
n = 512 with a high percentage; however, it fails to detect the coupling, X5 → X4, for both n.
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The PDC detects the true couplings at low percentage for n = 512. The percentage increases
with n = 2048 at the directions of the true couplings. However, there are also false indications of
directed couplings.

The PTE does not seem to be effective in this setting for any of the considered m values, since it
indicates many spurious causal effects, while it fails to detect X4 → X5. The PSTE completely fails in
this case, suggesting significant couplings at all directions. The true causal effects are indicated by the
PMIME, but here, as well, many spurious causal effects are also observed.

5. Discussion

In this paper, we have presented six multivariate causality measures that are able to detect the direct
causal effects among simultaneously measured time series. The multivariate direct coupling measures
are tested on simulated data from coupled and uncoupled systems of different complexity, linear and
nonlinear, maps and flows. The linear causality measures and the PMIME can be used in complex
systems with a large number of observed variables, but the PTE and the PSTE fail, because they involve
estimation of probability distributions of high dimensional variables.

The simulation results suggest that for real world data, it is crucial to investigate the presence of
nonlinearities and confirm the existence of causal effects by estimating more than one causality measure,
sensitive to linear, as well as nonlinear causalities. Concerning the specificity of the coupling measures
(in absence of direct causality), the PMIME outperforms the other measures, but for weak coupling, it
is generally less sensitive than the PTE. In general, the PMIME indicated fewer spurious causal effects.
Here, we considered only systems of a few variables, and for larger systems, the PMIME was found to
outperform the PTE and, also, the CGCI [28].

Regarding the three first linear coupled systems in the simulation study, the CGCI, PGCI and PDC are
superior to the nonlinear causality measures, both in sensitivity and specificity. The PMIME correctly
indicates the coupling among the variables, but tends to have smaller sensitivity than the linear tests.
The PTE cannot detect the true direct causality in all the examined linear systems and gives also some
spurious results. The PSTE was the less effective one. For the last simulation system with the exogenous
and latent variables (System 7), all but PGCI measures had low specificity, indicating only the true direct
causal effects.

Concerning the nonlinear coupled system, the PTE and the PMIME outperform the other methods.
The linear measures (CGCI, PGCI and PDC) fail to consistently detect the true direct causal effects
(low sensitivity). The failure of the linear measures may not only be due to the fact that the system is
nonlinear, but also due to the small time series lengths and the low model order. For example, the PDC
correctly indicated the causal effects on simulated data from the coupled Rössler system for n = 50, 000

and model order, P = 200 (see [49]). The PSTE requires large data sets to have a good power, while
it gives spurious couplings at many cases. Though the PSTE performed overall worst in the simulation
study, there are other settings in which it can be useful, e.g., in the presence of outliers or non-stationarity
in mean, as slow drifts do not have a direct effect on the ranks. The addition of noise does not seem to
affect the causality measures, CGCI, PGCI, PSTE and PMIME.
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The free parameters were not optimized separately for each measure. For all systems, the parameters
of model order, P , embedding dimension, m, and maximum lag, Lmax, were treated as one free
parameter, the values of which were selected according to the complexity of each system and the standard
criteria of AIC and BIC. The linear measures tend to be less sensitive to changes on this free parameter
than the nonlinear ones. The PTE gave more consistent results than the PSTE for varying m, whereas
the PMIME was not dependent on Lmax. For the nonlinear measures and the continuous-time system
(three coupled Lorenz systems), we considered also the causalities at more than one step ahead, and the
PTE, PSTE and PMIME were found to be sensitive to the selection of the steps ahead.

A point of concern regarding all direct causality measures, but the PMIME, is that the size of the
significance test was high in many settings. This was observed for both types of spurious direct causal
effect, i.e., when there is indirect coupling or when there is no causal effect. In many cases of non-
existing direct causalities, although the observed test size was large, the estimated values of the measure
were low compared to those in the presence of direct causalities. This raises also the question of the
validity of the significance tests. The randomization test used time-shifted surrogates. Although it is
simple and straightforward to implement, it may not always be sufficient, and further investigation for
other randomization techniques is due for future work.

In conclusion, we considered six of the best-known measures of direct causality and studied their
performance for different systems, time series lengths and free parameters. The worst performance
was observed for the PSTE, since it completely failed in the case of the linear coupled systems, while
for nonlinear systems, it required large data sets. The other measures scored differently in terms of
sensitivity and specificity in the different settings. The CGCI, PGCI and PDC outperformed the nonlinear
ones in the case of the linear coupled simulation systems, while in the presence of exogenous and latent
variables, the PGCI seems to be the most effective one. The PMIME seems to have the best performance
for nonlinear and noisy systems, while always obtaining the highest specificity, indicating no spurious
effects. It is the intention of the authors to pursue the comparative study on selected real applications.
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