
Entropy 2013, 15, 2788-2804; doi:10.3390/e15072788
OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

Non-Linear Canonical Correlation Analysis Using
Alpha-Beta Divergence
Abhijit Mandal * and Andrzej Cichocki

Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute, RIKEN, 2-1
Hirosawa, Wako, 351-0198 Saitama, Japan; E-Mail: a.cichocki@riken.jp

* Author to whom correspondence should be addressed; E-Mail: abhijit@brain.riken.jp;
Fax: +81-48-467-9694.

Received: 14 June 2013; in revised form: 12 July 2013 / Accepted: 15 July 2013 /
Published: 18 July 2013

Abstract: We propose a generalized method of the canonical correlation analysis using
Alpha-Beta divergence, called AB-canonical analysis (ABCA). From observations of two
random variables, x ∈ RP and y ∈ RQ, ABCA finds directions, wx ∈ RP and wy ∈ RQ,
such that the AB-divergence between the joint distribution of (wT

xx,wT
y y) and the product

of their marginal distributions is maximized. The number of significant non-zero canonical
coefficients are determined by using a sequential permutation test. The advantage of our
method over the standard canonical correlation analysis (CCA) is that it can reconstruct
the hidden non-linear relationship between wT

xx and wT
y y, and it is robust against outliers.

We extend ABCA when data are observed in terms of tensors. We further generalize this
method by imposing sparseness constraints. Extensive simulation study is performed to
justify our approach.

Keywords: canonical correlation analysis (CCA); non-linearity; AB-divergence; robustness;
tensor; sparseness constraints.

1. Introduction

In statistics and data analysis, we are often interested to find out the relationship between two sets
of multi-dimensional random variables, x ∈ RP and y ∈ RQ. Canonical correlation analysis (CCA)
focuses on the correlation between a linear combination of the variables in one set and another linear
combination of the variables in the other set. The idea is to first determine linear combinations of x
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and y, called canonical variables, such that the correlation between the canonical variables is the highest
possible among all such linear combinations.

Based on the observed random sample, the aim in standard CCA is to find the linear relationship
between x and y. Therefore, the method fails if the relationship is non-linear. Another disadvantage of
the standard CCA is that it is very sensitive to outliers, as it is based on the correlation coefficient. In
this paper, we generalize the concept of CCA, which can extract the non-linear relationship between two
sets of variables, and at the same time, the method is robust against outliers. We assume that there exists
a hidden relationship of the following type:

wT
y y = ψ(wT

xx) + ε, (1)

where ψ is an unknown smooth function and ε is the random error. Our aim is to find out vectors,
wx ∈ RP and wy ∈ RQ, from observed values of x and y. Yin (2004) [1] has developed a technique
to solve this problem based on an information theoretic approach (see, also, Yin et al., 2008 [2];
Iaci et al., 2010 [3]). Recently, Iaci and Sriram (2013) [4] applied this method using beta-divergence
and power divergence. Wang et al. (2012) [5] have used Bregman divergence to perform CCA. We
will explore this problem in detail and extend this method by using the Alpha-Beta divergence (or
AB-divergence) (Cichocki et al., 2011 [6]), which is a generalized measure of divergence. Moreover,
the earlier methods are limited to the case where x and y are random vectors; we will extend it to the
tensor (multiway array) valued random variables.

Kernel CCA (Lai and Fyfe, 2000 [7]; Shawe-Taylor and Cristianini, 2004 [8]) deals with the non-
linear relationship between two sets of random variables, but the setting of the problem is different
than our approach. Kernel CCA first transforms the data to a higher (or infinite) dimensional non-linear
space, called the reproducing kernel Hilbert space, and then assumes that there exists a linear relationship
between the variables in the transformed space. In kernel CCA, it is not possible to recover the non-linear
relationship, whereas in our case, we can find out the unknown function, ψ, in Equation (1) by further
analysis (see Breiman and Friedman, 1985 [9]). However, in this paper, our main interest is to recover
wx and wy, which satisfy Equation (1).

The rest of the paper is organized as follows. In Sections 2 and 3, we discuss the basic formulations of
CCA and AB-divergence, respectively. The new method, AB-canonical analysis (ABCA), is proposed
in Section 4. In Section 5, we describe the algorithm of ABCA. The sequential permutation test is
proposed to determine the number of significant canonical variable pairs in Section 6. In Section 7,
we generalize ABCA when data sets are observed as tensors. The sparsity constraint is introduced
in Section 8. Numerical illustrations of the performance of this method are presented in Section 9.
Section 10 has some concluding remarks.

2. Canonical Correlation Analysis

Suppose we have N pairs of observations from two sets of random variables, x and y,
{x(n) ∈ RP ,y(n) ∈ RQ;n = 1, 2, · · · , N}. In CCA, we look for linear combinations of x and y,
which have maximum correlation with each other (Hotelling, 1936 [10]). Formally, the classical CCA
computes two projection vectors, wx ∈ RP and wy ∈ RQ, such that the correlation coefficient:
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ρ =
wT
xΣxywy√

wT
xΣxwx

√
wT
y Σywy

(2)

is maximized, where Σxy is the covariance matrix between x and y, and Σx and Σy are the dispersion
matrices of x and y, respectively. Since ρ is invariant to the scaling of vectors wx and wy, CCA can be
formulated equivalently as the following constrained optimization problem:

max
wx,wy

wT
xΣxywy, subject to wT

xΣxwx = wT
y Σywy = 1. (3)

We denote the optimum values of (wx,wy) as (1wx,
1wy). We refer to u1 = 1wT

xx and v1 = 1wT
y y as

the pair of first canonical variables.
Next, we determine a new pair of linear combinations, say u2 and v2, which has the highest correlation

subject to u2, being uncorrelated with u1, and v2 being uncorrelated with v1 (the construction actually
ensures that u1 and v2 are uncorrelated, as well, as are u2 and v1). Therefore, at the i-th step, the canonical
vectors are obtained as:

(
iwx,

iwy

)
= arg max

wx,wy

wT
xΣxywy (4)

subject to:

iwT
x Σx

iwx = iwT
y Σy

iwy = 1, (5)
jwT

x Σx
iwx = jwT

y Σy
iwy = 0, (6)

for all j = 1, 2, · · · , i − 1 and i ≤ min{p, q}. The process continues, until subsequent pairs of linear
combinations no longer produce a significant correlation.

3. AB-Divergence

Consider two density functions, f and g, with respect to a Lebesgue measure. Then, the
AB-divergence (Cichocki et al., 2011 [6]) between f and g is denoted as Dα,β(f ||g) and is defined by:

Dα,β(f ||g) = − 1

αβ

∫
x

(
fα(x)gβ(x)− α

α + β
fα+β(x)− β

α + β
gα+β(x)

)
dx, (7)

where α, β, α+β 6= 0. The singularity for certain values of parameters are avoided by taking continuous
limits with respect to the parameters. Thus, AB-divergence is expressed in a more explicit form as:

Dα,β(f ||g) =

∫
x

dα,β(f, g)dx, (8)

where:
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dα,β =



− 1
αβ

(
fαgβ − α

α+β
fα+β − β

α+β
gα+β

)
if α, β, α + β 6= 0

1
α2

(
fα ln

(
f
g

)α
− fα + gα

)
if α 6= 0, β = 0

1
α2

(
ln
(
g
f

)α
+
(
g
f

)−α
− 1

)
if α = −β 6= 0

1
β2

(
gβ ln

(
g
f

)β
− gβ + fβ

)
if α = 0, β 6= 0

1
2
(ln f − ln g)2 if α, β = 0.

(9)

There are several important divergences in the class of AB-divergence: for a suitable choice
of the parameters α and β, we can construct those divergences (Amari, 2007 [11]; Minami and
Eguchi, 2002 [12]). For example, when (α+β) = 1, the AB-divergence reduces to the Alpha-divergence
(Amari, 2007 [11]; Cichocki et al., 2011 [6]). On the other hand, when α = 1, it becomes
Beta-divergence (Basu et al., 1998 [13]; Cichocki et al., 2006 [14]; Kompass, 2007 [15]; Minami and
Eguchi, 2002 [12]; Févotte et al., 2009 [16]). The AB-divergence becomes the standard Kullback-Leibler
divergence for α = 1 and β = 0. Itakura-Saito divergence and the Hellinger distance also belong to the
class of AB-divergence (Cichocki et al., 2006 [14]; Févotte et al., 2009 [16]).

One important property of the divergence is that Dα,β(f ||g) is non-negative for all f and g and is
equal to zero if and only if f ≡ g almost everywhere (Cichocki et al., 2011 [6]). Let us take f to be the
joint density of two random variables, x and y, and g to be the product of their marginal densities. Then,
Dα,β(f ||g) = 0 if and only if x and y are independent. We will use this property of AB-divergence to
find the canonical variables.

4. AB-Canonical Analysis

Let us denote the joint distribution of two random variables as f(·, ·), whereas the marginal
distribution as f(·). We define the AB-divergence between the joint distribution of (wT

xx,wT
y y) and

the product of their marginal distributions as:

Dα,β(wx,wy) = Dα,β

(
f
(
wT
xx,wT

y y
)
|| f

(
wT
xx
)
f
(
wT
y y
))
. (10)

From the property of the AB-divergence, we know that Dα,β(wx,wy) = 0 if and only if wT
xx and wT

y y

are statistically independent. Here, our aim is to find directions wx and wy, such that wT
xx and wT

y y are
as much dependent as possible. Therefore, we find wx and wy from the optimization problem:

max
wx,wy

Dα,β(wx,wy), subject to wT
xwx = wT

y wy = 1. (11)

We denote the first set of AB-canonical vectors as (1wx,
1wy). The i-th set of canonical vectors are

obtained as:

(
iwx,

iwy

)
= arg max

wx,wy

Dα,β(wx,wy), (12)

subject to:
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iwT
x
iwx = iwT

y
iwy = 1, (13)

jwT
x
iwx = jwT

y
iwy = 0, (14)

for all j = 1, 2, · · · , i − 1 and i ≤ min{p, q}. Like CCA, we continue, until a subsequent pairs of
canonical variables no longer produce a significant dependence.

We note thatDα,β(wx,wy) = 0 implies that wT
xx and wT

y y are statistically independent, regardless of
the distributions of x and y. On the other hand, in standard CCA, the zero canonical correlation implies
that x and y are uncorrelated, but in general, they may not be independent. However, if x and y follow
normal distributions, then they are independent. The concept of statistical dependence is more general
and flexible than the concept of correlation. If x and y are independent, then they are also uncorrelated,
but not vice versa.

5. ABCA Algorithm

Suppose we have N pairs of observations from two sets of random variables, x and y,
{x(n) ∈ RP ,y(n) ∈ RQ;n = 1, 2, · · · , N}. We calculate D(N)

α,β (wx,wy), the sample version of
Dα,β(wx,wy), using kernel density estimates (Yin, 2004 [1]). Therefore,

D
(N)
α,β (wx,wy) = Dα,β

(
fN
(
wT
xx,wT

y y
)
||fN

(
wT
xx
)
fN
(
wT
y y
))
, (15)

where:

fN(u) =
1

Nh

N∑
n=1

K

(
u− un
h

)
, u ∈ R, (16)

and:

fN(u, v) =
1

Nh1h2

N∑
n=1

K2

(
u− un
h1

,
v − vn
h2

)
, (u, v) ∈ R2. (17)

Here, h, h1 and h2 are suitably chosen bandwidths and K(·) and K2(·, ·) are univariate and bivariate
kernels, respectively. For simplicity, we will take the product kernel (Scott, 1992 [17]), i.e.:

fN(u, v) =
1

Nh1h2

N∑
n=1

K

(
u− un
h1

)
K

(
v − vn
h2

)
, (u, v) ∈ R2. (18)

For convergence of the kernel density functions to the corresponding underlying densities, we need
to ensure that the bandwidth parameters tend to zero as the sample size increases. We follow the
method described in Silverman (1986) [18] by taking h = 1.06sN−1/5, hj = sjN

−1/6, j = 1, 2, where
s, s1 and s2 are the corresponding standard deviations. Moreover, the choice of the bandwidth parameters
satisfies the condition of Theorem 1, stated later in this section. Here, we use Gaussian kernel. Robust
kernel may be used to make the procedure robust against outliers (Kim and Scott, 2012 [19]), but we
prefer to choose suitable tuning parameters, α and β, to make the procedure robust.
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The AB-canonical vectors obtained from Equation (15) are consistent in the sense that they converge
to the original canonical vectors for large sample sizes. The following theorem ensures this result.
The proof of the theorem can be done in the same line of thought as mentioned in Proposition 3 of
Yin (2004) [1] or Theorem 1 of Iaci and Sriram (2013) [4].

Theorem 1 : Assume that both the univariate and bivariate density functions, f(·) and f(·, ·), are
continuous. Suppose that the kernel density, K, is a bounded variation function, and the sequence of the
bandwidth parameter, hn, used in the k-dimensional Density Estimation satisfies the following bound:

∞∑
n=1

e−γnh
2k
n <∞, for all γ > 0, (19)

where k = 1, 2. Let us denote (ŵx, ŵy) = arg max D
(N)
α,β (wx,wy) and (wx,wy) =

arg max Dα,β(wx,wy), where (α, β) ∈ R2. Then, (ŵx, ŵy)→ (wx,wy), almost surely as N →∞.

It should be mentioned here that the optimization problem in Equation (12) is non-linear, and it
may stick at a local maxima. Therefore, it is often needed to repeat the algorithm several times
with different initial values to get the appropriate solution. We use the interior point algorithm (see
Byrd et al., 1999 [20]; Byrd et al. 2000 [21]) to estimate the canonical vectors, wx and wy. A MATLAB
program for the ABCA will be found in [22].

The value of Dα,β(wx,wy) is always non-negative, but there does not exist any fixed upper limit for
all values of α and β. Therefore, it is difficult to interpret the result from the values of AB-divergence.
Whereas in standard CCA, the value of the canonical coefficient close to one signifies better performance
from this method, therefore we will calculate the maximal correlation (Breiman and Friedman, 1985 [9])
as a measure of dependency. The maximal correlation coefficient between wxx and wyy is denoted by
ρ∗ and is defined as:

ρ∗ = max
ψ

Corr(wyy, ψ(wxx)). (20)

Here, we call ρ∗ as the AB-canonical coefficient. It is the maximum possible correlation between wyy

and any function of wxx. The value of ρ∗ lies in [0,1]. We calculate ρ∗ using the alternating conditional
expectation algorithm (Breiman and Friedman, 1985 [9]).

6. Sequential Permutation Test

One advantage of ABCA is that if the AB-canonical coefficient is zero, it implies that the
corresponding AB-canonical variables are independent, regardless of the distributions of y and x.
Therefore, the non-parametric sequential permutation test can be applied to determine the number
of significant AB-canonical variables (Yin, 2004 [1]; Efron and Tibshirani, 1994 [23]; Davison and
Hinkley, 1997 [24]). On the other hand, the test of significance for the standard CCA is very complicated,
and it is typically under the normality assumption (Yin, 2004 [1]).

Let (iwx,
iwy) be the i-th AB-canonical vectors pair. We want to test the following hypothesis:

iH0 : Dα,β

(
iwx,

iwy

)
= 0, vs. iH1 : Dα,β

(
iwx,

iwy

)
> 0. (21)
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Testing iH0 implies that the two canonical variables, iwT
xx and iwT

y y, are independent. First, we fix the
previously found AB-canonical variables, (jwx,

jwy), j = 1, 2, · · · , i − 1. Then, we take a random
permutation of the N observations of x, say x∗, and perform ABCA with x∗ and y using the algorithm
described in Section 5. Let us denote the corresponding AB-divergence measure as D∗α,β .

We repeat this procedure a sufficient number of times (say, R times), and we calculate D∗α,β(r),
the corresponding AB-divergence measure for the r-th permutation, r = 1, 2, · · · , R. Let Dγ

be the (1 − γ)-th percentile point of D∗α,β(r), r = 1, 2, · · · , R, where γ is the level of significance
of the test. Then, we reject the null hypothesis, iH0, if:

D
(N)
α,β

(
iwx,

iwy

)
> Dγ, (22)

where D(N)
α,β (iwx,

iwy) is the actual observed value of Dα,β(iwx,
iwy) without permuting data. If iH0

is rejected, we proceed to the next step to calculate another AB-canonical variable pair.

7. Extension to Tensor

In this section, we extend the concept of ABCA in the case of tensor data. In many applications,
the data structures often contain higher order modes, such as subjects, groups, trials, classes, conditions,
etc., together with the intrinsic dimensions of space, time and frequency. Many studies of neuroscience
involve recording data over time for multiple subjects (people or animals) and in different conditions,
leading to experimental data structures conveniently represented by multi-array tensors. We generalize
the idea of ABCA to extract the meaningful components from this type of high dimensional tensor data.

Tensors are denoted by underlined capital boldface letters, e.g., Y ∈ RI1×I2×···×IQ . The order of
a tensor is the number of modes, also known as ways or dimensions (e.g., frequency, subjects, trials,
classes, groups and conditions). Throughout this section, we will use the basic tensor operations
proposed in the literature (Kolda and Bader, 2009 [25]; Cichocki et al., 2009 [26]). Specifically, the
mode-n multiplication of a tensor, Y ∈ RI1×I2×···×IQ , by a vector, a ∈ RIn , is denoted by:

Y ×̄n a ∈ RI1×···×In−1×In+1×···×IQ , (23)

where the (i1, i2, . . . , in−1, in+1, . . . , iQ)-th element is given by:

In∑
in=1

yi1,i2,...,iQ ain . (24)

The mode-n multiplication of a tensor, Y ∈ RI×J×K , by vectors, a ∈ RI , b ∈ RJ and c ∈ RK , can be
expressed as:

Y ×̄1 a ×̄2 b ×̄3 c =
I∑
i=1

J∑
j=1

K∑
k=1

yijk ai bj ck. (25)

Suppose we have two sets of data from the tensor valued random variables, X and Y, {X(n) ∈
RI1×I2×···×IP ,Y(n) ∈ RK1×K2×···×KQ ;n = 1, 2, · · · , N}, where N is the sample size. In tensor ABCA,
our aim is to find w

(1)
x ∈ RI1 ,w

(2)
x ∈ RI2 , · · · ,w(P )

x ∈ RIP and w
(1)
y ∈ RK1 ,w

(2)
y ∈ RK2 , · · · ,w(Q)

y ∈
RKQ , such that the AB-divergence between the joint distribution of the canonical variables:
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u1 = X ×̄1 w(1)
x ×̄2 w(2)

x · · · ×̄P w(P )
x ,

v1 = Y ×̄1 w(1)
y ×̄2 w(2)

y · · · ×̄Q w
(Q)
1 , (26)

and the product of their marginal distributions is maximized. We define:

Dα,β(w(1)
x , · · · ,w(P )

x ,w(1)
y , · · · ,w(Q)

y ) = Dα,β (f(u1, v1) || f(u1)f(v1)) . (27)

Here, we find w
(1)
x , · · · ,w(P )

x and w
(1)
y , · · · ,w(Q)

y from the optimization problem:

max
w

(1)
x ,··· ,w(P )

x ,w
(1)
y ,··· ,w(Q)

y

Dα,β(w(1)
x , · · · ,w(P )

x ,w(1)
y , · · · ,w(Q)

y ) (28)

subject to:

w(p)T
x w(p)

x = w(q)T
y w(q)

y = 1, (29)

for p = 1, 2, · · · , P and q = 1, 2, · · · , Q.
We denote the first set of AB-canonical vectors as (1w

(1)
x , · · · ,1 w

(P )
x , 1w

(1)
y , · · · , 1w

(Q)
y ). The i-th

set of AB-canonical vectors, (iw
(1)
x , · · · , iw(P )

x , iw
(1)
y , · · · , iw(Q)

y ), is obtained as:

arg max
w

(1)
x ,··· ,w(P )

x ,w
(1)
y ,··· ,w(Q)

y

Dα,β

(
w(1)
x , · · · ,w(P )

x ,w(1)
y , · · · ,w(Q)

y

)
(30)

subject to:

iw(p)T
x

iw(p)
x = iw(q)T

y
iw(q)

y = 1, (31)
jw(p)T

x
iw(p)

x = jw(q)T
y

iw(q)
y = 0, (32)

for all j = 1, 2, · · · , i− 1.

8. Sparseness Constraints

The standard CCA has some disadvantages, especially for large-scale and noisy problems. In
general, the canonical variables are linear combinations of all the components of x (or y). This
means the canonical variables are dense (not sparse), which often make the physical interpretation of
the CCA difficult in many applications. For example, in many applications (from genetics, image
analysis, etc.), the coordinate axes have a physical interpretation (each axis may correspond to a
specific feature), so a sparse canonical variable is more meaningful than a dense one. Recently, several
modifications of CCA have been proposed that impose some sparseness conditions for the canonical
variables, and the corresponding method is called sparse canonical correlation analysis (SCCA);
see Torres et al. (2007) [27]. The main idea in SCCA is to force the canonical variables to be
sparse; however, the sparsity profile should be adjustable or well controlled via some parameters in
order to discover specific features in the observed data. In a similar way, we propose the sparse
AB-canonical analysis.
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For sparse AB-canonical analysis, we impose suitable sparsity constraints on the canonical vectors
(Witten et al., 2009 [28]; Witten, 2010 [29]). Here, the optimization problem reduces to:

(wx,wy) = arg max
wx,wy

{Dα,β(wx,wy)− λ1P1(wx)− λ2P2(wy)} (33)

subject to:
wT
xwx = 1,wT

y wy = 1, (34)

where P1 and P2 are convex penalty functions and λ1, λ2 are suitably chosen tuning parameters. Some
frequently used penalty functions are:

P (w) = ||w||1 =
∑
i

|wi|, (LASSO) (35)

P (w) = ||w||0 =
∑
i

sign(wi), (Cardinality Penalty) (36)

P (w) =
∑
i

|wi|+ λ
∑
i

|wi − wi−1|, (Fused LASSO). (37)

Here, also, we use the interior-point algorithm to estimate the canonical vectors. A MATLAB code will
be obtained just by changing the optimization function of the standard ABCA in [22]. However, if we
use a cardinality penalty, then we need to modify the program a little bit, so that the algorithm tries
to find a solution in the lower dimensional subspace. For tensor AB-canonical analysis, the sparseness
constraints can be imposed in a similar way (see Allen, 2012 [30]).

9. Simulation Results

The validity and the performance of the proposed ABCA is evaluated based on the simulated data.
In the following examples, we have generated {x(n), y(n); n = 1, 2, · · · , N}, such that they have a
relationship, as mentioned in Equation (1). Note that the following types of relations are, for example,
included in the model:

b1y1 + b2y2 = (a0 + a1x1 + a2x2)
2 + ε, (38)

b1y1 + b2y2 = sin(a0 + a1x1 + a2x2) + ε, (39)

b1y1 + b2y2 = (a0 + a1x1 + a2x2)
2 + sin(a0 + a1x1 + a2x2) + ε, (40)

where x = (x1, x2, x3)
T , y = (y1, y2)

T , b1, b2 and a0, a1, a2 are unknown constants. Here, ε is the
random error. However, if a2 6= 0, then the following models are not included in Equation (1):

b1y1 + b2y2 = (a0 + a1x1)
2 + a2x2 + ε, (41)

b1y1 + b2y2 = sin(a0 + a1x1) + a2x2 + ε, (42)

b1y1 + b2y2 = (a0 + a1x1)
2 + sin(a0 + a1x1 + a2x2) + ε. (43)
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In the first example, we have generated data, such that there exists a non-linear relationship between x

and y. We will notice that ABCA successfully extracts the hidden relationship, whereas standard CCA
fails. In the next example, we show the robustness property of ABCA and compare it with the standard
CCA. Finally, we have given an example when data sets are tensors.

Figure 1. (a) and (b): The scatter plots of the latent variables. (c) and (d): The scatter plots
of the first two AB-canonical variable pairs. It is clearly seen that the non-linear relationship
is reconstructed.

(a) (b)

(c) (d)

9.1. Extraction of Non-linear Relationship

Example 1: The dimensions of x and y are taken as six and four, respectively; so,
x = (x1, x2, · · · , x6)T and y = (y1, y2, y3, y4)

T . x is the explanatory variable, where the components
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are generated from independent N(0, 1) random variables. y is the dependent variable based on the
following latent variables:

y∗1 = sin(3a1x) + ε1, (44)

y∗2 = (a2x)3 − a2x + ε2, (45)

where ε1 and ε2 are the random errors, and we assume εi ∼ 0.05N(0, 1), i = 1, 2. The coefficient
vectors, a1 and a2, are generated from independent uniform (−1/2, 1/2) random variables, and then,
they are orthogonalized. Therefore, aT1 a2 = 0. The relationship between y and the latent variables,
y∗ = (y∗1, y

∗
2)T , is assumed to be the linear combination, as mentioned below:

y1 = cT1 y∗, y2 = cT2 y∗, (46)

and y3 and y4 are independent N(0, 1) random variables. The elements of the matrix, C = (c1, c2),
are generated from independent uniform (−1/2, 1/2) random variables, and then, their rows are
orthogonalized, so that the columns of C−1 become orthogonal. We generate a sample size of 100
from x and y.

The scatter plots of the latent variables are given in (a) and (b) of Figure 1. We perform ABCA for
this data set with divergent parameters, α = 0.5 and β = 0.5. The first two AB-canonical variable pairs
are plotted in (c) and (d) of Figure 1. The values of the first two AB-canonical coefficients are 0.9616
and 0.9301. It is obvious that ABCA extracts the latent variable quite accurately. We notice that the
scale and the sign of the canonical vectors cannot be recovered from ABCA. The standard CCA fails to
extract them, due to a non-linear relationship with the latent variables. The first two standard canonical
variable pairs are plotted in (a) and (b) of Figure 2. The values of the first two canonical coefficients are
0.5704 and 0.3559.

Figure 2. Scatter plots for the first two standard canonical variable pairs. Here, canonical
correlation analysis (CCA) fails to reconstruct the non-linear relationship.

(a) (b)
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Figure 3. (a) Simulated data with outliers inside the red circle. (b) Scatter plot for the
AB-canonical variable pair.

(a) (b)

Figure 4. (a) Scatter plot for the standard canonical variable pair. (b) Scatter plot for the
canonical variable pair using Yin (2004) [1] approach.

(a) (b)

9.2. Robustness Property

Example 2: In this example, we check the robustness property of ABCA. To compare it with standard
CCA, we have generated data, such that x and y have a linear relationship, and then, few outliers are
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inserted. The dimensions of x and y are taken as five and three, respectively. All the components of x

are generated from independentN(0, 1) random variables. For simplicity, we have taken the relationship
between x and y as follows:

y1 = 1 + x1 + ε, (47)

where ε is the random error, and we assume ε ∼ 0.05N(0, 1). Here, y1 and x1 are the first components
of x and y, respectively. The other components of y are generated from independent N(0, 1) random
variables. We have generated only 90 random samples from this model, and we have taken 10 outliers.
For the outlying observations, we have taken x1 = 0 and y1 = 10. Figure 3a represents the original
data, where there are 10 outlying observations inside the red circle. In Figure 3b, we have plotted the
first AB-canonical variable pair. The divergence parameters are taken as α = 0.5 and β = 0.5. It is seen
that ABCA successfully extracts the canonical variables, but Figure 4a shows that the standard CCA
completely fails. In Figure 4b, we present the scatter plot of the first pair of the canonical variables using
the approach of Yin (2004) [1]. This is based on Kulback-Leibler divergence, so it is a special case of
ABCA, where α = 1 and β = 0. The values of the first AB-canonical coefficients for α = 0.5, β = 0.5

and α = 1, β = 0 are 0.9121 and 0.7107, respectively. Thus, we can make ABCA robust by choosing
suitable tuning parameters.

9.3. Tensor Data

Example 3: In this example, we have generated data from tensor valued random variables, X and Y.
The dimensions of X and Y are taken as (4,3,2) and (3,2,2), respectively. X is the explanatory variable,
where the components are generated from independent N(0, 1) random variables. Let us define:

u1 = X ×̄1 a(1)
x ×̄2 a(2)

x ×̄3 a(3)
x ,

u2 = X ×̄1 b(1)
x ×̄2 b(2)

x ×̄3 b(3)
x . (48)

The vectors, a
(i)
x and b

(i)
x , i = 1, 2, 3, are generated from independent uniform (−1/2, 1/2) random

variables, and then, they are orthogonalized. Therefore, a
(i)T
x b

(i)
x = 0, i = 1, 2, 3. Y is the dependent

variable based on the following latent variables:

y∗1 = cos(10u1) + ε1, (49)

y∗2 =
2

100u22 + 1
+ ε2, (50)

where ε1 and ε2 are the random errors, and we assume εi ∼ 0.05N(0, 1), i = 1, 2. The relationship
between Y and the latent variables, y∗ = (y∗1, y

∗
2)T , is assumed to be the linear combination, as follows:

y1,1,1 = cT1 y∗, y2,2,2 = cT2 y∗, (51)

All other components of Y are independent N(0, 1) random variables. The elements of the matrix,
C = (c1, c2), are generated following the way we did in Example 1. We have generated a sample size
of 100 from X and Y.
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The scatter plots of the latent variables are given in Figure 5a,b. We have performed tensor ABCA for
this data set with divergent parameters, α = 0.5 and β = 0.5. The first two tensor AB-canonical variable
pairs are plotted in Figure 5c,d. The values of the first two tensor AB-canonical coefficients are 0.98671
and 0.9712. It is obvious that ABCA extracts the latent variable quite accurately.

Figure 5. (a) and (b): The scatter plots of the latent variables. (c) and (d): The scatter
plots of the first two tensor AB-canonical variable pairs. It is clearly seen that the non-linear
relationship is reconstructed.

(a) (b)

(c) (d)
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9.4. Choice of Divergence Parameters

There does not exist any universal way of selecting divergence parameters, α and β. They generally
control the trade-off between the efficiency and robustness properties of the procedure. Although they
cover the whole two-dimensional plane, the rate of change in the values of AB-divergence coefficients for
very high or very small values of the tuning parameters are very slow. Therefore, we are often interested
in choosing the parameters in the interval [0, 1]. For α = 1 and β = 1, the AB-divergence turns out
to be the L2-distance between two densities. L2-distance is regarded as a strong robust divergence
in the literature, but the robustness is achieved at some loss of efficiency (Basu et al., 1998 [13];
Scott, 2001 [31]). On the other hand, for α = 0 and β = 0, the AB-divergence becomes the L2-distance
between the logarithm of two densities, which may be regarded as non-robust. Therefore, a suitable
choice of the parameters are needed to balance between robustness and efficiency. In our simulation
examples, α and β around (0.5, 0.5) seem to a good choice.

10. Conclusion

We have used AB-divergence measure to perform the canonical correlation analysis. It can extract
the hidden non-linear relationship between two sets of data, whereas the standard CCA is designed
to find out only the linear relationship. Moreover, the standard CCA is very non-robust against the
outlying observations. On the other hand, by choosing suitable tuning parameters, α and β, for the
AB-divergence, we can make ABCA robust against outliers. Our method is very general in the sense
that it uses AB-divergence, which is a general measure of discrepancy. Moreover, we have generalized
the method in the case of tensor data, and we have also considered the sparseness constants.
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