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Abstract: The transfer entropy has proven a useful measure of coupling among components
of a dynamical system. This measure effectively captures the influence of one system
component on the transition probabilities (dynamics) of another. The original motivation
for the measure was to quantify such relationships among signals collected from a nonlinear
system. However, we have found the transfer entropy to also be a useful concept in describing
linear coupling among system components. In this work we derive the analytical transfer
entropy for the response of coupled, second order linear systems driven with a Gaussian
random process. The resulting expression is a function of the auto- and cross-correlation
functions associated with the system response for different degrees-of-freedom. We show
clearly that the interpretation of the transfer entropy as a measure of “information flow” is
not always valid. In fact, in certain instances the “flow” can appear to switch directions
simply by altering the degree of linear coupling. A safer way to view the transfer entropy is
as a measure of the ability of a given system component to predict the dynamics of another.
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1. Introduction

One of the biggest challenges in the modeling and analysis of dynamical systems is understanding
coupling mechanisms among different system components. Whether one is studying coupling on a
small scale (e.g., neurons in a biological system) or large scale (e.g. coupling among widely separated
geographical locations due to climate), understanding the functional form, strength, and/or direction of
the coupling between two or more system components is a non-trivial task. However, this understanding
is necessary if we are to build accurate models of the coupled system and make predictions (our ultimate
goal). Accurately assessing the functional form of the coupling is beyond the scope of this work. To do
so would require positing various models for a particular coupled system and then testing the predictive
power of those models against observed data. Rather, the focus here is on understanding the strength and
direction of the coupling among two system components. This task can be accomplished by forming a
general hypothesis about what it means for two system components to be coupled, and then testing that
hypothesis against observation. It is in this framework that the transfer entropy is operates.

The transfer entropy (TE) is a scalar measure designed to capture both the magnitude and direction
of coupling among two components of a dynamical system. This measure was posed initially for
data described by discrete probability distributions [1] and was later extended to continuous random
variables [2]. By construction, this measure quantifies a general definition of coupling that is appropriate
for both linear and nonlinear systems. Moreover, TE is defined in such a way as to provide insight
into the direction of the coupling (is component A driving component B or vice-versa?). Since its
introduction, the TE has been applied to a diverse set of systems, including biological [1,3], chemical [4],
economic [5], structural [6,7], and climate [8]. A number of papers in the Neurosciences also have
focused on the TE as a useful way to draw inference about coupling [9–11]. In each case the TE provided
information about the system that traditional linear measures of coupling (e.g., cross-correlation)
could not.

The TE has also been linked to other concepts of coupling such as “Wiener-Granger Causality”. in
fact, for the class of systems studied in this work the TE can be shown to be entirely equivalent to
measures of Granger causality [12]. Linkages to other models and concepts of dynamical coupling such
as conditional mutual information [13] and Dynamic Causal Modeling (DCM) [14], are also possible for
certain special cases. The connectivity model assumed by DCM is fundamentally nonlinear (specifically
bilinear), however as the degree of nonlinearity decreases the form of the DCM model approaches that
of the model studied here.

Although the TE was designed as a way to gain insight into nonlinear system coupling, we have
found the TE to be quite useful in the study of linear systems as well. In this special case, analytical
expressions for the TE are possible and can be used to provide useful insight into the behavior of the TE.
Furthermore, unlike in the general case, the linearized TE can be easily estimated from observed data.
This work is therefore devoted to the understanding of TE as applied to coupled, driven linear systems.
Specifically, we consider coupling among components of a general, second order linear structural system
driven by a Gaussian random process. The particular model studied is used to describe numerous
phenomena, including structural dynamics, electrical circuits, heat transfer, etc. [15]. As such, it
presents an opportunity to better understand the properties of the TE for a broad class of dynamical
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systems. Section 1 develops the general analytical expression for the TE in terms of the covariance
matrices associated with different combinations of system response data. Section 2 specifies the general
model under study and derives the TE for the model response data. Sections 3 and 4 present results and
concluding remarks.

2. Mathematical Development

In what follows we assume that we have observed the signals xi(tn), i = 1 · · ·M as the output of
a dynamical system and that we have sampled these signals at times tn, n = 1 · · ·N . The system is
assumed to be appropriately modeled as a mixture of deterministic and stochastic components, hence we
choose to model each sampled value xi(tn) as a random variable Xin. That is to say, for any particular
observation time tn we can define a function PXin

(xi(tn)) that assigns a probability to the event that
Xin < xi(tn). We further assume that these are continuous random variables and that we may also
define the probability density function (PDF) pXin

(x(tn)) = dPXin
/dxn.

The vector of random variables Xi ≡ (Xi1, Xi2, · · · , XiN) defines a random process and will be
used to model the ith signal xi ≡ xi(tn), n = 1 · · ·N . Using this notation,we can also define the
joint PDF pXi

(xi) which specifies the probability of observing such a sequence. In this work we
further assume that the random processes are strictly stationary, that is to say the joint PDF obeys
pXi

(xi(t1), xi(t2), · · · , xi(tN)) = pXi
(xi(t1 + τ), xi(t2 + τ), · · · , xi(tN + τ)) i.e. the joint PDF is

invariant to a fixed temporal shift τ .
The joint probability density functions are models that predict the likelihood of observing a particular

sequence of values. These same models can be extended to include dynamical effects by including
conditional probability, pXin

(xi(tn)|xi(tn−1)), which can be used to specify the probability of observing
the value xi(tn) given that we have already observed xi(tn−1). The idea that knowledge of past
observations changes the likelihood of future events is certainly common in dynamical systems. A
dynamical system whose output is a repeating sequence of 010101 · · · is equally likely to be in state 0
or state 1 (probability 0.5) if the system is observed at a randomly chosen time. However, if we know
the value at t1 = 0 the value t2 = 1 is known with probability 1. This concept lies at the heart of the P th

order Markov model, which by definition obeys

pXi
(xi(tn+1)|xi(tn),xi(tn−1), xi(tn−2), · · · , xi(tn−P)) =

pXi
(xi(tn+1)|xi(tn), xi(tn−1), xi(tn−2), · · · , xi(tn−P), xi(tn−P−1), · · · )

≡ pXi
(xi(tn)(1)|xi(tn)(P)). (1)

That is to say, the probability of the random variable attaining the value xi(tn+1) is conditional on
the previous P values only. The shorthand notation used here specifies relative lags/advances as
a superscript.
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Armed with this notation we consider the work of Kaiser and Schreiber [2] and define the continuous
transfer entropy between processes Xi and Xj as

TEj→i(tn) =

∫
RP+Q+1

pXi

(
xi(tn)(1)|x(P)

i (tn),x
(Q)
j (tn)

)
× log2

(
pXi

(xi(tn)(1)|x(P)
i (tn),x

(Q)
j (tn))

pXi
(xi(tn)(1)|x(P)

i )

)
dxi(t

(1)
n )dxi(tn)(P)dxj(tn)(Q) (2)

where
∫
RN is used to denote the N -dimensional integral over the support of the random variables. By

definition, this measure quantifies the ability of the random process Xj to predict the dynamics of the
random process Xi. To see why, we can examine the argument of the logarithm. In the event that the
two random processes are not coupled, the dynamics will obey the Markov model in the denominator
of Equation (2). However, should Xj carry added information about the transition probabilities of Xi,
the numerator is a better model. The transfer entropy is effectively mapping the difference between
these hypotheses to the scalar TEj→i(tn). In short, the transfer entropy measures deviations from the
hypothesis that the dynamics of Xi can be described entirely by its own past history and that no new
information is gained by considering the dynamics of system Xj .

Two simplifications are possible which will aid in the evaluation of Equation (2). First, recall that
we assumed the processes were stationary such that the joint probability distributions are invariant to
the particular temporal location tn at which they are evaluated (only relative lags between observations
matter). Hence, in what follows we may drop this index from the notation, i.e., TEj→i(tn) → TEj→i.
Secondly, we may use the law of conditional probability and expand Equation (2) as

TEj→i =

∫
RP+Q+1

p
X

(1)
i XiXj

(
x

(1)
i ,x

(P)
i ,x

(Q)
j

)
log2

(
p
X

(1)
i XiXj

(x
(1)
i ,x

(P)
i ,x

(Q)
j )
)

× dx(1)
i dx

(P)
i dx

(Q)
j

−
∫
RP+Q

pXiXj

(
x

(P)
i ,x

(Q)
j

)
log2

(
pXiXj

(x
(P)
i ,x

(Q)
j )
)
dx

(P)
i dx

(Q)
j

−
∫
RP+1

p
X

(1)
i Xi

(
x

(1)
i ,x

(P)
i

)
log2

(
p
X

(1)
i Xi

(x
(1)
i ,x

(P)
i )
)
dx

(1)
i dx

(P)
i

+

∫
RP
pXi

(
x

(P)
i

)
log2

(
pXi

(x
(P)
i )
)
dx

(P)
i

= −h
X

(1)
i X

(P)
i X

(Q)
j

+ h
X

(P)
i X

(Q)
j

+ h
X

(1)
i X

(P)
i
− h

X
(P)
i

(3)

where the terms hX = −
∫
RM pX(x) log2 (p(x)) dx are the joint differential entropies associated with the

M−dimensional random variable X. In the next section we evaluate Equation (3) among the outputs of
a second-order linear system driven with a jointly Gaussian random process.
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3. Transfer Entropy (TE) for Second Order Linear Systems

3.1. Time-Delayed TE

The only multivariate probability distribution that readily admits an analytical solution for the
differential entropies is the jointly Gaussian distribution. Consider the general case of the two data
vectors x ∈ RN and the y ∈ RM . The jointly Gaussian model for these data vectors is

pXY(x,y) =
1

(2π)(N+M)/2|CXY|1/2
e−

1
2
xTC−1

XYy (4)

where CXY is the N ×M covariance matrix and | · | takes the determinant. Substituting Equation (4)
into the expression for the corresponding differential entropy yields

hXY = −
∫
RM×N

pXY(x,y) log2 (p(x,y)) dxdy

=
1

2
log2 (|CXY|) . (5)

Therefore, assuming that both random processes Xi and Xj are jointly Gaussian distributed, we may
substitute Equation (4) into Equation (3) for each of the differential entropies yielding

TEj→i =
1

2
log2

( |C
X

(P)
i X

(Q)
j
||C

X
(1)
i X

(P)
i
|

|C
X

(1)
i X

(P)
i X

(Q)
j
||CXi

|

)
. (6)

For P , Q large the needed determinants become difficult to compute. We therefore employ a
simplification to the model that retains the spirit of the transfer entropy, but that makes an analytical
solution more tractable. In our approach, we set P = Q = 1 i.e., both random processes are assumed to
follow a first order Markov model. However, we allow the time interval between the random processes
to vary, just as is typically done for the mutual information and/or linear cross-correlation functions [6].
Specifically, we model Xi(t) as the first order Markov model pXi

(xi(tn + ∆t)|xi(tn)) and use the TE
to consider the alternative pXi

(xi(tn + ∆t)|xi(tn), xj(tn + τ)). Note that in anticipation of dealing with
measured data, sampled at constant time interval ∆t, we have made the replacement tn+1 = tn + ∆t.
Although we are only using first order Markov models, by varying the time delay τ we can explore
whether or not the random variable Xj(tn + τ) carries information about the transition probability
pXi

(xi(tn + ∆t)|xi(tn)). Should consideration of xj(tn + τ) provide no additional knowledge about
the dynamics of xi(tn) the transfer entropy will be zero, rising to some positive value should xj(tn + τ)

carry information not possessed in xj(tn).
In what follows we refer to this particular form of the TE as the time-delayed transfer entropy, or,

TDTE. In this simplified situation the needed covariance matrices are
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CXiXj
(τ) =

[
E[(xi(tn)− x̄i)2] E[(xi(tn)− x̄i)(xj(tn + τ)− x̄j)]

E[(xj(tn + τ)− x̄j)(xi(tn)− x̄i)] E[(xj(tn + τ)− x̄j)2]

]

C
X

(1)
i XiXj

(τ) =

 E[(xi(tn + ∆t)− x̄i)2] E[(xi(tn + ∆t)− x̄i)(xi(tn)− x̄i)]
E[(xi(tn)− x̄i)(xi(tn + ∆t)− x̄i)] E[(xi(tn)− x̄i)2]

E[(xj(tn + τ)− x̄j)(xi(tn + ∆t)− x̄i)] E[(xj(tn + τ)− x̄j)(xi(tn)− x̄i)]

E[(xi(tn + ∆t)− x̄i)(xj(tn + τ)− x̄j)]
E[(xi(tn)− x̄i)(xj(tn + τ)− x̄j)]

E[(xj(tn + τ)− x̄j)2]


C
X

(1)
i Xi

=

[
E[(xi(tn + ∆t)− x̄i)2] E[(xi(tn + ∆t)− x̄i)(xi(tn)− x̄i)]

E[(xi(tn)− x̄i)(xi(tn + ∆t)− x̄i)] E[(xi(tn)− x̄i)2]

]
(7)

andCXiXi
= E[(xi(tn)−x̄i)2] ≡ σ2

i is simply the variance of the random processXi and x̄i its mean. The
assumption of stationarity also allows to writeE[(xi(tn+∆t)−x̄i)2] = σ2

i andE[(xj(tn+τ)−x̄j)2] = σ2
j .

Making these substitutions into Equation (6) yields the expression

TEj→i(τ) =
1

2
log2

[
(1− ρ2

ii(∆t))
(
1− ρ2

ij(τ)
)

1− ρ2
ij(τ)− ρ2

ij(τ −∆t)− ρ2
ii(∆t) + 2ρii(∆t)ρij(τ)ρij(τ −∆t)

]
(8)

where we have defined particular expectations in the covariance matrices using the shorthand ρij(τ) ≡
E[(xi(tn) − x̄i)(xj(tn + τ) − x̄j)]/σiσj . This particular quantity is referred to in the literature as the
cross-correlation function [16]. Note that the covariance matrices are positive-definite matrices and that
the determinant of a positive definite matrix is positive [17]. Thus the quantity inside the logarithm will
always be positive and the logarithm will exist.

Now, the hypothesis that the TE was designed to test is whether or not past values of the process Xj

carry information about the transition probabilities of the second process Xi. Thus, if we are to keep
with the original intent of the measure we would only consider τ < 0. However, this restriction is only
necessary if one implicitly assumes a non-zero TE means Xj is influencing the transition pXi

(xi(tn +

∆t)|xi(tn)) as opposed to simply carrying additional information about the transition. Again, this latter
statement is a more accurate depiction of what the TE is really quantifying and we have found it useful to
consider both negative and positive delays τ in trying to understand coupling among system components.

It is also interesting to note the bounds of this function. Certainly for constant signals
(i.e. xi(tn), xj(tn) are single-valued for all time) we have ρXiXi

(∆t) = ρXiXj
(τ) = 0 ∀ τ and the

transfer entropy is zero for any choice of time-scales τ defining the Markov processes. Knowledge
of Xj does not aid in forecasting Xi simply because the transition probability in going from xi(tn) to
xi(tn + ∆t) is always unity. Likewise, if there is no coupling between system components we have

ρXiXj
(τ) = 0 and the TDTE becomes TEj→i(τ) = 1

2
log2

[
1−ρ2XiXi

(∆t)

1−ρ2XiXi
(∆t)

]
= 0. At the other extreme, for

perfectly coupled systems i.e. Xi = Xj , consider τ → 0. In this case, we have ρ2
XiXj

(τ) → 1, and
ρXiXj

(τ −∆t)→ ρXiXi
(−∆t) = ρXiXi

(∆t) (in this last expression we have noted the symmetry of the
function ρXiXi

(τ) with respect to the time-delay). The transfer entropy then becomes

TEj→i(0) =
1

2
log2

[
0

0

]
→ 0 (9)
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and the random process Xj at τ = 0 is seen to carry no additional information about the dynamics
of Xi simply due to the fact that in this special case we have pXi

(xi(tn + ∆t)|xi(tn)) = pXi
(xi(tn +

∆t)|xi(tn), xi(tn)). These extremes highlight the care that must be taken in interpreting the transfer
entropy. Because the TDTE is zero for both the perfectly coupled and uncoupled case we must not
interpret the measure to quantify the coupling strength between two random processes. Rather, the TDTE
measures the additional information provided by one random process about the dynamics of another.

We should point out that the average mutual information function can resolve the ambiguity in the
TDTE as a measure of coupling strength. For two Gaussian random processes the time-delayed mutual
information is known to be IXiXj

(τ) = −1
2

log2

[
1− ρ2

ij(τ)
]
. Hence, for perfect coupling IXiXj

(0)→∞
whereas for uncoupled systems IXiXj

(0) → 0. Estimating both time-delayed mutual information and
transfer entropies can therefore permit stronger inference about dynamical coupling.

3.2. Analytical Cross-Correlation Function

To fully define the TDTE, the auto- and cross-correlation functions ρii(T ), ρij(T ) are required. They
are derived here for a general class of linear system found frequently in the modeling and analysis of
physical processes. Consider the system

Mẍ(t) + Cẋ(t) + Kx(t) = f(t) (10)

where x(t) ≡ (x1(t), x2(t), · · · , xM(t))T is the system’s response to the forcing function(s) f(t) ≡
(f1(t), f2(t), · · · , fM(t))T and M, C, K are M × M constant coefficient matrices that capture
the system’s physical properties. Thus, we are considering a second-order, constant coefficient,
M−degree-of-freedom (DOF) linear system. It is assumed that we may measure the response of this
system at any of the DOFs and/or the forcing functions.

One physical embodiment of this system is shown schematically in Figure 1. Five masses are coupled
together via restoring elements ki (springs) and dissipative elements, ci (dash-pots). The first mass is
fixed to a boundary while the driving force is applied at the end mass. If the response data x(t) are each
modeled as a stationary random process we may use the analytical TDTE to answer questions about
shared information between any two masses. We can explore this relationship as a function of coupling
strength and also which particular mass response data we choose to analyze.

Figure 1. Physical system modeled by Equation (10). Here, an M = 5 DOF structure is
represented by masses coupled together via both restoring and dissipative elements. Forcing
is applied at the end mass.

m1 m2 m3 m4 m5 

c5 c4 c3 c2 c1 

k5 k4 k3 k2 k1 

x1(t) x2(t) x3(t) x4(t) x5(t) 

f(t) 
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However, before proceeding we require a general expression for the cross-correlation between any two
DOFs, i, j ∈ [1,M ]. In other words, we require the expectation E[xi(n)xj(n+T )] for any combination
of i, j. Such an expression can be obtained by first transforming coordinates. Let x(t) = uη(t) where
the matrix u contain the non-trivial solutions to the eigen-value problem |M−1K − ω2

i I|ui = 0 as its
columns [18]. Here the eigen-values are the natural frequencies of the system, denoted ωi, i = 1 · · ·M .
Making the above coordinate transformation, substituting into Equation (10) and then pre-multiplying
both sides by uT allows the equations of motion to be uncoupled and written separately as

η̈i(t) + 2ζiωiη̇i(t) + ω2
i ηi(t) = uTi f(t) ≡ qi(t). (11)

where the eigenvectors have been normalized such that uTMu = I (the identity matrix). In the above
formulation we have also made the assumption that C = αK i.e., the dissipative coupling Cẋ(t) is of the
same form as the restoring term, albeit scaled by the constant α << 1 (i.e., a lightly damped system). To
obtain the form shown in Equation (11) we introduce the dimensionless damping coefficient ζi = α

2
ωi.

The general solution to these un-coupled, linear equations is well-known [18] and can be written as
the convolution

ηi(t) =

∫ ∞
0

hi(θ)qi(t− θ)dθ (12)

where h(θ) is the impulse response function

hi(θ) =
1

ωdi
e−ζiωiθ sin(ωdiθ) (13)

and ωdi ≡ ωi
√

1− ζ2
i . In general terms, we therefore have

xi(t) =
M∑
l=1

uilηl(t)

=

∫ ∞
0

M∑
l=1

uilhl(θ)ql(t− θ)dθ (14)

If we further consider the excitation f(t) to be a zero-mean random process, so too will be ql(t). Using
this model, we may construct the covariance

E[xi(t)xj(t+ τ)] =

E

[∫ ∞
0

∫ ∞
0

M∑
l=1

M∑
m=1

uilujmhl(θ1)hm(θ2)ql(t− θ1)qm(t+ τ − θ2)dθ1dθ2

]

=

∫ ∞
0

∫ ∞
0

M∑
l=1

M∑
m=1

uilujmhl(θ1)hm(θ2)E[ql(t− θ1)qm(t+ τ − θ2)]dθ1dθ2 (15)

which is a function of the eigen-vectors ui, the impulse response function h(·) and the covariance of
the modal forcing matrix. Knowledge of this covariance matrix can be obtained from knowledge of the
forcing covariance matrix RFlFm(τ) ≡ E[fl(t)fm(t+ τ)]. Recalling that

ql(t) =
M∑
p=1

ulpfp(t) (16)
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we write

E[ql(t− θ1)qm(t+ τ − θ2)] =
M∑
p=1

M∑
q=1

ulqumpE[fq(t− θ1)fp(t+ τ − θ2)] (17)

It is assumed that the random vibration inputs are uncorrelated, i.e. E[fq(t)fp(t)] = 0 ∀ q 6= p, with
variance σ2

Fp
= E[fp(t)fp(t)]. Thus, the above can therefore be simplified as

E[ql(t− θ1)qm(t+ τ − θ2)] =
M∑
p=1

ulpumpE[fp(t− θ1)fp(t+ τ − θ2)] (18)

The most common linear models assume the input is applied at a single DOF, i.e. fp(t) is non-zero only
for p = P . For a load applied at DOF P , the auto-covariance becomes

E[xi(t)xj(t+ τ)] =

∫ ∞
0

∫ ∞
0

M∑
l=1

M∑
m=1

uilujmulPumPhl(θ1)hm(θ2)E[fP (t− θ1)fP (t+ τ − θ2)]dθ1dθ2

=
M∑
l=1

M∑
m=1

uilujmulPumP

∫ ∞
0

hl(θ1)

∫ ∞
0

hm(θ2)E[fP (t− θ1)fP (t+ τ − θ2)]dθ2dθ1.

(19)

The inner integral can be further evaluated as∫ ∞
0

hm(θ2)E[fP (t− θ1)fP (t+ τ − θ2)]dθ2 =

∫ ∞
0

hm(θ2)

∫ ∞
−∞

SFF (ω)eiω(τ−θ2+θ1)dωdθ2. (20)

Note that we have re-written the forcing auto-covariance as the inverse Fourier transform of the
associated power spectral density function, denoted SFF (ω), via the well-known Wiener-Khinchine
relation [16]. We have already assumed the forcing is comprised of independent, identically distributed
values, in which case the forcing power spectral density SFF (ω) = const ∀ω. Denoting this constant
SFF (0), we note that the Fourier Transform of a constant is simply

∫∞
−∞ SFF (0)×eiωtdt = SFF (0)×δ(t),

hence our integral becomes∫ ∞
0

hm(θ2)E[fP (t− θ1)fP (t+ τ − θ2)]dθ2

=

∫ ∞
0

hm(θ2)SFF (0)δ(τ − θ2 + θ1)dθ2 = h(τ + θ1)SFF (0). (21)

Returning to Equation (19) we have

E[xi(t)xj(t+ τ)] =

∫ t

0

M∑
l=1

M∑
m=1

ulPumPuilujmhl(θ1)hm(θ1 + τ)SFF (0)dθ1. (22)

At this point we can simplify the expression by carrying out the integral.
Substituting the expression for the impulse response in Equation (13), the needed expectation in

Equation (22) becomes [19,20]

RXiXj
(τ) =

SFF (0)

4

M∑
l=1

M∑
m=1

ulPumPuilujm
[
Alme

−ζmωmτ cos(ωdmτ) +Blme
−ζmωmτ sin(ωdmτ)

]
(23)
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where

Alm =
8 (ωlζl + ωmζm)

ω4
l + ω4

m + 4ω3
l ωmζlζm + 4ω3

mωlζlζm + 2ω2
mω

2
l (−1 + 2ζ2

l + 2ζ2
m)

Blm =
4 (ω2

l + 2ωlωmζlζm + ω2
m (−1 + 2ζ2

m))

ωdm (ω4
l + ω4

m + 4ω3
l ωmζlζm + 4ω3

mωlζlζm + 2ω2
mω

2
l (−1 + 2ζ2

l + 2ζ2
m))

(24)

We can further normalize this function to give

ρij(τ) = Rij(τ)/
√
Rii(0)Rjj(0) (25)

for the normalized auto- and cross-correlation functions.
It will also prove instructive to study the TDTE between the drive and response. This requires

RXiFP
(τ) ≡ E[xi(t)fP (t+ τ)]. Following the same procedure as above results in the expression

RXiFP
(τ) =

{
SFF (0)

∑M
m=1 uimumPhm(−τ) : τ ≤ 0

0 : τ > 0
(26)

Normalizing by the variance of the random process Xi and assuming σ2
FP

= 1 yields the needed
correlation function ρif (τ). This expression may be substituted into the expression for the transfer
entropy to yield the TDTE between drive and response. At this point we have completely defined the
analytical TDTE for a broad class of second order linear systems. The behavior of this function is
described next. Before concluding this section we note that it also may be possible to derive expressions
for the TDTE for different types of forcing functions. Impulse excitation and also non-Gaussian inputs
where the marginal PDF can be described as a polynomial transformation of a Gaussian random variable
(see e.g., [21]) are two such possibilities.

4. Behavior of the TDTE

Before proceeding with an example, we first require a means of estimating TEj→i(τ) from observed
data. Assume we have recorded the signals xi(n∆t), xj(n∆t), n = 1 · · ·N with a fixed sampling
interval ∆t. In order to estimate the TDTE we require a means of estimating the normalized correlation
functions ρij(τ) which can be substituted into Equation (8). While different estimators of correlation
functions exist (see e.g., [16]), we use a frequency domain estimator. This estimator relies on the
assumption that the observed data are the output of an ergodic (therefore stationary) random process.
If we further assume that the correlation functions are absolute integrable, e.g.,

∫
|Rij(τ)dτ | < ∞,

the Wiener-Khinchin Theorem tells us that the cross-spectral density and cross-covariance functions are
related via Fourier transform as [16].∫ ∞

−∞
E[xi(t)xj(t+ τ)]e−i2πfτdτ = SXjXi

(f) ≡ lim
T→∞

E

[
X∗i (f)Xj(f)

2T

]
. (27)

where Xi(f) denotes the Fourier transform of the signal xi(t). One approach is to therefore estimate the
spectral density ŜXjXi

(f) and then inverse Fourier transform to give R̂XiXj
(τ). We further rely on the

ergodic theorem of Birkhoff ([22]) which (when applied to probability) allows one to write expectations
defined over multiple realizations to be well-approximated temporally averaging over a finite number
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of samples. More specifically, we divide the temporal sequences xi(n), xj(n), n = 1 · · ·N into S

segments of length Ns (possibly) overlapping by L points. Taking the discrete Fourier transform of each
segment, e.g., Xis(k) =

∑Ns−1
n=0 xi(n + sNs − L)e−i2πkn/Ns , s = 0 · · ·S − 1 and averaging gives the

estimator

ŜXjXi
(k) =

∆t

NsS

S−1∑
s=0

X̂∗is(k)X̂js(k) (28)

at discrete frequency k. This quantity is then inverse discrete Fourier transformed to give

R̂XiXj
(n) =

Ns−1∑
k=0

ŜXjXi
(k)ei2πkn/S. (29)

Finally, we may normalize the estimate to give the cross-correlation coefficient

ρ̂XiXj
(n) = R̂XiXj

(n)/

√
R̂XiXi

(0)R̂XjXj
(0). (30)

This estimator is asymptotically consistent and unbiased and can therefore be substituted into
Equation (8) to produce very accurate estimates of the TE (see examples to follow). In the general
(nonlinear) case, kernel density estimators are typically used but are known to be poor in many cases,
particularly when data are scarce (see e.g., [6,23]). We also point out that for this study stationarity (and
ergodicity) only up to second order (covariance) is required. In general the TDTE is a function of all
joint moments hence higher-order ergodicity must be assumed.

As an example, consider a five-DOF system governed by Equation (10), where:

M =


m1 0 0 0 0

0 m2 0 0 0

0 0 m3 0 0

0 0 0 m4 0

0 0 0 0 m5



C =


c1 + c2 −c2 0 0 0

−c2 c2 + c3 −c3 0 0

0 −c3 c3 + c4 −c4 0

0 0 −c4 c4 + c5 −c5

0 0 0 −c5 c5



K =


k1 + k2 −k2 0 0 0

−k2 k2 + k3 −k3 0 0

0 −k3 k3 + k4 −k4 0

0 0 −k4 k4 + k5 −k5

0 0 0 −k5 k5


(31)

are constant coefficient matrices commonly used to describe structural systems. In this case, these
particular matrices describe the motion of a cantilevered structure where we assume a joint normally
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distributed random process applied at the end mass, i.e. f(t) = (0, 0, 0, 0,N (0, 1)). In this first example
we examine the TDTE between response data collected from two different points on the structure. We
fix mi = 0.01 kg, ci = 0.1 N · s/m, and ki = 10 N/m for each of the i = 1 · · · 5 degrees of freedom
(thus we are using α = 0.01 in the modal damping model C = αK). The system response data
xi(n∆t), n = 1 · · · 215 to the stochastic forcing is then generated via numerical integration. For
simulation purposes we used a time-step of ∆t = 0.01 s which is sufficient to capture all five of the
system natural frequencies (the lowest of which is ω1 = 9.00 rad/s). Based on these parameters, we
generated the analytical expressions TE3→2(τ) and TE2→3(τ) and also TE5→1(τ) and TE1→5(τ) for
illustrative purposes. These are shown in Figure 2 along with the estimates formed using the Fourier
transform-based procedure. In forming the estimates we used L = 0, S = 23, Ns = 212, resulting in low
bias and variance, and providing curves that are in very close agreement with theory.

With Figure 2 in mind, first consider negative delays only where τ < 0. Clearly, the further the
random variable Xj(tn + τ) is from Xi(tn), the less information it carries about the probability of Xi

transitioning to a new state ∆t seconds into the future. This is to be expected from a stochastically driven
system and accounts for the decay of the transfer entropy to zero for large |τ |. However, we also see
periodic returns to the point TEj→i(τ) = 0 for even small temporal separation. Clearly this is a reflection
of the periodicity observed in second order linear systems. In fact, for this system the dominant period of
oscillation is 2π/ω1 = 0.698 seconds. It can be seen that the argument of the logarithm in Equation (8)
periodically reaches a minimum value of unity at precisely half this period, thus we observe zeros of the
TDTE at times (i−1)×π/ω1, i = 1 · · · . In this case the TDTE is going to zero not because the random
variables Xj(tn + τ), Xi(tn) are unrelated, but because knowledge of one allows us to exactly predict
the position of the other (no additional information is present). We believe this is likely to be a feature
of most systems possessing an underlying periodicity and is one reason why using the TE as a measure
of coupling must be done with care.
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Figure 2. Time delay transfer entropy between masses two and three (top row) and one and
five (bottom row) of a 5 DOF system driven at mass, P = 5.
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One possible way to eliminate this feature is to condition the measure on more of the signal’s past
history. In fact, several papers (see e.g., [9,13]) mention the importance of conditioning on the full state
vector Xj(tn − τ1), Xj(tn − τ2), · · · , Xj(tn − τd) where d is the dimensionality (in a loose sense, the
number of dynamical degrees of freedom) of the random processXj . Building in more past history would
almost certainly remove the oscillations as some of the past observations would always be providing
additional predictive power. However, building in more history significantly complicates the ability to
derive closed-form expressions. Moreover, for this simple linear system the basic envelope of the TDTE
curves would not likely be effected by altering the model in this way.

We also point out that values of the TDTE are non-zero for positive delays as well. Again, so long
as we interpret the TE as a measure of predictive power this makes sense. That is to say, future values
Xj can aid in predicting the current dynamics of Xi. Interestingly, the asymmetry in the TE peaks near
τ = 0 may provide the largest clue as to the location of the forcing signal. Consistently we have found
that the TE is larger for negative delays when mass closest the driven end plays the role ofXj; conversely
it is larger for positive delays when the mass furthest from the driven end plays this role. So long as the
coupling is bi-directional, results such as those shown in Figure 2 can be expected in general.
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However, the situation is quite different if we consider the case of uni-directional coupling. For
example, we may consider TEf→i(τ), i.e. the TDTE between the forcing signal and response variable
i. This is a particularly interesting case as, unlike in previous examples, there is no feedback from DOF
i to the driving signal. Figure 3 shows the TDTE between drive and response and clearly highlights
the directional nature of the coupling. Past values of the forcing function clearly help in predicting
the dynamics of the response. Conversely, future values of the forcing say nothing about transition
probabilities for the mass response simply because the mass has not “seen” that information yet. Thus,
for uni-directional coupling, the TDTE can easily diagnose whether Xj is driving Xi or vice-versa. It
can also be noticed from these plots that the drive signal is not that much help in predicting the response
as the TDTE is much smaller in magnitude that when computed between masses. We interpret this to
mean that the response data are dominated by the physics of the structure (e.g., the structural modes),
which is information not carried in the drive signal. Hence, the drive signal offers little in the way of
additional predictive power. While the drive signal puts energy into the system, it is not very good at
predicting the response. It should also be pointed out that the kernel density estimation techniques are
not able to capture these small values of the TDTE. The error in such estimates is larger than these subtle
fluctuations. Only the “linearized” estimator is able to capture the fluctuations in the TDTE for small
(O(10−2)) values.

Figure 3. Time delay transfer entropy between the forcing (denoted as DOF “0”) and
mass three for the 5 DOF system driven at mass, P = 5. The plot is consistent with the
interpretation of information moving from the forcing to mass three.
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It has been suggested that the main utility of the TE is to, given a sequence of observations, assess
the direction of information flow in a coupled system. More specifically, one computes the difference
TEi→j − TEj→i with a positive difference suggesting information flow from i to j (negative differences
indicating the opposite) [2,4]. In the system modeled by Equation (10) one would heuristically
understand the information as flowing from the drive signal to the response. This is certainly reinforced
by Figure 3. However, by extension it might seem probable that information would similarly flow from
the mass closest the drive signal to the mass closest the boundary (e.g., DOF 5 to DOF 1).
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Figure 4. Difference in time delay transfer entropy between the driven mass five and each
other DOF as a function of k3. A positive difference indicates TEi→j > TEj→i and is
commonly used to indicate that information is moving from mass i to mass j. Based on this
interpretation, negative values indicate information moving from the driven end to the base;
positive values indicate the opposite. Even for this linear system, choosing different masses
in the analysis can produce very different results. In fact, TE2→5−TE5→2 implies a different
direction of information transfer, depending on the strength of the coupling, k3
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We test this hypothesis as a function of the coupling strength between masses. Fixing each stiffness
and damping coefficient to the previously used values, we vary k3 from 1 N/m to 40 N/m and examine
the quantity TEi→j−TEj→i evaluated at τ ∗, taken as the delay at which the TDTE reaches its maximum.
Varying k3 slightly alters the dominant period of the response. By accounting for this shift we eliminate
the possibility of capturing the TE at one of its nulls (see Figure 2). For example, in Figure 2 we see
that τ ∗ = −0.15 in the plot of TE3→2(τ). Figure 4 shows the difference in TDTE as a function of the
coupling strength. The result is non-intuitive if one assumes information would move from driven end
toward the non-driven end of the system. For certain DOFs this interpretation holds, for others, it does
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not. Herein lies the difficulty in interpreting the TE when bi-directional coupling exists. This was also
pointed out by Schreiber [1] who noted “Reducing the analysis to the identification of a “drive” and
a “response” may not be useful and could even be misleading”. The above results certainly reinforce
this statement.

Figure 5. Difference in time-delayed transfer entropy (TDTE) among different combinations
of masses. By the traditional interpretation of TE, negative values indicate information
moving from the driven end to the base; positive values indicate the opposite.
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Rather than being viewed as a measure of information flow, we find it more useful to interpret the
difference measure as simply one of predictive power. That is to say, does knowledge of system j help
predict system imore so than i helps predict j. This is a slightly different question. Our analysis suggests
that if Xi and Xj are both near the driven end but with DOF i the closer of the two , then knowledge
of Xj is of more use in predicting Xi than vice-versa. This interpretation also happens to be consistent
with the notion of information moving from the driven end toward the base. However as i and j become
de-coupled (physically separated) it appears the reverse is true. The random process Xi is better at
predicting Xj than Xj is in predicting Xi. Thus, for certain pairs of masses information seems to be
traveling from the base toward the drive. One possible explanation is that because the mass Xi is further
removed from the drive signal it is strongly influenced by the vibration of each of the other masses. By
contrast, a mass near the driven end is strongly influenced only by the drive signal. Because the dynamics
Xi are influenced heavily by the structure (as opposed to the drive), Xi does a good job in helping to
predict the dynamics everywhere. The main point of this analysis is that the difference in TE is not at all
an unambiguous measure of the direction of information flow.
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To further explore this question, we have repeated this numerical experiment for all possible
combinations of masses. These results are displayed in Figure 5 where the same basic phenomenology
is observed. If both masses being analyzed are near the driven end, the mass closest the drive is a better
predictor of the one that is further away. However again, as i and j become decoupled the reverse is
true. Our interpretation is that the further the process is removed from the drive signal, the more it is
dominated by the other mass dynamics and the boundary conditions. Because such a process is strongly
influenced by the other DOFs, it can successfully predict the motion for these other DOFs.

It is also interesting to note how the strength, and even directionality (sign) of the difference in TDTE
changes with variations in a single stiffness element. Depending on the value of k3 we see changes in
which of the two masses is a better predictor. In some cases we even see zero TDTE difference, implying
that the dynamics of the constituent signals are equally useful in predicting one another. Again, this does
not support our intuitive notion of what it means for information to travel through a structural system.
Only in the case of uni-directional coupling can we unambiguously use the TE to indicate directionality
of information transport.

One of the strengths of our analysis is that these conclusions are not influenced by estimation error. In
studying heart and breath rate interactions, for example, the ambiguity in information flow was assigned
to difficulties in the estimation process [2]. We have shown here that even when estimation error is not a
factor the ambiguity remains. We would imagine a similar result would hold for more complex systems,
however such systems are beyond our ability to develop analytical expressions. The difference in TDTE
is, however, a useful indicator of which system component carries the most predictive power about the
rest of the system dynamics.

In short, the TDTE can be a very useful descriptor of system dynamics and coupling among system
components. However any real understanding is only likely to be obtained in the context of a particular
system model, or class of models (e.g., linear). Absent physical insight into the process that generates
the observations, understanding results of a TDTE analysis can be challenging at best.

However, it is perhaps worth mentioning that the expressions derived here might permit inference
about the general form of the underlying “linearized” system model. Different linear system models yield
different expressions for ρij(τ), hence different expressions for the TDTE. One could then conceivably
use estimates of the TDTE as a means to select among this class of models given observed data. Whether
or not the TDTE is of use in the context of model selection remains to be seen.

5. Conclusions

In this work we have derived an analytical expression for the time-delayed transfer entropy (TDTE)
among components of a broad class of second order linear systems driven by a jointly Gaussian input.
This solution has proven particularly useful in understanding the behavior of the TDTE as a measure of
dynamical coupling. In particular, when the coupling is uni-directional, we have found the TDTE to be
an unambiguous indicator of the direction of information flow in a system. However, for bi-directional
coupling the situation is significantly more complicated, even for linear systems. We have found that
a heuristic understanding of information flow is not always accurate. For example, one might expect
information to travel from the driven end of a system toward the non-driven end. In fact, we have
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shown precisely the opposite to be true. Simply varying a linear stiffness element can cause the apparent
direction of flow to change. It would seem a safer interpretation is that a positive difference in the
transfer entropy between two system components tells the practitioner which component has the greater
predictive power.

Acknowledgements

The authors would like to thank the Naval Research Laboratory for providing funding for this work.

Conflict of Interest

The authors declare no conflict of interest

References

1. Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 2000, 85, 461–464.
2. Kaiser, A.; Schreiber, T. Information transfer in continuous processes. Phys. D: Nonlinear

Phenom. 2002, 166, 43–62.
3. Moniz, L.J.; Cooch, E.G.; Ellner, S.P.; Nichols, J.D.; Nichols, J.M. Application of information

theory methods to food web reconstruction. Ecol. Model. 2007, 208, 145–158.
4. Bauer, M.; Cox, J.W.; Caveness, M.H.; Downs, J.J.; Thornhill, N.F. Finding the direction of

disturbance propagation in a chemical process using transfer entropy. IEEE Trans. Control Syst.
Technol. 2007, 15, 12–21.

5. Marschinski, R.; Kantz, H. Analysing the information flow between financial time series: An
improved estimator for transfer entropy. Eur. Phys. J. B 2002, 30, 275–281.

6. Nichols, J.M. Examining structural dynamics using information flow. Probab. Eng. Mech. 2006,
21, 420–433.

7. Nichols, J.M.; Seaver, M.; Trickey, S.T.; Salvino, L.W.; Pecora, D.L. Detecting impact damage in
experimental composite structures: An information-theoretic approach. Smart Mater. Struct. 2006,
15, 424–434.

8. Moniz, L.J.; Nichols, J.D.; Nichols, J.M. Mapping the information landscape: Discerning peaks
and valleys for ecological monitoring. J. Biol. Phys. 2007, 33, 171–181.

9. Vicente, R.; Wibral, M.; Lindner, M.; Pipa, G. Transfer entropy-a model-free measure of effective
connectivity for the neurosciences. J. Comput. Neurosci. 2001, 30, 45–67.

10. Wibral, M.; Rahm, B.; Rieder, M.; Lindner, M.; Vicente, R.; Kaiser, J. Transfer entropy in
magnetoencephalographic data: Quantifying information flow in cortical and cerebellar networks.
Progr. Biophys. Mol. Biol. 2011, 105, 80–97.

11. Vakorin, V.A.; Krakovska, O.A.; McIntosh, A.R. Confounding effects of indirect connections on
causality estimation. J. Neurosci. Method. 2009, 184, 152–160.

12. Barnett, L.; Barrett, A.B.; Seth, A.K. Granger causality and transfer entropy are equivalent for
gaussian variables. Phys. Rev. Lett. 2009, 103, 238701.

13. Palus, M.; Vejmelka, M. Directionality of coupling from bivariate time series: How to avoid false
causalities and missed connections. Phys. Rev. E 2007, 75, 056211.



Entropy 2013, 15 3204

14. Friston, K.J.; Harrison, L.; Penny, W. Dynamic causal modelling. NeuroImage 2003, 19,
1273–1302.

15. Greenberg, M.D. Advanced Engineering Mathematics; Prentice-Hall, Inc.: Englewood Cliffs, NJ,
USA, 1988.

16. Bendat, J.S.; Piersol, A.G. Random Data Analysis and Measurement Procedures, 3rd ed.;
Wiley & Sons: New York, NY, USA, 2000.

17. Kay, S.M. Fundamentals of Statistical Signal Processing: Volume I, Estimation Theory;
Prentice Hall: New Jersey, NJ, USA, 1993.

18. Meirovitch, L. Introduction to Dynamics and Control, 1st ed.; Wiley & Sons.: New York, NY,
USA, 1985.

19. Crandall, S.H.; Mark, W.D. Random Vibration in Mechanical Systems; Academic Press: New York,
NY, USA, 1963.

20. Benaroya, H. Mechanical Vibration: Analysis, Uncertainties, and Control; Prentice Hall:
New Jersey, NJ, USA, 1998.

21. Nichols, J.M.; Olson, C.C.; Michalowicz, J.V.; Bucholtz, F. The bispectrum and bicoherence for
quadratically nonlinear systems subject to non-gaussian inputs. IEEE Trans. Signal Process. 2009,
57, 3879–3890.

22. Birkhoff, G.D. Proof of the ergodic theorem. Proc. Natl. Acad. Sci. USA 1931, 17, 656–660.
23. Hahs, D.W.; Pethel, S.D. Distinguishing Anticipation from Causality: Anticipatory Bias in the

Estimation of Information Flow. Phys. Rev. Lett. 2011, 107, 128701.

c© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Mathematical Development
	Transfer Entropy (TE) for Second Order Linear Systems
	Time-Delayed TE
	Analytical Cross-Correlation Function

	Behavior of the TDTE
	Conclusions

