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1. Introduction

What are complex systems? What are emergent behaviors? What role does information entropy play
for quantitatively studying them? These are the important questions a thinking person will naturally ask
when s/he comes across the terms, complex systems and emergent behaviors.

A complex system is often defined as a system composed of a large number of interconnected parts
that, as a whole, exhibit one or more properties that are not obvious from the properties of the individual
parts. Some researchers are aware of the caveat of requiring a complex system to be a large system with
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many interconnected parts, realizing that a small system, such as a pendulum, may also exhibit complex
chaotic behavior. However, many other researchers favor an even more elaborated definition, following
the thought-provoking attributes of Earth identified by Kastens et al. [1]: nonlinear interactions, multiple
stable states, fractal and chaotic behavior, self-organized criticality and non-Gaussian distributions of
outputs. While complex systems cannot readily be studied with a reductionist paradigm, in principle, it
does not matter much whether one wishes to adopt a simpler or more complicated definition for complex
systems, so long as one gives oneself a proper setting to study interesting universal behaviors of complex
systems, besides researching specific features of a system.

It is generally accepted that an emergent behavior is a non-trivial or complex collective behavior
when many simple entities (or agents) operate in an environment. Nature, as well as life are full of
emergent behaviors. On the very large scale, we have the famous example of a spiral galaxy, whose
formation may be explained by the density wave theory of Lin and Xu [2]. On a smaller, but still
a gigantic, scale, we have another fascinating example—the great red spot of Jupiter [3], which is a
high pressure, anti-cyclonic storm akin to a hurricane on Earth, with a period of about six days and a
size of three Earths. It has persisted for more than 400 years. Of course, a hurricane (also called a
typhoon or a tropical cyclone) is certainly a well-known example of emergent behavior. Other often
cited examples of emergence include phase transitions and critical phenomena [4], bird flocking [5,6],
fish schooling [7–10] and sand dunes [11]. Note that nonlinearity is an indispensable condition for
observing emergent behaviors, but hierarchy is not. To appreciate the latter, it suffices to note that simple
models prescribing local interactions can simulate bird flocking and fish schooling quite well [5–10].

It must have been aeons since mankind was first fascinated by emergent behaviors in complex
systems. It is only in recent decades that researchers have attempted to quantitatively and systematically
study them. As a result, a few powerful new theories have been created, including chaos theory and
fractal theory. They are collectively called complexity theories, and information entropy has been playing
an essential role in these theories.

To better solve emerging scientific, technological and environmental problems, it is necessary to
discuss the origin of information entropy, identify key differences between information entropy and
thermodynamic entropy, understand the role of information entropy in the complexity theories and
anticipate new fields in which information entropy may play critical roles. These will be the main
themes of this essay. In order for the presentation to be readily accessible by a layman, we shall focus on
conceptual discussions. However, we will not shun mathematical discussions, in order for the material
to also be useful for experienced researchers.

2. The Origin of Information Entropy

Information entropy was originally created by Claude Shannon as a theoretical model of
communication, i.e., the transmission of information of various kinds [12]. There are two technical
issues in communications: (1) How may the information at the source be quantified and represented? (2)
What is the capacity of the system—i.e., how much information can the system transmit or process in a
given time?
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In communications, the first critical observation is that messages have to be treated as random,
i.e., unknown by the receiver before the messages are received. Indeed, a conversation becomes
meaningless if the listener always knows exactly what the speaker may say next. This observation
naturally leads to the following scheme for communication: (i) collect all the potential messages to be
sent over a communication channel as a set of random events, (A1, A2, · · · , An); (ii) assign a probability,
pi ≥ 0, where

∑n
i=1 pi = 1, to the i-th message, which measures the likelihood of the occurrence of the

i-th message.
In probability theory, (A1, A2, · · · , An) is called a complete system of events [13]. They correspond

to (1, 2, 3, 4, 5, 6), when throwing a die, or (head, tail), when tossing a coin. If the die or the coin is
unbiased, then {pi = 1/6, i = 1, · · · , 6} for die throwing, and {pi = 1/2, i = 1, 2} for coin tossing.
When the die or coin is biased, however, the probabilities will take different values. In communications,
the coin tossing may be associated with binary questions: yes or no, black or white, red or blue, and so
on. The average amount of information one obtains from the scheme:

A =

(
A1 A2 · · · An

p1 p2 · · · pn

)

when one of the messages is received is given by the information entropy defined by:

H = −
n∑
i=1

pi log pi (1)

By convention, pj log pj = 0 if pj = 0. While Equation (1) has many desired properties, the logarithm,
in particular, provides a convenient unit for quantifying the amount of information. This unit is called
bit when the base of the logarithm is two—when a binary problem, yes or no, true of false, with equal
probability of 1/2, is considered, the information is one bit, whenever an answer is given. Bit is the unit
of data stored and processed in any computing machine.

Note that if there is only one of pi’s that is one, while all others are 0, then H = 0. In this
case, we have a deterministic scheme and gain no knowledge at all by reading the messages sent by
a communication devise. At the other extreme, when the events occur with equal probability of 1/n,
H attains the maximum value of log n. A DNA sequence, consisting of four nucleotides, A-adenine,
T-thymine, C-cytosine and G-guanine, is close to the uniform distribution case and, thus, on average,
contains close to two bits of information for each base [14].

Using the idea of redundancy, decades of hard work have lead to many excellent error-correcting
codes to efficiently represent messages to be transmitted over communication channels. This paves the
way for the wide-spread use of computers to deal with everything in life. In particular, among the most
important schemes developed is the Lempel-Ziv (LZ) complexity [15,16], which is the foundation of
a commonly used compression scheme, gzip (more discussions on LZ complexity will be presented
in Section 7.1). Therefore, the first problem, how may the information at the source be quantified
and represented, has been fully solved. (Peter Shor, an eminent mathematician at MIT, has extended
the redundancy idea in an ingenious way to quantum computation and developed a quantum error
correction scheme [17].)
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The answer to the second question, what is the capacity, C, of a channel, is also given by Shannon in
his epic paper. The precise answer, formulated using mutual information, which is a natural extension
of the concept of information entropy, is given by:

C = B log2(1 + S/N) (2)

where B is the bandwidth of the channel in Hertz and S/N is the signal-to-noise ratio. Mutual
information essentially measures how the messages received compare with messages sent over a
communication channel.

Albeit not a suitable place to prove Equation (2), we partially justify the theorem to enhance the
understanding of communications. Given a signal and noise power of S and N , the total power is
P = S +N . In the case of an analog signal, we may partition the signal waveform into many bins, with
each bin representing one of the messages. Here, one has to consider the worst case for the channel—all
messages are equally likely, so that the channel is continuously transmitting new information. The largest
number of bins possible is given by

2b =
√
P/N =

√
1 + S/N

In this case, each message may be represented by b bits. If we make M measurements of the b-bit level
in a time, T , then the total number of bits of information collected will be

M · b =M log2(1 + S/N)1/2

and the information transmission rate, I , in unit of bits per unit time, is

I =
M

T
log2(1 + S/N)1/2

Recognizing that the largest M
T

possible is the highest practical sampling rate, 2B, Equation (2)
naturally follows.

It is important to note that asB →∞, the capacity, C, does not become infinite. This is because noise
power, N , is also proportional to B. Denoting N = ηB, where η is the noise power per unit bandwidth,
and utilizing

lim
x→0

(1 + x)1/x → e

we have
C(B →∞) =

S

η
log2 e = 1.44

S

η

3. Entropy in Classical Thermodynamics

The word entropy apparently arose first in classical thermodynamics, which treats state variables that
pertain to the whole system, such as pressure, volume and the temperature of a gas. A mathematical
equation that arises constantly in classical thermodynamics is:

dH = dQ/T (3)
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where dQ is the quantity of heat transfer at temperature T and dH is the change in entropy. The second
law of thermodynamics asserts that dH cannot decrease in a closed system. Classical thermodynamics
makes no assumptions of the detailed micro-structure of the materials involved.

Classical statistical mechanics, in contrast, tries to model the detailed structure of the materials and
from the model to predict the rules of classical thermodynamics. For example, the pressure of the gas can
be explained as gas molecules, treated as little, hard, perfectly elastic balls, in constant motion against
the walls. Even a small amount of gas will have an enormous number, N , of particles. In fact, as a crude
order of magnitude, N may be taken as the Avogadro constant, NA = 6.022 × 1023. If we imagine a
phase space, whose coordinates are the position and velocity of each particle, then the phase space for the
gas particles is a subregion of a 6N -dimensional space. Assuming that for a fixed energy, every small
region in the phase space has the same probability as any other, Boltzmann found that the following
quantity plays the role of entropy:

H = k
B
ln

1

P
(4)

where P is the probability associated with any one of the equally likely small regions in the phase space
with the given energy, and k

B
is the Boltzmann constant.

Gibbs, in trying to deal with systems that did not have a fixed energy, introduced the “grand canonical
ensemble”, which is, in essence, an ensemble of the phase spaces of different energies of Boltzmann.
Gibbs deduced an entropy of the form:

H =
∑
i

p(i) ln
1

p(i)
(5)

where p(i) are the probabilities of the phase space ensembles. Expression-wise, this is identical to
Equation (1). It is thus no wonder that some researchers would consider information entropy to be a
redundant term.

However, identity in mathematical form does not imply identify of meaning, as Richard Hamming
emphasized in his interesting book, The art of probability [18]. The most fundamental difference
between information entropy and thermodynamic entropy is that information entropy works with a
set of events with arbitrary probabilities, while in thermodynamics, it is always assumed that gas
particles occupy any region of a container with equal probability. Therefore, information entropy is
a broader concept than thermodynamic entropy. To further help understand this, it is beneficial to
note that Myron Tribus was able to derive all the basic laws of thermodynamics from information
entropy [19]. More importantly, while thermodynamic entropy may not be very relevant to the
description of genomic and proteomic sequences and many emerging complex behaviors, information
entropy is an essential building block of complexity theory [20] and can naturally quantify the amount
of information in biological sequences [14,21].

4. Entropy Maximizing Probability Distributions

One of the most important applications of entropy is to determine initial distributions relevant to
many phenomena in science and engineering by maximizing entropy. Uniform distribution is one such
distribution. However, it is not the only one. Depending on constraints, there are other distributions that
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can maximize entropy. To facilitate this discussion, we first need to extend information entropy based
on discrete probabilities to that based on the probability density function (PDF). This is given by the
differential entropy, defined by:

H = −
∫
f(x) log f(x)dx (6)

For simplicity, here, we only list two elementary distributions that maximize entropy under
appropriate constraints. This discussion will be resumed briefly in the next section.

(1) Exponential distribution, with PDF given by:

f(x) = λe−λx, x ≥ 0 (7)

maximizes entropy under the constraint that the mean of the random variable, X , which is 1/λ,
is fixed.
This entropy maximization property is perhaps one of the main reasons why we encounter
exponential distributions so frequently in mathematics and physics. For example, a Poisson
process is defined through exponential temporal or spatial intervals, while the sojourn times
of Markov processes are exponentially distributed [20]. Exponential distribution is also very
relevant to ergodic chaotic systems, as recurrence times of chaotic systems follow exponential
distributions [22,23]. Exponential laws play an even more fundamental role in physics, since
the basic laws in statistical mechanics and quantum mechanics are expressed as exponential
distributions, while finite spin glass systems are equivalent to Markov chains.

(2) When mean, µ, and variance, σ2, are given, the distribution that maximizes entropy is the normal
distribution with mean, µ, and variance, σ2, N(µ, σ2).
The fundamental reason that normal distributions maximize entropy is the Central Limit
theorem—a normal distribution may be considered an attractor, since the sample mean of a
sufficiently large number of independent random variables, each with finite mean and variance,
will be approximately normally distributed.

5. Entropy and Complexity

Broadly speaking, any behavior that is neither completely regular (or dumb) nor fully random may be
called an emerging complex behavior. Representative complex behaviors include chaotic motions and
fractal behaviors. The latter include random processes with long-range correlations, which is a subclass
of the fascinating 1/f phenomena [24,25].

To facilitate the following discussions, we first note different forms of motions, in increasing
order of complexity: fixed point solutions, periodic motions, quasi-periodic motions, chaotic motions,
turbulence and random motions. Interestingly, a similar sequence is observed in solid materials: crystal,
quasicrystal, fractal and aperiodic random form. In particular, Dan Shechtman won the Nobel Prize
in Chemistry in 2011 for discovering quasicrystals. One would have anticipated the existence of
quasicrystals by the similarity between these two sequences, noticing that quasi-periodic motions have
been known in the dynamics community for a long time. In terms of abundance, quasicrystals are much
fewer than fractal shapes.
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A. Fractal: Euclidean geometry is about lines, planes, triangles, squares, cones, spheres, etc.
The common feature of these different objects is regularity: none of them is irregular. Now,
let us ask a question: are clouds spheres, mountains cones and islands circles? The answer is
obviously, no. In pursuing answers to such questions, Mandelbrot has created a new branch of
science—fractal geometry [26–29].

For now, we shall be satisfied with an intuitive definition of a fractal: a set that shows irregular, but
self-similar, features on many or all scales. Self-similarity means that part of an object is similar to other
parts or to the whole. That is, if we view an irregular object with a microscope, whether we enlarge the
object by 10 times or by 100 times or even by 1,000 times, we always find similar objects. To understand
this better, let us imagine that we were observing a patch of white cloud drifting away in the sky. Our
eyes were rather motionless: we were staring more or less in the same direction. After a while, the part
of the cloud we saw drifted away, and we were viewing a different part of the cloud. Nevertheless, our
feeling remained more or less the same.

Mathematically, self-similarity or a fractal is characterized by a power-law relation, which translates
into a linear relation in the log-log scale. To understand how power-law underlies the perception of
self-similarity, let us imagine a very large number of balls flying around in the sky, where the size of the
balls follows a heavy-tailed power-law distribution:

p(r) ∼ r−α (8)

See Figure 1.

Figure 1. Random fractal of discs with a Pareto-distributed size: P [X ≥ x] = (1.8/x)1.8.

Being human, we will instinctively focus on balls whose size is comfortable for our eyes—balls that
are too small cannot be seen, while balls that are too large block our vision. Now, let us assume that we
are most comfortable with the scale, r0. Of course, our eyes are not sharp enough to tell the differences
between scales r0 and r0 + dr, |dr| � r0. Nevertheless, we are quite capable of identifying scales, such
as 2r0, r0/2, etc. Which aspect of the flying balls may determine our perception? This is essentially
given by the relevant abundance of the balls of sizes 2r0, r0 and r0/2:

p(2r0)/p(r0) = p(r0)/p(r0/2) = 2−α
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Note that the above ratio is independent of r0. Now, suppose we view the balls through a microscope,
which magnifies all the balls by a scale of 100. Now, our eyes will be focusing on scales, such as
2r0/100, r0/100 and r0/200, and our perception will be determined by the relative abundance of the
balls at those scales. Because of the power-law distribution, the relative abundance will remain the
same—so does our perception.

B. Tsallis non-extensive entropy and powerlaw behavior: One attractive means of explaining the ubiquity
of power-laws and fractal behaviors is through maximization of Tsallis entropy, named after a brilliant
Brazilian physicist, Tsallis [30,31]. To explain the idea, we first extend Shannon’s information entropy
to the Renyi entropy, defined by:

HR
q =

1

1− q
log
( m∑
i=1

pi
q
)

(9)

The purpose of introducing a spectrum of q in Renyi entropy is to amplify larger or smaller probabilities.
For example, when q � 0 or q � 0, large or small probabilities dominate the right side of Equation (9),
respectively. Tsallis entropy, defined by:

HT
q =

1

q − 1

(
1−

m∑
i=1

pi
q
)

(10)

is related to the Renyi and Shannon entropies through simple relations:

HR
q =

ln
[
1 + (1− q)HT

q

]
1− q

, lim
q→1

HR
q = lim

q→1
HT
q = −

m∑
i=1

pi ln pi

However, Tsallis entropy has a different focus—it aims to find a specific q, often different than one,
that best characterizes a phenomenon that is neither regular nor fully chaotic/random. Tsallis entropy is
non-extensive in the sense that for a compound system comprising two independent subsystems, Tsallis
entropy is not the summation of Tsallis entropies for the two subsystems. So far, a number of workshops
and conferences have been organized to discuss Tsallis non-extensive statistics.

By maximizing the form of Tsallis entropy for continuous PDFs, one can obtain Tsallis
distribution [32]:

p(x) =
1

Zq
[1 + β(q − 1)x2]1/(1−q), 1 < q < 3 (11)

where Zq is a normalization constant and β is related to the second moment. When 5/3 < q < 3,
the distribution is a heavy-tailed power-law described by Equation (8). In particular, when q = 2, the
distribution reduces to the Cauchy distribution, which is a stable distribution with infinite variance [20].
As an application to the analysis of real world data, we have shown in Figure 2 the analysis of sea clutter
radar return data. As one may expect, q is distinctly different from one.



Entropy 2013, 15 3404

Figure 2. Representative results of using Tsallis distribution to fit the sea clutter radar return
data. Here, (q, β) are (1.34, 43.14) and (1.51, 147.06), respectively (adaptive from [32]).
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C. Chaos: Fractal behaviors are not limited to geometric objects. They can also manifest themselves as
temporal variations, such as stock market price variations and chaotic motions. While the meaning of
chaos is consistent with intuitive understanding, here, we shall confine ourselves to its strict mathematical
meaning, i.e., exponential divergence,

d(t) ∼ d(0)eλ1t (12)

where d(0) denotes a small separation between two arbitrary trajectories at time 0, d(t) is the average
separation between them at time t and λ1 > 0 is the largest positive Lyapunov exponent. This property is
called sensitive dependence to initial conditions and is the origin of the fascinating butterfly effect: sunny
weather in New York could be replaced by rainy weather sometime in the near future after a butterfly
flaps its wings in Boston. This property is vividly shown in Figure 3: initially close by points in the
chaotic Lorenz attractor rapidly diverge and, soon, are everywhere on the attractor.

To better appreciate the concept of sensitive dependence to initial conditions, let us consider the map
on a circle:

xn+1 = 2xn mod 1 (13)

where x is positive and mod 1 means that only the fractional part of 2xn will be retained as xn+1.
This map can also be viewed as a Bernoulli shift or a binary shift. Suppose that we represent an initial
condition, x0, in binary:

x0 = 0.a1a2a3 · · · =
∞∑
j=1

2−jaj (14)

where each of the digits, aj , is either one or zero. Then,

x1 = 0.a2a3a4 · · ·
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x2 = 0.a3a4a5 · · ·

and so on. Thus, a digit that is initially far to the right of the decimal point, say the 40th digit
(corresponding to 2−40 ≈ 10−12), and, hence, has only a very minor role in determining the initial
value of x0, eventually becomes the first and the most important digit.

Figure 3. Ensemble forecasting in the chaotic Lorenz system: 2,500 ensemble members,
initially represented by the pink color, evolve to those represented by the red, green and blue
colors at t = 2, 4 and 6 units.
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A chaotic motion is generally characterized as a strange attractor. By strange, we mean the
exponential divergence. By attractor, we have finiteness in motion. This incessant stretching and folding
back in phase space often leads to a fractal structure for the underlying attractor. The fractal or capacity
dimension of this attractor may be determined as follows: Partition the phase space containing the
attractor into many cells of linear size, ε. Denote the number of nonempty cells by n(ε). Then,

n(ε) ∼ ε−D0 , ε→ 0

where D0 is called the box-counting dimension.
The concept of the box-counting dimension can be generalized to obtain a sequence of dimensions,

called the generalized dimension spectrum. This is obtained by assigning a probability, pi, to the i-th
nonempty cell. One simple way to calculate pi is by using ni/N , where ni is the number of points within
the i-th cell and N is the total number of points on the attractor. Let the number of nonempty cells be
n. Then:

Dq =
1

q − 1
lim
ε→0

(
log
∑n

i=1 p
q
i

log ε

)
(15)

where q is real. In general, Dq is a non-increasing function of q. D0 is simply the box-counting or
capacity dimension, since

∑n
i=1 p

q
i = n. D1 gives the information dimension, DI :

DI = lim
ε→0

∑n
i=1 pi log pi
log ε

(16)

The above consideration can be extended to monitor the detailed temporal evolutions of a chaotic
attractor. Again, all we need to do is to partition the phase space into small boxes of size ε, compute the
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probability, pi, that box i is visited by the trajectory and calculate Shannon entropy. For many systems,
when ε→ 0, information linearly increases with time [33]:

I(ε, t) = I0 +Kt (17)

where I0 is the initial entropy, which may be taken as zero for simplicity, and K is the Kolmogorov-Sinai
(KS) entropy.

To deepen our understanding, let us consider three cases of dynamical systems: (i) deterministic,
non-chaotic; (ii) deterministic, chaotic; and (iii) random. For case (i), during the time evolution of the
system, phase trajectories remain close together. After a time, T , nearby phase points are still close
to each other and can be grouped into some other small region of the phase space. Therefore, there
is no change in information. For case (ii), due to exponential divergence, the number of phase space
regions available to the system after a time, T , is N ∝ e(

∑
λ+)T , where λ+ are positive Lyapunov

exponents. Assuming that all of these regions are equally likely, then pi(T ) ∼ 1/N , and the information
function becomes:

I(T ) = −
N∑
i=1

pi(T ) ln pi(T ) = (
∑

λ+)T (18)

Therefore, K =
∑
λ+. More generally, if these phase space regions are not visited with equal

probability, then:
K ≤

∑
λ+ (19)

Grassberger and Procaccia [34], however, suggest that equality usually holds. Finally, for case (iii), we
can easily envision that after a short time, the entire phase space may be visited. Therefore, I ∼ lnN .
When N →∞, we have K =∞.

The above discussions make it clear that, albeit thermodynamic entropy may not be very relevant for
describing fractal and chaotic behavior, Shannon’s information entropy is always a basic building block.
As one can easily perceive, a precise definition for the KS entropy will again be based on Shannon’s
information entropy, by replacing pi(T ) in Equation (18), to be the joint probability that the trajectory
is in boxes, i1, · · · , id, at d subsequent times. In order not to overwhelm readers with mathematical
equations, we will not go into the details here.

D. Distinguishing chaos from noise: For a long time, a finite Kolmogorov entropy has often been thought
to indicate deterministic chaos. This practice is still being followed in many applications. This aspect
of chaos research may be summarized by the following analogy: many researchers were chasing the
beast of chaos on a wild beach. One was yelling, “Here is a footprint”. Another was echoing, “Here
is another” · · · . After a long while, some careful minds pointed out that those may just be their own
footprints. Among the most convincing counter-examples are the 1/f random processes, which have
fractal dimensions and finite Kolmogorov entropies and, thus, may be misinterpreted as deterministic
chaos [35,36].

If one can think a little deeper, one can readily realize that it is impossible to obtain an infinite
Kolmogorov entropy with a finite amount of random data. This is why the issue of distinguishing chaos
from noise has been considered a classic and difficult one [37–39]. To fundamentally solve the problem,
one has no choice but to resort to multiscale approaches. One of the most viable approaches to tackle
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this issue is the scale-dependent Lyapunov exponent (SDLE). SDLE is a function of the scale parameter
and, thus, is entirely different from the conventional concept, the Lyapunov exponent, which is a number.
Among the multiscale complexity measures, SDLE has the richest scaling laws. For example, for chaotic
motions, SDLE is a constant, indicating truly exponential divergence. However, SDLE is a power-law
for 1/f processes. Therefore, distinguishing chaos from noise is no longer a problem. Moreover, through
an ensemble forecasting approach, SDLE can tie together many different types of entropies in dynamical
systems. For more details, we refer to [40–42].

E. Statistical complexity: Finally, we note that information entropy is a deterministic complexity
measure, since it quantifies the degree of randomness. Sometimes this is considered not ideal for
characterizing a type of behavior that is neither regular nor completely random. An alternative, statistical
complexity, has been proposed that can be maximized for neither high nor low randomness [43,44].
Interestingly, information entropy still is a significant building blocking in this actively evolving
field [45,46].

F. Multiscale analysis: Albeit chaotic dynamics have fractal properties, there is an important subset
of fractal behaviors, random fractal behaviors, that are entirely different from deterministic chaotic
dynamics. Recognizing that the foundations of random fractal behaviors are random and many
non-chaotic, but random behaviors may be modeled by random fractals, Gao et al. [20] have advocated
to: (1) use chaos and random fractal theories synergistically to solve a broad range of problems of real
world impact and (2) use multiscale approaches to simultaneously characterize the behaviors of complex
signals on a wide range of scales.

There exist a number of multiscale approaches. Among them is the random fractal theory, whose
key element is scale-invariance, i.e., the statistical behavior of the signal is independent of a spatial
or temporal interval length. With scale-invariance, only one or a few parameters are sufficient to
describe the complexity of the signal across a wide range of scales where the fractal scaling laws hold.
Because of the small number of parameters, fractal analyses are among the most parsimonious multiscale
approaches [20]. Other multiscale methods include SDLE, which has been briefly discussed earlier, the
finite-size Lyapunov exponent [47–49], (ε, τ) entropy [50] and multiscale entropy [51]. For analysis and
modeling of a single time series data, these approaches may be considered to often be adequate. What
are significantly lacking are the tools for studying the detailed interactions between two or more systems,
i.e., involving two or more time series data.

6. Time’s Arrow

Although the basic laws of physics are time reversible (i.e., that if time t in all equations were
substituted with −t, the relations would still hold), time irreversible processes are ubiquitous. From the
mixing of cold and warm water, to the burning of a match and the breaking of glass, common real-world
experience tells us that regardless of the mathematical formulation of basic physical laws, time’s arrow
only points in one direction.

To resolve this paradox, Ludwig Boltzmann developed the concept of Boltzmann entropy and the
H-theorem. As we have discussed, Boltzmann entropy is the logarithm of the number of all possible
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microscopic states (or phase space volume). The H-theorem governs the time evolution of the (negative)
entropy, and implies that entropy has to be constant or increase in time. Taken together, the two concepts
provide a constraint upon the directionality of time.

Boltzmann’s scheme, albeit very successful, has been controversial [52,53]. Historically, a decisive
objection was made by Ernst Zermelo, who pointed out that on the basis of the Poincare recurrence
theorem, a closed dynamical system must eventually come back arbitrarily close to its initial state. Thus,
eventually, every system will be “reversible”, and entropy cannot always increase.

Intuitively, the Poincare recurrence time for a closed system to return to its initial state must be
inconceivably long. Richard Feynman asserted, “It would never happen in a million years” [54].
Vladimir Arnold thought it may be longer than the age of the solar system [55]. Boltzmann himself
reportedly replied:“You should wait that long!” [56]. A quantitative estimate of the length of this time
recently has been given by Gao as [22]:

T (r) ∼ τ · r−(DI−1) (20)

where τ is the sampling time, r is the size of a subregion in the phase space to be re-visited and DI is
the information dimension already discussed. For fully random gaseous motions, as we have discussed,
DI may be taken as on the same order of 6NA, where NA is the Avogadro constant. Therefore, the
recurrence time is on the order of 1036×1023τ , if we take r ∼ 1/10. This time is too long to be relevant
to reality!

While objection to Boltzmann’s scheme is not quite relevant to reality, research on the opposite line
is more productive—Cédric Villani, a genial French mathematician and a Fields medalist of 2010, is
able to compute entropy production from the Boltzmann equation and find the rate of convergence to
equilibrium [57].

It was unfortunate that Boltzmann committed suicide. However, a sober great mind, Willard Gibbs,
who was a contemporary of Boltzmann, would not attach himself too much to the depressing meaning
of the second law of thermodynamics. Gibbs serenely concluded that recurrence time had to be very
long. However, there might be a chance to observe processes that would violate the second law of
thermodynamics. Indeed, such violations can be readily observed in small, nanoscale systems over short
time scales [58]. This possibility, in fact, has much to do with Equation (20)—the exponent is DI − 1,
not DI . When DI is large, essentially, there is no difference between DI and DI − 1. However, when a
system is small, DI − 1 instead of DI will make the recurrence time much shorter.

While in closed physical systems, violations of the second law of thermodynamics may not be easy to
observe, negative entropy flow is a rule rather than an exception in life—life feeds on negative entropy,
as asserted by Erwin Schrödinger [59]. Lila Gatlin argues that entropy reduction within living systems
occurs whenever information is stored [21]. More precisely, we may say that life functions when genetic
codes are executed precisely and external stimuli are properly processed by neurons. The source of this
negative entropy is the Sun, as discussed by the eminent mathematician and theoretical physicist, Roger
Penrose, in his best selling popular science book, The Emperor’s New Mind [60].
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7. Entropy in an Inter-Connected World: Examples of Applications and Future Perspectives

As expected, information entropy has found interesting applications in almost every field of science
and engineering. In this closing section, we explain how entropy can be applied to analyze complex data
and speculate on the frontiers where information entropy may play critical roles.

7.1. Estimating Entropy from Complex Data: The Use of the Lempel-Ziv Complexity

When the probability distribution for a complex system is known, using Equation (1), information
entropy can easily be computed. If all that is known is time series data, how can entropy be computed?
The answer lies in the Lempel-Ziv (LZ) complexity [15,16].

The LZ complexity and its derivatives, being easily implementable, very fast and closely related to the
Kolmogorov complexity [61,62], have found numerous applications in characterizing the randomness of
complex data.

To compute the LZ complexity, a numerical sequence has to be first transformed into a symbolic
sequence. The most popular approach is to convert the signal into a 0–1 sequence by comparing the
signal with a threshold value, Sd [63]. That is, whenever the signal is larger than Sd, one maps the signal
to one, otherwise, to zero. One good choice of Sd is the median of the signal [64]. When multiple
threshold values are used, one may map the numerical sequence to a multi-symbol sequence. Note that
if the original numerical sequence is a nonstationary random-walk type process, one should analyze the
stationary differenced data instead of the original nonstationary data.

After the symbolic sequence is obtained, it can then be parsed to obtain distinct words and the words
be encoded. Let L(n) denote the length of the encoded sequence for those words. The LZ complexity
can be defined as:

CLZ =
L(n)

n
(21)

Note, this is very much in the spirit of the Kolmogorov complexity [61,62].
There exist many different methods to perform parsing. One popular scheme is proposed by the

original authors of the LZ complexity [15,16]. For convenience, we call this Scheme 1. Another
attractive method is described by Cover and Thomas [65], which we shall call Scheme 2. For
convenience, we describe them under the context of binary sequences.

• Scheme 1: Let S = s1s2 · · · sn denote a finite length, 0–1 symbolic sequence; S(i, j) denote
a substring of S that starts at position i and ends at position j, that is, when i ≤ j,
S(i, j) = sisi+1 · · · sj and when i > j, S(i, j) = {}, the null set. Let V (S) denote the
vocabulary of a sequence, S. It is the set of all substrings, or words, S(i, j) of S, (i.e., S(i, j) for
i = 1, 2, · · · , n; j ≥ i). For example, let S = 001, we then have V (S) = {0, 1, 00, 01, 001}. The
parsing procedure involves a left-to-right scan of the sequence, S. A substring, S(i, j), is compared
to the vocabulary that is comprised of all substrings of S up to j−1, that is, V (S(1, j−1)). If S(i, j)
is present in V (S(1, j − 1)), then update S(i, j) and V (S(1, j − 1)) to S(i, j + 1) and V (S(1, j)),
respectively, and the process repeats. If the substring is not present, then place a dot after S(j) to
indicate the end of a new component, update S(i, j) and V (S(1, j−1)) to S(j+1, j+1) (the single
symbol in the j+1 position) and V (S(1, j)), respectively, and the process continues. This parsing
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operation begins with S(1, 1) and continues until j = n, where n is the length of the symbolic
sequence. For example, the sequence, 1011010100010, is parsed as 1 · 0 · 11 · 010 · 100 · 010·. By
convention, a dot is placed after the last element of the symbolic sequence. In this example, the
number of distinct words is six.
• Scheme 2: The sequence, S = s1s2 · · · , is sequentially scanned and rewritten as a concatenation,
w1w2 · · · , of words, wk, chosen in such a way that w1 = s1 and wk+1 is the shortest word that
has not appeared previously. In other words, wk+1 is the extension of some word, wj , in the
list, wk+1 = wjs, where 0 ≤ j ≤ k and s is either zero or one. The above example sequence,
1011010100010, is parsed as 1 · 0 · 11 · 01 · 010 · 00 · 10·. Therefore, a total of seven distinct words
are obtained. This number is larger than the six of Scheme 1 by one.

The words obtained by Scheme 2 can be readily encoded. One simple way is as follows [65].
Let c(n) denote the number of words in the parsing of the source sequence. For each word, we
use log2 c(n) bits to describe the location of the prefix to the word and one bit to describe the last
bit. For our example, let 000 describe an empty prefix, then the sequence can be described as
(000, 1)(000, 0)(001, 1)(010, 1)(100, 0)(010, 0)(001, 0). The total length of the encoded sequence is
L(n) = c(n)[log2 c(n) + 1]. Equation (21) then becomes:

CLZ = c(n)[log2 c(n) + 1]/n (22)

When n is very large, c(n) ≤ n/ log2 n [15,65]. Replacing c(n) in Equation (22) by n/ log2 n,
one obtains:

CLZ =
c(n)

n/ log2 n
(23)

The commonly used definition of CLZ takes the same functional form as Equation (23), except that
c(n) is obtained by Scheme 1. Typically, c(n) obtained by Scheme 1 is smaller than that by Scheme 2.
However, encoding the words obtained by Scheme 1 needs more bits than that by Scheme 2. We surmise
that the complexity defined by Equation (21) is similar for both schemes. Indeed, numerically, we have
observed that the functional dependence of CLZ on n (based on Equations (22) and (23)) is similar for
both schemes.

For infinite length sequences, the LZ complexity is equivalent to the Shannon entropy. In particular,
the LZ complexity is zero for periodic sequences with infinite length. However, when the length of a
periodic sequence is finite, the LZ complexity is larger than zero. In most applications, a signal is of
finite length. It is therefore important to find a suitable way to ensure that the LZ complexity is zero
for a finite periodic sequence and one for a fully random sequence. This issue was first considered by
Rapp et al. [66]. It is taken on again by Hu et al. [67], recently, using an analytic approach. Specifically,
they have derived formulas for the LZ complexity for random equiprobable sequences, as well as periodic
sequences with an arbitrary period, m, and proposed a simple formula to perform normalization. An
application to the analysis of electroencephalography (EEG) data for epileptic seizure detection is shown
in Figure 4. We observe that the LZ complexity, albeit simple, is as effective as the correlation entropy
and the correlation dimension from chaos theory for detecting seizures. For more details, we refer to [67].
Furthermore, for a deep understanding of the connections among different complexity measures for EEG
analysis, we refer to [68].
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Figure 4. The variation of (a1,a2), the Lempel-Ziv (LZ) complexity, (b1,b2), the normalized
LZ complexity, (c1,c2), the correlation entropy, and (d1,d2), the correlation dimension
with time for the EEG signal of a patient. (a1–d1) are obtained by partitioning the
EEG signals into short windows of length, W = 500 points; (a2–d2) are obtained using
W = 2, 000. The vertical dashed lines in (a1,a2) indicate seizure occurrence times
determined by medical experts.
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7.2. Future Perspectives

Where will information entropy be most indispensable? We believe those fields that must interface
with human behavior. In those situations, as with the first step, the use of information theory is not so
much about providing a formula to quantify the amount of uncertainty. Rather, it helps researchers to
comprehensively understand a significant problem, i.e., to define a complete system of events needed
for applying information entropy. Comprehensiveness is the guiding principle for data-driven multiscale
analysis of complex data [20] and is the prerequisite for making long-lasting impacts.

Before we make speculations, we note that, as science advances, what is currently uncertain or
unknown may become partially or fully known in the future, and then, information entropy will decrease.
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The situation is similar to what Professor Yuch-Ning Shieh of Purdue University has contemplated
during our personal conversation: “The amount of dark matter may decrease when some explicit form
of dark matter is found in the future”. To understand this aspect better, we may take the case of
estimating information entropy from DNA sequences as a concrete example. While entropy is close
to two bits, based on the distribution of nucleotide bases [14], it becomes significantly lower than two
bits when sequential correlations are taken into account [69] (for recent studies on DNA sequences,
we refer to [70–75]).

A more complicated situation is provided by the use of information theory in psychology. After an
initial fad of information theory in psychology during the 1950s and 1960s, it no longer was much of a
factor, due to increasingly deeper understanding of information processing by neurons [76]. However,
recently, there has been a resurgence of interest in information theory in psychology, for the purpose
of better understanding uncertainty-related anxiety [77]. This new model focuses on the weighted
distribution of potential actions and perceptions as subjectively experienced by a human being and
assigns lower entropy to stronger goals. In essence, this model is hierarchical, with neural science
working at the bottom layer and subjective decision making involving multiple layers. A hierarchical
model, in essence, is what “order based on order”, using Erwin Schrödinger’s words [59].

Let us now consider the potential use of information theory in environmental science and engineering.
For concreteness, let us start with the widespread PM2.5 pollution in China. First, let us consider the
physics of PM2.5 pollution. It is known that PM2.5 sulfates reside 3–5 days in the atmosphere. With an
average wind speed, say, 5 m/s, the residence time of several days yields a “long range transport” and
a more uniform spatial pattern. On the average, PM2.5 particles can be transported as far as 1,000 or
more km from the source of their precursor gases. This is the main mechanism responsible for Hong
Kong’s PM2.5 pollution in winter [78]. Therefore, physics-wise, it would be interesting to study PM2.5
pollution systematically, including the rate of generation in the sources, the variation of the PM2.5 level
with wind speed, atmospheric transportation, and so on, to determine what should be done to limit PM2.5
pollution to a certain range. There will be many uncertainties in such an effort. Information entropy, and
even thermodynamic entropy, should be able to play some important roles.

Next, let us consider the consequences of severe PM2.5 pollution. The first may be the adverse health
effects, which have been widely discussed in the media. Published medical studies on the effects of
PM2.5 pollution only considered moderately high concentrations of PM2.5 particles. Since, in many
cities of China, PM2.5 concentration is simply off the scale for many consecutive days, one clearly
has to ask whether the adverse effects of PM2.5 particles on health depend linearly or non-linearly on
the concentration of PM2.5 particles. If nonlinear, then some kind of bifurcation, i.e., dramatically
increased health problems when PM2.5 concentration exceeds a certain level, may occur. Then comes
the question of medical costs on such pollution-induced health problems. Furthermore, one may ask how
much PM2.5 pollution may harm outdoor animals, especially birds, since they do not have any means to
protect themselves against harmful PM2.5 particles constantly present in a huge spatial range.

This cost does not simply stop at the medical level. Severe pollution makes foggy and hazy weather
appear more frequently. Foggy and hazy weather decreases visibility, forces the closure of roads, worsens
traffic congestion, causes more traffic accidents and casualties, discourages shopping, forces cancellation
of thousands of flights, and so on. Clearly, this “messiness” can be associated with dramatic increase in
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entropy. Such considerations will be critical for convincing responsible governmental agencies to take
decisive actions to reduce PM2.5 pollution.

Next, let us discuss the relationship between economic development and entropy production. While
many countries have made significant progress in GDP, it is important to note that, so far, little attention
has been paid to the notion of entropy when developing economic growth models. This includes Marx’s
economic theory [79] and the economics Nobel prize-winning model, the Solow-Swan neo-classical
growth model [80,81]. With our living environment so gravely endangered, it is the very time to seriously
address the critical issue of sustainable growth.

At this point, we should discuss what entropy really means in economics. A general interpretation is
to associate entropy with some distributions of economic data [82]. Indeed, entropy for the distribution
of negative incomes can predict economic downturns remarkably well, including the recent gigantic
financial crisis [83]. In the emerging new field, econophysics, which tries to develop a thermodynamic
analogy for the economy, energy and entropy are associated with capital and production function,
respectively [84]. Such a view is too rigid, however, since a fixed amount of money, when used
differently, can lead to entirely different consequences. For example, in 2012, the ex-wife of the
billionaire golfer, Tiger woods, ordered her newly bought mansion, in $12 million, to be torn down
and re-built, for the reason that the mansion was too small for her. Again in 2012, right after the super
hurricane Sandy in New York, some poor people in New York city were struggling for survival, due
to lack of food. Yet, some rich people were struggling for a different purpose—busy consuming wines
costing $1,000 per bottle, due to the flooding of their basements by Sandy. Our view is, to aptly discuss
entropy in economics, one has to comprehensively evaluate all the possibilities and their positive and
negative consequences. Waste and disruptive consequences of certain growth processes ought to be
associated with a large increase in entropy.

This is an information exploding age. The key here is to aptly use big data—as estimated by
Mckinsey [85], if US healthcare were to use big data creatively and effectively to drive efficiency
and quality, the sector could create more than $300 billion in value every year. In the developed
economies of Europe, government administrators could save more than $149 billion in operational
efficiency improvements alone by using big data, not including using big data to reduce fraud and errors
and to boost the collection of tax revenues. Additionally, users of services enabled by personal-location
data could capture $600 billion in consumer surplus. It is critical to maximally utilize the available
information from big data for the general well-being of mankind.
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