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Abstract:

 Objective Bayesian epistemology invokes three norms: the strengths of our beliefs should be probabilities; they should be calibrated to our evidence of physical probabilities; and they should otherwise equivocate sufficiently between the basic propositions that we can express. The three norms are sometimes explicated by appealing to the maximum entropy principle, which says that a belief function should be a probability function, from all those that are calibrated to evidence, that has maximum entropy. However, the three norms of objective Bayesianism are usually justified in different ways. In this paper, we show that the three norms can all be subsumed under a single justification in terms of minimising worst-case expected loss. This, in turn, is equivalent to maximising a generalised notion of entropy. We suggest that requiring language invariance, in addition to minimising worst-case expected loss, motivates maximisation of standard entropy as opposed to maximisation of other instances of generalised entropy. Our argument also provides a qualified justification for updating degrees of belief by Bayesian conditionalisation. However, conditional probabilities play a less central part in the objective Bayesian account than they do under the subjective view of Bayesianism, leading to a reduced role for Bayes’ Theorem.
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1. Introduction

Objective Bayesian epistemology is a theory about the strength of belief. As formulated by Williamson [1], it invokes three norms:


	Probability: The strengths of an agent’s beliefs should satisfy the axioms of probability. That is, there should be a probability function, [image: there is no content], such that for each sentence θ of the agent’s language [image: there is no content], [image: there is no content] measures the degree to which the agent with evidence E believes sentence θ. (Here, [image: there is no content] will be construed as a finite propositional language and S[image: there is no content] as the set of sentences of [image: there is no content], formed by recursively applying the usual connectives.)


	Calibration: The strengths of an agent’s beliefs should satisfy constraints imposed by her evidence E. In particular, if the evidence determines just that physical probability (aka chance), [image: there is no content], is in some set [image: there is no content] of probability functions defined on S[image: there is no content], then [image: there is no content] should be calibrated to physical probability insofar as it should lie in the convex hull, [image: there is no content]=⟨[image: there is no content]⟩, of the set [image: there is no content]. (We assume throughout this paper that chance is probabilistic, i.e., that [image: there is no content] is a probability function.)


	Equivocation: The agent should not adopt beliefs that are more extreme than is demanded by her evidence E. That is, [image: there is no content] should be a member of [image: there is no content] that is sufficiently close to the equivocator function, [image: there is no content], which gives the same probability to each [image: there is no content], where the state descriptions or states, ω, are sentences describing the most fine-grained possibilities expressible in the agent’s language.




One way of explicating these norms proceeds as follows. Measure closeness of [image: there is no content] to the equivocator by Kullback-Leibler divergence, d([image: there is no content],[image: there is no content])=∑[image: there is no content][image: there is no content](ω)log[image: there is no content](ω)[image: there is no content](ω). Then, if there is some function in [image: there is no content] that is closest to the equivocator, [image: there is no content] should be such a function. If [image: there is no content] is closed, then there is guaranteed to be some function in [image: there is no content] closest to the equivocator; as [image: there is no content] is convex, there is at most one such function. Then we have the maximum entropy principle [2]: [image: there is no content] is the function in [image: there is no content] that has maximum entropy H, where H(P)=−∑[image: there is no content]P(ω)logP(ω).

The question arises as to how the three norms of objective Bayesianism should be justified, and whether the maximum entropy principle provides a satisfactory explication of the norms.

The probability norm is usually justified by a Dutch book argument. Interpret the strength of an agent’s belief in θ to be a betting quotient, i.e., a number x, such that the agent is prepared to bet [image: there is no content] on θ with return S if θ is true, where S is an unknown stake, positive or negative. Then the only way to avoid the possibility that stakes may be chosen so as to force the agent to lose money, whatever the true state of the world, is to ensure that the betting quotients satisfy the axioms of probability (see e.g., Theorem 3.2 in [1]).

The calibration norm may be justified by a different sort of betting argument. If the agent bets repeatedly on sentences with known chance y with some fixed betting quotient x, then she is sure to lose money in the long run unless [image: there is no content] (see, e.g., pp. 40–41 in [1]). Alternatively, on a single bet with known chance y, the agent’s expected loss is positive unless her betting quotient [image: there is no content], where the expectation is determined with respect to the chance function [image: there is no content] (pp. 41–42 in [1]). More generally, if evidence E determines that [image: there is no content]∈[image: there is no content] and the agent makes such bets, then sure loss/positive expected loss can be forced unless [image: there is no content]∈⟨[image: there is no content]⟩.

The equivocation norm may be justified by appealing to a third notion of loss. In the absence of any particular information about the loss [image: there is no content] one incurs when one’s strengths of beliefs are represented by P and ω turns out to be the true state, one can argue that one should take the loss function L to be logarithmic, [image: there is no content] (pp. 64–65 in [1]). Then the probability function P that minimises the worst case expected loss, subject to the information that [image: there is no content]∈[image: there is no content], where [image: there is no content] is closed and convex, is simply the probability function P∈[image: there is no content] closest to the equivocator—equivalently, the probability function in [image: there is no content] that has maximum entropy [3,4].

The advantage of these three lines of justification is that they make use of the rather natural connection between strength of belief and betting. This connection was highlighted by Frank Ramsey:


All our lives, we are in a sense betting. Whenever we go to the station, we are betting that a train will really run, and if we had not a sufficient degree of belief in this, we should decline the bet and stay at home.

(p. 183 in [5])



The problem is that the three norms are justified in rather different ways. The probability norm is motivated by avoiding sure loss. The calibration norm is motivated by avoiding sure long-run loss or by avoiding positive expected loss. The equivocation norm is motived by minimising worst-case expected loss. In particular, the loss function appealed to in the justification of the equivocation norm differs from that invoked by the justifications of the probability and calibration norms.
In this paper, we seek to rectify this problem. That is, we seek a single justification of the three norms of objective Bayesian epistemology.

The approach we take is to generalise the justification of the equivocation norm, outlined above, in order to show that only the strengths of beliefs that are probabilistic, calibrated and equivocal minimise worst-case expected loss. We shall adopt the following starting point: as discussed above, [image: there is no content]=⟨[image: there is no content]⟩ is taken to be convex and non-empty throughout this paper; we shall also assume that the strengths of the agent’s beliefs can be measured by non-negative real numbers—an assumption that is rejected by advocates of imprecise probability, a position that we will discuss separately in Section 5.3. We do not assume throughout that [image: there is no content] is such that it admits some function that has maximum entropy—e.g., that [image: there is no content] is closed—but we will be particularly interested in the case in which [image: there is no content] does contain its entropy maximiser, in order to see whether some version of the maximum entropy principle is justifiable in that case.

In Section 2, we shall consider the scenario in which the agent’s belief function, [image: there is no content], is defined over propositions, i.e., sets of possible worlds. Using ω to denote a possible world as well as the state of [image: there is no content] that picks out that possible world, we have that [image: there is no content] is a function from the power set of a finite set Ω of possible worlds ω to the non-negative real numbers, [image: there is no content]:PΩ⟶R≥0. When it comes to justifying the probability norm, this will give us enough structure to show that degrees of belief should be additive. Then, in Section 3, we shall consider the richer framework in which the belief function is defined over sentences, i.e., [image: there is no content]:S[image: there is no content]⟶R≥0. This will allow us to go further by showing that different sentences that express the same proposition should be believed to the same extent. In Section 4, we shall explain how the preceding results can be used to motivate a version of the maximum entropy principle. In Section 5, we draw out some of the consequences of our results for Bayes’ theorem. In particular, conditional probabilities and Bayes’ theorem play a less central role under this approach than they do under subjective Bayesianism. Furthermore, in Section 5 we relate our work to the imprecise probability approach and suggest that the justification of the norms of objective Bayesianism presented here can be reinterpreted in a non-pragmatic way.

The key results of the paper are intended to demonstrate the following points. Theorem 1 (which deals with beliefs defined over propositions) and Theorem 4 (respectively, belief over sentences) show that only a logarithmic loss function satisfies certain desiderata that, we suggest, any default loss function should satisfy. This allows us to focus our attention on logarithmic loss. Theorems 2, 3 (for propositions) and Theorems 5, 6 (for sentences) show that minimising worst-case expected logarithmic loss corresponds to maximising a generalised notion of entropy. Theorem 7 justifies maximising standard entropy, by viewing this maximiser as a limit of generalised entropy maximisers. Theorem 9 demonstrates a level of agreement between updating beliefs by Bayesian conditionalisation and updating by maximising generalised entropy. Theorem 10 shows that the generalised notion of entropy considered in this paper is pitched at precisely the right level of generalisation.

Three appendices to the paper help to shed light on the generalised notion of entropy introduced in this paper. Appendix A motivates the notion by offering justifications of generalised entropy that mirror Shannon’s original justification of standard entropy. Appendix B explores some of the properties of the functions that maximise generalised entropy. Appendix C justifies the level of generalisation of entropy to which we appeal.



2. Belief over Propositions

In this section, we shall show that if a belief function defined on propositions is to minimise worst-case expected loss, then it should be a probability function, calibrated to physical probability, which maximises a generalised notion of entropy. The argument will proceed in several steps. As a technical convenience, in Section 2.1, we shall normalise the belief functions under consideration. In Section 2.2, we introduce the appropriate generalisation of entropy. In Section 2.3, we argue that, by default, loss should be taken to be logarithmic. Then, in Section 2.4, we introduce scoring rules, which measure expected loss. Finally, in Section 2.5, we show that worst-case expected loss is minimised just when generalised entropy is maximised.

For the sake of concreteness, we will take Ω to be generated by a propositional language, [image: there is no content]={A1,…,An}, with propositional variables, [image: there is no content]. The states, ω, take the form ±A1∧⋯∧±An, where [image: there is no content] is just [image: there is no content] and −[image: there is no content] is ¬[image: there is no content]. Thus, there are [image: there is no content] states, ω∈Ω={±A1∧⋯∧±An}. We can think of each such state as representing a possible world. A proposition (or, in the terminology of the mathematical theory of probability, an ‘event’) may be thought of as a subset of Ω, and a belief function, [image: there is no content]:PΩ⟶R≥0, thus assigns a degree of belief to each proposition that can be expressed in the agent’s language. For a proposition [image: there is no content], we will use [image: there is no content] to denote [image: there is no content]. [image: there is no content] denotes the size of proposition [image: there is no content], i.e., the number of states under which it is true.

Let Π be the set of partitions of Ω; a partition [image: there is no content] is a set of mutually exclusive and jointly exhaustive propositions. To control the proliferation of partitions, we shall take the empty set, ∅, to be contained only in one partition, namely [image: there is no content].


2.1. Normalisation

There are finitely many propositions ([image: there is no content] has 2[image: there is no content] members), so any particular belief function, [image: there is no content], takes values in some interval [0,M]⊆R≥0. It is just a matter of convention as to the scale on which belief is measured, i.e., as to what upper bound M we might consider. For convenience, we shall normalise the scale to the unit interval, [image: there is no content], so that all belief functions are considered on the same scale.

Definition 1 (Normalised belief function on propositions). Let M=max[image: there is no content]∑[image: there is no content][image: there is no content](F). Given a belief function, [image: there is no content]:PΩ⟶R≥0, that is not zero everywhere, its normalisation, [image: there is no content], is defined by setting B(F)=[image: there is no content](F)/M for each [image: there is no content]. We shall denote the set of normalised belief functions by [image: there is no content], so:



[image: there is no content]={B:PΩ⟶[image: there is no content]:∑[image: there is no content]B(F)≤1 for all π∈Π and ∑[image: there is no content]B(F)=1 for some π}








Without loss of generality, we rule out of consideration the non-normalised belief function that gives zero degree of belief to each proposition; it will become clear in Section 2.4 that this belief function is of little interest, as it can never minimise worst-case expected loss. For purely technical convenience, we will often consider the convex hull, ⟨[image: there is no content]⟩, of [image: there is no content]. In which case, we rule into consideration certain belief functions that are not normalised, but which are convex combinations of normalised belief functions. Henceforth, then, we shall focus our attention on belief functions in [image: there is no content] and ⟨[image: there is no content]⟩.

Note that we do not impose any further restrictions on the agent’s belief function—such as additivity; or the requirement that [image: there is no content] whenever [image: there is no content]; or that the empty proposition, ∅, has belief zero; or the sure proposition, Ω, is assigned belief of one. Our aim is to show that belief functions that do not satisfy such conditions will expose the agent to avoidable loss.

For any B∈⟨[image: there is no content]⟩ and every [image: there is no content], we have B(F)+B([image: there is no content])≤1, because {F,[image: there is no content]} is a partition. Indeed:



∑[image: there is no content]B(F)=12·∑[image: there is no content]B(F)+∑[image: there is no content]B([image: there is no content])≤12·|PΩ|=2[image: there is no content]−1



(1)




Recall that a subset of [image: there is no content] is compact, if and only if it is closed and bounded.

Lemma 1 (Compactness). [image: there is no content] and ⟨[image: there is no content]⟩ are compact.

Proof: [image: there is no content]⊂[image: there is no content] is bounded, where ⊂ denotes strict subset inclusion. Now, consider a sequence, [image: there is no content][image: there is no content]∈[image: there is no content] which converges to some [image: there is no content] Then, for all [image: there is no content], we find [image: there is no content] Assume that B∉[image: there is no content]. Thus for all [image: there is no content], we have [image: there is no content] However, then there has to exist a [image: there is no content], such that for all [image: there is no content] and all [image: there is no content], [image: there is no content]. This contradicts Bt∈[image: there is no content]. Thus, [image: there is no content] is closed and, hence, compact.

⟨[image: there is no content]⟩ is the convex hull of a compact set. Hence, ⟨[image: there is no content]⟩⊂[image: there is no content] is closed and bounded and so compact. ■

We will be particularly interested in the subset, [image: there is no content]⊆[image: there is no content], of belief functions defined by:



[image: there is no content]={B:PΩ⟶[image: there is no content]:∑[image: there is no content]B(F)=1 for all π∈Π}



(2)




[image: there is no content] is the set of probability functions:
Proposition 1. P∈[image: there is no content] if and only if [image: there is no content] satisfies the axioms of probability:


	P1:

	[image: there is no content] and [image: there is no content].



	P2:

	If [image: there is no content], then [image: there is no content].





Proof: Suppose P∈[image: there is no content]. [image: there is no content], because [image: there is no content] is a partition. [image: there is no content], because [image: there is no content] is a partition and [image: there is no content]. If [image: there is no content] are disjoint, then [image: there is no content], because [image: there is no content] and [image: there is no content] are both partitions, so [image: there is no content].

On the other hand, suppose P1 and P2 hold. [image: there is no content] can be seen by induction on the size of π. If [image: there is no content], then [image: there is no content] and [image: there is no content] by P1. Suppose, then, that [image: there is no content] for k≥1. Now, [image: there is no content] by the induction hypothesis and [image: there is no content] by P2, so [image: there is no content], as required.  ■

Example 1 (Contrasting [image: there is no content] with [image: there is no content]). Using Equation (1), we find ∑[image: there is no content]P(F)=|PΩ|2≥∑[image: there is no content]B(F) for all P∈[image: there is no content] and B∈[image: there is no content]. For probability functions, P∈[image: there is no content], probability is evenly distributed among the propositions of fixed size in the following sense:



∑[image: there is no content][image: there is no content]P(F)=∑[image: there is no content]P(ω)·|{F⊆Ω:|F|=t and ω∈F}|



(3)






=∑[image: there is no content]P(ω)|Ω|−1t−1=|Ω|−1t−1



(4)




where [image: there is no content] abbreviates [image: there is no content] For B∈[image: there is no content] and [image: there is no content], we have, in general, only the following inequality:


0≤∑[image: there is no content][image: there is no content]B(F)≤|{F⊆Ω:|F|=t}|=|Ω|t



(5)




For [image: there is no content]∈[image: there is no content], defined as [image: there is no content], for some specific ω, and [image: there is no content] for all other [image: there is no content], we have that the lower bound is tight. For [image: there is no content]∈[image: there is no content], defined as [image: there is no content], for [image: there is no content], and [image: there is no content], for all other [image: there is no content], the upper bound is tight.
To illustrate the potentially uneven distribution of beliefs for a B∈[image: there is no content], let [image: there is no content] be the propositional variables in [image: there is no content], so Ω contains four elements. Now, consider the B∈[image: there is no content] such that [image: there is no content][image: there is no content] for [image: there is no content][image: there is no content] for [image: there is no content][image: there is no content] for [image: there is no content] and [image: there is no content] Note, in particular, that there is no P∈[image: there is no content] such that [image: there is no content] for all [image: there is no content]



2.2. Entropy

The entropy of a probability function is standardly defined as:



[image: there is no content](P):=−∑[image: there is no content]P(ω)logP(ω)



(6)




We shall adopt the usual convention that [image: there is no content], if [image: there is no content] and [image: there is no content].
We will need to extend the standard notion of entropy to apply to normalised belief functions, not just to probability functions. Note that the standard entropy only takes into account those propositions that are in the partition [image: there is no content] which partitions Ω into states. This is appropriate when entropy is applied to probability functions, because a probability function is determined by its values on the states. However, this is not appropriate if entropy is to be applied to belief functions: in that case, one cannot simply disregard all those propositions that are not in the partition of Ω into states—one needs to consider propositions in other partitions, too. In fact, there are a range of entropies of a belief function, according to how much weight is given to each partition π in the entropy sum:

Definition 2 (g-entropy). Given a weighting function g:Π⟶R≥0, the generalised entropy or g-entropy of a normalised belief function is defined as:



[image: there is no content](B):=−∑[image: there is no content]g(π)∑[image: there is no content]B(F)logB(F)



(7)




The standard entropy, [image: there is no content], corresponds to [image: there is no content]-entropy, where



[image: there is no content](π)=1:π={{ω}:ω∈Ω}0:otherwise



(8)




We can define the partition entropy, [image: there is no content], to be the [image: there is no content]-entropy, where [image: there is no content](π)=1 for all [image: there is no content]. Then:



[image: there is no content](B)=−∑[image: there is no content]∑[image: there is no content]B(F)logB(F)=−∑[image: there is no content]par(F)B(F)logB(F)



(9)




where [image: there is no content] is the number of partitions in which F occurs. Note that according to our convention, [image: there is no content] and [image: there is no content], because Ω occurs in partitions, [image: there is no content] and [image: there is no content]. Otherwise, par(F)=b|[image: there is no content]|, where [image: there is no content] is the k’th Bell number, i.e., the number of partitions of a set of k elements.
We can define the proposition entropy H[image: there is no content] to be the g[image: there is no content]-entropy, where



g[image: there is no content](π)=1:|π|=20:otherwise



(10)




Then:


H[image: there is no content](B)=−∑[image: there is no content]∑[image: there is no content]|π|=2B(F)logB(F)=−∑[image: there is no content]B(F)logB(F)



(11)




In general, we can express [image: there is no content] in the following way, which reverses the order of the summations:



[image: there is no content](B)=−∑[image: there is no content]∑[image: there is no content][image: there is no content]g(π)B(F)logB(F)



(12)




As noted above, one might reasonably demand of a measure of the entropy of a belief function that each belief should contribute to the entropy sum, i.e., for each [image: there is no content], ∑[image: there is no content][image: there is no content]g(π)≠0:

Definition 3 (Inclusive weighting function). A weighting function g:Π⟶R≥0 is inclusive if for all [image: there is no content], there is some partition π containing F such that [image: there is no content].

This desideratum rules out the standard entropy in favour of other candidate measures, such as the partition entropy and the proposition entropy.

We have seen so far that g-entropy is a natural generalisation of standard entropy from probability functions to belief functions. In Section 2.5, we shall see that g-entropy is of particular interest, because maximising g-entropy corresponds to minimising worst-case expected loss—this is our main reason for introducing the concept. However, there is a third reason why g-entropy is of interest. Shannon (§6 in [6]) provided an axiomatic justification of standard entropy as a measure of the uncertainty encapsulated in a probability function. Interestingly, as we show in Appendix A, Shannon’s argument can be adapted to give a justification of our generalised entropy measure. Thus, g-entropy can also be thought of as a measure of the uncertainty of a belief function.

In the remainder of this section, we will examine some of the properties of g-entropy.

Lemma 2. The function [image: there is no content] is continuous in the standard topology on [image: there is no content]

Proof: To obtain the standard topology on [image: there is no content], take as open sets infinite unions and finite intersections over the open sets of [image: there is no content] and sets of the form, [image: there is no content], where [image: there is no content] In this topology on [image: there is no content] a set M⊆[image: there is no content] is open if and only if it is open in the standard topology in [image: there is no content]. Hence, [image: there is no content] is continuous in this topology on [image: there is no content]

Let [image: there is no content] be a sequence in [image: there is no content] with limit zero. For all [image: there is no content], there exists a [image: there is no content] such that [image: there is no content] for all [image: there is no content] Hence, for all open sets U containing [image: there is no content], there exists a K such that [image: there is no content] if [image: there is no content] Therefore, [image: there is no content] converges to [image: there is no content] Thus, [image: there is no content]  ■

Proposition 2. g-entropy is non-negative and, for inclusive g, strictly concave on ⟨[image: there is no content]⟩.

Proof: [image: there is no content] for all F, so logB(F)≤0, and g(π)∑[image: there is no content]B(F)logB(F)≤0. Hence, ∑[image: there is no content]−g(π)∑[image: there is no content]B(F)logB(F)≥0,i.e., g-entropy is non-negative.

Take distinct [image: there is no content],[image: there is no content]∈⟨[image: there is no content]⟩ and [image: there is no content], and let [image: there is no content]. Now, [image: there is no content] is strictly convex on [image: there is no content], i.e.,



[image: there is no content]



(13)




with equality just when [image: there is no content].
Consider an inclusive weighting function, g.



[image: there is no content](λ[image: there is no content]+(1−λ)[image: there is no content])=−∑[image: there is no content]g(π)∑[image: there is no content]B(F)logB(F)≥−∑[image: there is no content]g(π)∑[image: there is no content]λ[image: there is no content](F)log[image: there is no content](F)+(1−λ)[image: there is no content](F)log[image: there is no content](F)=λ[image: there is no content]([image: there is no content])+(1−λ)[image: there is no content]([image: there is no content])



(14)




with equality iff for all F, [image: there is no content], since g is inclusive. However, [image: there is no content] and [image: there is no content] are distinct, so equality does not obtain. In other words, g-entropy is strictly concave.  ■
Corollary 1. For inclusive g, if g-entropy is maximised by a function [image: there is no content] in convex [image: there is no content]⊆[image: there is no content], it is uniquely maximised by [image: there is no content] in [image: there is no content].

Corollary 2. For inclusive g, g-entropy is uniquely maximised in the closure, [[image: there is no content]], of [image: there is no content].

If g is not inclusive, concavity is not strict. For example, if the standard entropy, [image: there is no content], is maximised by [image: there is no content], then it is also maximised by any belief function [image: there is no content] that agrees with [image: there is no content] on the states [image: there is no content].

Note that different g-entropy measures can have different maximisers on a convex subset [image: there is no content] of probability functions. For example, when [image: there is no content] and [image: there is no content]={P∈[image: there is no content]:P([image: there is no content])+2.75P([image: there is no content])+7.1P([image: there is no content])=1.7,P([image: there is no content])=0}, then the proposition entropy maximiser, the standard entropy maximiser and the partition entropy maximiser are all different, as can be seen from Figure 1.

Figure 1. Plotted are the partition entropy, the standard entropy and the proposition entropy under the constraints, [image: there is no content], P([image: there is no content])+2.75P([image: there is no content])+7.1P([image: there is no content])=1.7,P([image: there is no content])=0, as a function of [image: there is no content] The dotted lines indicate the respective maxima, which obtain for different values of [image: there is no content]
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2.3. Loss

As Ramsey observed, all our lives, we are, in a sense, betting. The strengths of our beliefs guide our actions and expose us to possible losses. If we go to the station when the train happens not to run, we incur a loss: a wasted journey to the station and a delay in getting to where we want to go. Normally, when we are deliberating about how strongly to believe a proposition, we have no realistic idea as to the losses to which that belief will expose us. That is, when determining a belief function B, we do not know the true loss function, [image: there is no content].

Now, a loss function L is standardly defined as a function L:Ω×[image: there is no content]⟶(−∞,∞], where [image: there is no content] is the loss one incurs by adopting probability function P∈[image: there is no content] when ω is the true state of the world. Note that a standard loss function will only evaluate an agent’s beliefs about the states, not the extent to which she believes other propositions. This is appropriate when belief is assumed to be probabilistic, because a probability function is determined by its values on the states. But we are concerned with justifying the probability norm here and, hence, need to consider the full range of the agent’s beliefs, in order to show that they should satisfy the axioms of probability. Hence, we need to extend the concept of a loss function to evaluate all of the agent’s beliefs:

Definition 4 (Loss function). A loss function is a function L:PΩ×⟨[image: there is no content]⟩⟶(−∞,∞].

[image: there is no content] is the loss incurred by a belief function B, when proposition F turns out to be true. We shall interpret this loss as the loss that is attributable to F in isolation from all other propositions, rather than the total loss incurred when proposition F turns out to be true. When F turns out to be true, so does any proposition G, for [image: there is no content]. Thus, the total loss when F turns out to be true includes [image: there is no content], as well as [image: there is no content]. The total loss on F turning out to be true might therefore be represented by [image: there is no content], with [image: there is no content] being the loss distinctive to F, i.e., the loss on F turning out to be true over and above the loss incurred by [image: there is no content].

Is there anything that one can presume about a loss function in the absence of any information about the true loss function, [image: there is no content]? Plausibly:


	L1. 

	[image: there is no content] if [image: there is no content].



	L2. 

	[image: there is no content] strictly increases as [image: there is no content] decreases from one towards zero.



	L3. 

	[image: there is no content] depends only on [image: there is no content].





To express the next condition, we need some notation. Suppose [image: there is no content]=[image: there is no content]1∪[image: there is no content]2: say that [image: there is no content]={A1,...,An}, [image: there is no content]1={A1,...,Am}, [image: there is no content]2={Am+1,...,An} for some [image: there is no content]. Then, [image: there is no content] takes the form [image: there is no content], where [image: there is no content] is a state of [image: there is no content]1, and [image: there is no content] is a state of [image: there is no content]2. Given propositions, [image: there is no content] and [image: there is no content], we can define [image: there is no content], a proposition of [image: there is no content]. Given a fixed belief function, B, such that [image: there is no content], [image: there is no content]1 and [image: there is no content]2 are independent sublanguages, written [image: there is no content]1⫫B[image: there is no content]2, if [image: there is no content] for all [image: there is no content] and [image: there is no content], where [image: there is no content] and [image: there is no content]. The restriction B⇂[image: there is no content]1 of B to [image: there is no content]1 is a belief function on [image: there is no content]1 defined by B⇂[image: there is no content]1(F1)=B(F1)=B(F1×Ω2) and similarly for [image: there is no content]2.

	L4. 

	Losses are additive when the language is composed of independent sublanguages: if [image: there is no content]=[image: there is no content]1∪[image: there is no content]2 for [image: there is no content]1⫫B[image: there is no content]2, then L(F1×F2,B)=[image: there is no content](F1,B⇂[image: there is no content]1)+L2(F2,B⇂[image: there is no content]2), where [image: there is no content] are loss functions defined on [image: there is no content]1,[image: there is no content]2, respectively.





L1 says that one should presume that fully believing a true proposition will not incur loss. L2 says that one should presume that the less one believes a true proposition, the more loss will result. L3 expresses the interpretation of [image: there is no content] as the loss attributable to F in isolation of all other propositions. This condition, which is sometimes called locality, rules out that [image: there is no content] depends on [image: there is no content] for [image: there is no content]; it also rules out a dependence on [image: there is no content], for instance. L4 expresses the intuition that, at least if one supposes two propositions to be unrelated, one should presume that the loss on both turning out to be true is the sum of the losses on each. (These four conditions correspond to conditions L1–4 of pp. 64–65 in [1], which were put forward in the special case of loss functions defined over probability functions, as opposed to belief functions.)

The four conditions taken together tightly constrain the form of a presumed loss function, L:

Theorem 1. If loss functions are assumed to satisfy L1–4, then [image: there is no content] for some constant, [image: there is no content], that does not depend on [image: there is no content].

Proof: We shall first focus on a loss function, L, defined with respect to a language, [image: there is no content], that contains at least two propositional variables.

L3 implies that L(F,B)=f[image: there is no content](B(F)), for some function, f[image: there is no content]:[image: there is no content]⟶(−∞,∞].

For our fixed [image: there is no content] and each [image: there is no content], choose some particular B∈⟨[image: there is no content]⟩,[image: there is no content]1,[image: there is no content]2,F1⊆Ω1,F2⊆Ω2, such that [image: there is no content]=[image: there is no content]1∪[image: there is no content]2, where [image: there is no content]1⫫B[image: there is no content]2, [image: there is no content] and [image: there is no content]. This is possible, because [image: there is no content] has at least two propositional variables. Note in particular that since [image: there is no content]1 and [image: there is no content]2 are independent sublanguages, we have [image: there is no content].

Note that



1=B(Ω)=B(Ω1×Ω2)=B⇂[image: there is no content]1(Ω1)



(15)




and, similarly, B⇂[image: there is no content]2(Ω2)=1. By L1, then, [image: there is no content](Ω1,B⇂[image: there is no content]1)=L2(Ω2,B⇂[image: there is no content]2)=0.
Therefore, by applying L4 twice:



f[image: there is no content](xy)=f[image: there is no content](B(F1)·B(F2))=L(F1×F2,B)=[image: there is no content](F1,B⇂[image: there is no content]1)+L2(F2,B⇂[image: there is no content]2)=[L(F1×Ω2,B)−L2(Ω2,B⇂[image: there is no content]2)]+[L(Ω1×F2,B)−[image: there is no content](Ω1,B⇂[image: there is no content]1)]=L(F1×Ω2,B)+L(Ω1×F2,B)=f[image: there is no content](x)+f[image: there is no content](y)



(16)




The negative logarithm on [image: there is no content] is characterisable up to a multiplicative constant, k[image: there is no content], in terms of this additivity, together with the condition that f[image: there is no content](x)≥0, which is implied by L1–2 (see, e.g., Theorem 0.2.5 in [7]). L2 ensures that f[image: there is no content] is not zero everywhere, so k[image: there is no content]>0.
We thus know that f[image: there is no content](x)=−k[image: there is no content]logx for [image: there is no content] Now, note that for all [image: there is no content], it needs to be the case that f[image: there is no content](0)=f[image: there is no content](0·y)=f[image: there is no content](0)+f[image: there is no content](y), if f[image: there is no content] is to satisfy f[image: there is no content](x·y)=f[image: there is no content](x)+f[image: there is no content](y) for all [image: there is no content] Since f[image: there is no content] takes values in [image: there is no content], it follows that f[image: there is no content](0)=+∞.

Thus far, we have shown that for a fixed language, [image: there is no content], with at least two propositional variables, L(F,B)=−k[image: there is no content]logB(F) on [image: there is no content]

Now consider an arbitrary language, [image: there is no content]1, and a loss function [image: there is no content] on [image: there is no content]1 which satisfies L1–L4. There exists some other language, [image: there is no content]2, and a belief function B on [image: there is no content]=[image: there is no content]1∪[image: there is no content]2 such that [image: there is no content]1⫫B[image: there is no content]2. By the above, for the loss function L on [image: there is no content], it holds that L(F,B)=−k[image: there is no content]logB(F) on [image: there is no content] By reasoning analogous to that above:



[image: there is no content](F1,B⇂[image: there is no content]1)=L(F1×Ω2,B)=f[image: there is no content](B(F1×Ω2))=f[image: there is no content](B⇂[image: there is no content]1(F1))



(17)




Therefore, the loss function for [image: there is no content]1 is [image: there is no content](F1,B⇂[image: there is no content]1)=−k[image: there is no content]logB⇂[image: there is no content]1(F1). Thus, the constant k[image: there is no content] does not depend on the particular language [image: there is no content] after all.

In general, then, [image: there is no content] for some positive k.  ■

Since multiplication by a constant is equivalent to a change of base, we can take log to be the natural logarithm. Since we will be interested in the belief functions that minimise loss, rather than in the absolute value of any particular losses, we can take [image: there is no content] without loss of generality. Theorem 1 thus allows us to focus on the logarithmic loss function:



[image: there is no content]



(18)






2.4. Score

In this paper, we are concerned with showing that the norms of objective Bayesianism must hold if an agent is to control her worst-case expected loss. Now, an expected loss function or scoring rule is standardly defined as [image: there is no content]:[image: there is no content]×[image: there is no content]⟶[−∞,∞] such that [image: there is no content](P,Q)=∑[image: there is no content]P(ω)LΩ(ω,Q). This is interpretable as the expected loss incurred by adopting probability function Q as one’s belief function, when the probabilities are actually determined by P. (This is the statistical notion of a scoring rule as defined in [8]. More recently, a different, ‘epistemic’ notion of a scoring rule has been considered in the literature on non-pragmatic justifications of Bayesian norms; see, e.g., [9,10] and, also, a forthcoming paper by Landes, where similarities and differences of these two notions of a scoring rule are discussed. One difference that is significant to our purposes is that Predd et al.’s result in [11]—that for every epistemic scoring rule that is continuous and strictly proper, the set of non-dominated belief functions is the set [image: there is no content] of probability functions—does not apply to statistical scoring rules. Furthermore, Predd et al. are only interested in justifying the probability norm by appealing to dominance as a decision theoretic norm. We are concerned with justifying three norms at once using worst-case loss avoidance as a desideratum. The epistemic approach is considered further in Section 5.4.)

While this standard definition of scoring rule is entirely appropriate when belief is assumed to be probabilistic, we make no such assumption here and need to consider scoring rules that evaluate all the agent’s beliefs, not just those concerning the states. In line with our discussion of entropy in Section 2.2, we shall consider the following generalisation:

Definition 5 (g-score). Given a loss function, L, and an inclusive weighting function, g:Π⟶R≥0, the g-expected loss function or g-scoring rule or, simply, g-score is SgL:[image: there is no content]×⟨[image: there is no content]⟩⟶[−∞,∞], such that



SgL(P,B)=∑[image: there is no content]g(π)∑[image: there is no content]P(F)L(F,B)



(19)




Clearly, [image: there is no content] corresponds to S[image: there is no content]L, where [image: there is no content], which is not inclusive, is defined as in Section 2.2. We require that g be inclusive in Definition 5, since only in that case does the g-score genuinely evaluate all the agent’s beliefs. We will focus on [image: there is no content]([image: there is no content],B), i.e., the case in which the loss function is logarithmic and the expectation is taken with respect to the chance function, [image: there is no content], in order to show that an agent should satisfy the norms of objective Bayesianism if she is to control her worst-case g-expected logarithmic loss when her evidence determines that the chance function, [image: there is no content], is in [image: there is no content].

For example, with the logarithmic loss function, the partition Π-score is defined by setting g=[image: there is no content]:



SΠlog(P,B)=−∑[image: there is no content]∑[image: there is no content]P(F)logB(F)



(20)




Similarly, the proposition [image: there is no content]-score is defined by setting g=g[image: there is no content]:


S[image: there is no content]log(P,B)=−∑[image: there is no content]P(F)logB(F)



(21)




It turns out that the various logarithmic scoring rules have the following useful property:

Definition 6 (Strictly proper g-score). A scoring rule, SgL:[image: there is no content]×⟨[image: there is no content]⟩⟶[−∞,∞], is strictly proper, if for all P∈[image: there is no content], the function SgL(P,·):⟨[image: there is no content]⟩⟶[−∞,∞] has a unique global minimum at [image: there is no content].

Definition 6 can be generalised: a scoring rule is strictly [image: there is no content]-proper if it is strictly proper for belief functions taken to be from a set [image: there is no content]. In Definition 6, [image: there is no content]=⟨[image: there is no content]⟩. The logarithmic scoring rule in the standard sense, i.e., ∑[image: there is no content]P(ω)L(ω,Q), is well known to be the only strictly [image: there is no content]-proper local scoring rule—see McCarthy [12] (p. 654), who credits Andrew Gleason for the uniqueness result; Shuford et al. [13] (p. 136) for the case of continuous scoring rules; Aczel and Pfanzagl [14] (Theorem 3, p. 101) for the case of differentiable scoring rules; and Savage [15] (§9.4). The logarithmic score in our sense, i.e., ∑[image: there is no content]P(F)L(F,B), is not strictly [image: there is no content]-proper when [image: there is no content] is the set of non-normalised belief functions: S(P,[image: there is no content]) is a global minimum, where [image: there is no content] is the belief function such that [image: there is no content](F)=1 for all F. (While Joyce [9] (p. 276) suggests that logarithmic score is strictly [image: there is no content]-proper for [image: there is no content] a set of non-normalised belief functions, he is referring to a logarithmic scoring rule that is different to the usual one considered above and that does not satisfy the locality condition, L3.)

On the way to showing that logarithmic g-scores are strictly proper, it will be useful to consider the following natural generalisation of Kullback-Leibler divergence to our framework:

Definition 7 (g-divergence). For a weighting function, g:Π⟶R≥0, the g-divergence is the function, dg:[image: there is no content]×⟨[image: there is no content]⟩⟶[−∞,∞], defined by:



dg(P,B)=∑[image: there is no content]g(π)∑[image: there is no content]P(F)logP(F)[image: there is no content]



(22)




Here, we adopt the usual convention that [image: there is no content] and [image: there is no content] for [image: there is no content]
We shall see that [image: there is no content] is a sensible notion of the divergence of P from B by appealing to the following useful inequality (see, e.g., Theorem 2.7.1 in [16]):

Lemma 3 (Log sum inequality). For [image: there is no content],yi∈R≥0,i,j=1,…,k,



[image: there is no content]



(23)




with equality, iff [image: there is no content] for some constant, c, and [image: there is no content].
Proposition 3. The following are equivalent:


	[image: there is no content] with equality iff [image: there is no content].


	g is inclusive.




Proof: First we shall see that if g is inclusive, then [image: there is no content] with equality iff [image: there is no content].



[image: there is no content]=∑[image: there is no content]g(π)∑[image: there is no content]P(F)logP(F)[image: there is no content]≥∑[image: there is no content]g(π)∑[image: there is no content]P(F)log∑[image: there is no content]P(F)∑[image: there is no content]B(F)≥∑[image: there is no content]g(π)1log11=0



(24)




where the first inequality is an application of the log-sum inequality and the second inequality is a consequence of B being in ⟨[image: there is no content]⟩. There is equality at the first inequality iff for all [image: there is no content] and all π such that [image: there is no content] and [image: there is no content], [image: there is no content] for all [image: there is no content], and equality at the second inequality iff for all π such that [image: there is no content], ∑[image: there is no content]B(F)=1.
Clearly, if [image: there is no content] for all F, then these two equalities obtain. Conversely, suppose the two equalities obtain. Then, for each F, there is some [image: there is no content] such that [image: there is no content], because g is inclusive. The first equality condition implies that [image: there is no content] for [image: there is no content]. The second equality implies that [image: there is no content]. Hence, [image: there is no content], and so, [image: there is no content] for [image: there is no content]. In particular, [image: there is no content].

Next, we shall see that the condition that g is inclusive is essential.

If g were not inclusive, then there would be some [image: there is no content] such that [image: there is no content], for all [image: there is no content] such that [image: there is no content]. There are two cases.


	(i)

	[image: there is no content]. Take some P∈[image: there is no content] such that [image: there is no content] Now, define [image: there is no content] and [image: there is no content] for all other [image: there is no content] Then, [image: there is no content] and [image: there is no content] for all other [image: there is no content], so B∈[image: there is no content]⊆⟨[image: there is no content]⟩. Furthermore, [image: there is no content].



	(ii)

	[image: there is no content] or [image: there is no content]. Define [image: there is no content] and [image: there is no content] for all [image: there is no content] Then, [image: there is no content] and [image: there is no content] for all other [image: there is no content], so B∈[image: there is no content]⊆⟨[image: there is no content]⟩. Furthermore, [image: there is no content].





In either case, then, [image: there is no content] is not uniquely minimised by [image: there is no content].  ■
Corollary 3. The logarithmic g-score is strictly proper.

Proof: Recall that in the context of a g-score, g is inclusive.



[image: there is no content](P,B)−[image: there is no content](P,P)=−∑[image: there is no content]g(π)∑[image: there is no content]P(F)log[image: there is no content]P(F)=∑[image: there is no content]g(π)∑[image: there is no content]P(F)logP(F)[image: there is no content]=[image: there is no content]



(25)




Proposition 3 then implies that [image: there is no content] with equality, iff [image: there is no content], i.e., [image: there is no content] is strictly proper.  ■
Finally, logarithmic g-scores are non-negative strictly convex functions in the following qualified sense:

Proposition 4. The logarithmic g-score [image: there is no content](P,B) is non-negative and convex as a function of B∈⟨[image: there is no content]⟩. Convexity is strict, i.e., [image: there is no content](P,λ[image: there is no content]+(1−λ)[image: there is no content])<λ[image: there is no content](P,[image: there is no content])+(1−λ)[image: there is no content](P,[image: there is no content]) for [image: there is no content], unless [image: there is no content] and [image: there is no content] agree everywhere, except where [image: there is no content].

Proof: The logarithmic g-score is non-negative, because [image: there is no content] for all F; so, logB(F)≤0, P(F)logB(F)≤0, and [image: there is no content].

That [image: there is no content](P,B) is strictly convex as a function of ⟨[image: there is no content]⟩ follows from the strict concavity of [image: there is no content]. Take distinct [image: there is no content],[image: there is no content]∈⟨[image: there is no content]⟩ and [image: there is no content], and let [image: there is no content]. Now:



P(F)logB(F)=P(F)log(λ·[image: there is no content](F)+(1−λ)[image: there is no content](F))≥P(F)λlog[image: there is no content](F)+(1−λ)log[image: there is no content](F)=λP(F)log[image: there is no content](F)+(1−λ)P(F)log[image: there is no content](F)



(26)




with equality iff either [image: there is no content] or [image: there is no content].
Hence:



[image: there is no content](P,B)=−∑[image: there is no content]g(π)∑[image: there is no content]P(F)logB(F)≤λ[image: there is no content](P,[image: there is no content])+(1−λ)[image: there is no content](P,[image: there is no content])



(27)




with equality iff [image: there is no content] and [image: there is no content] agree everywhere, except possibly where [image: there is no content].  ■


2.5. Minimising the Worst-Case Logarithmic g-Score

In this section, we shall show that the g-entropy maximiser minimises the worst-case logarithmic g-score.

In order to prove our main result (Theorem 2), we would like to apply a game-theoretic minimax theorem, which will allow us to conclude that:



infB∈[image: there is no content]supP∈[image: there is no content][image: there is no content](P,B)=supP∈[image: there is no content]infB∈[image: there is no content][image: there is no content](P,B)








Note that the expression on the left-hand side describes the minimising worst-case g-score, where the worst case refers to P ranging in [image: there is no content]. Speaking in game-theoretic lingo: the player playing first on the left-hand side aims to find the belief function(s) that minimises worst-case g-expected loss; again, the worst case is taken with respect to varying [image: there is no content]
For this approach to work, we would normally need [image: there is no content] to be some set of mixed strategies. It is not obvious how [image: there is no content] could be represented as a mixing of finitely many pure strategies. However, there exists a broad literature on minimax theorems [17], and we shall apply a theorem proven in König [18]. This theorem requires that certain level sets, in the set of functions in which the player aiming to minimise may chose his functions, are connected. To apply König’s result, we will thus allow the belief functions, B, to range in ⟨[image: there is no content]⟩, which has this property. It will follow that the B∈⟨[image: there is no content]⟩∖[image: there is no content] are never good choices for the minimising player playing first: the best choice is in [image: there is no content], which is a subset of [image: there is no content].

Having established that the inf and the sup commute, the rest is straightforward. Since the scoring rule we employ, [image: there is no content], is strictly proper, we have that the best strategy for the minimising player, answering a move by the maximising player, is to select the same function as the maximising player. Thus, it is best for the maximising player playing first to choose a/the function that maximises [image: there is no content](P,P). We will thus find that:



supP∈[image: there is no content]infB∈⟨[image: there is no content]⟩[image: there is no content](P,B)=supP∈[image: there is no content]infB∈{P}[image: there is no content](P,B)=supP∈[image: there is no content][image: there is no content](P,P)=supP∈[image: there is no content][image: there is no content](P)








Thus, worst-case g-expected loss and g-entropy have the same value. In game-theoretic terms: we find that our zero-sum g-log-loss game has a value. It remains to be shown that both players, when playing first, have a unique best choice, [image: there is no content].
First, then, we shall apply König’s result.

Definition 8 (König [18], p. 56). For F:[image: there is no content]×[image: there is no content]→[−∞,∞], we call [image: there is no content] a border interval of F, if and only if I is an interval of the form I=(supx∈[image: there is no content]infy∈[image: there is no content]F(x,y),+∞).[image: there is no content] is called a border set of F if and only if infΛ=supx∈[image: there is no content]infy∈[image: there is no content]F(x,y).

For [image: there is no content] and ∅⊂K⊆[image: there is no content], define [image: there is no content] and [image: there is no content] to consist of [image: there is no content] and of subsets of [image: there is no content] of the form:



⋂y∈K[F(·,y)>λ]respectively⋂y∈K[F(·,y)≥λ]








For [image: there is no content] and finite ∅⊂H⊆[image: there is no content], define [image: there is no content] and [image: there is no content] to consist of subsets of [image: there is no content] of the form:


⋂x∈H[F(x,·)<λ]respectively⋂x∈H[F(x,·)≤λ]








The following may be found in König [18] (Theorem 1.3, p. 57):

Lemma 4 (König’s Minimax). Let [image: there is no content],[image: there is no content] be topological spaces, [image: there is no content] be compact and Hausdorff and let F:[image: there is no content]×[image: there is no content]→[−∞,∞] be lower semicontinuous. Then, if Λ is some border set, I some border interval of F and if at least one of the following conditions holds:


	for all [image: there is no content], all members of [image: there is no content] and [image: there is no content] are connected;


	for all [image: there is no content], all members of [image: there is no content] are connected and all [image: there is no content] all [image: there is no content] are connected;


	for all [image: there is no content], all members of [image: there is no content] and [image: there is no content] are connected;


	for all [image: there is no content], all members of [image: there is no content] are connected and all [image: there is no content] all [image: there is no content] are connected;




then:


infy∈[image: there is no content]supx∈[image: there is no content]F(x,y)=supx∈[image: there is no content]infy∈[image: there is no content]F(x,y)








Lemma 5. [image: there is no content]:[image: there is no content]×⟨[image: there is no content]⟩→[0,∞] is lower semicontinuous.

Proof: It suffices to show that {(P,B)∈[image: there is no content]×⟨[image: there is no content]⟩|[image: there is no content](P,B)≤r} is closed for all [image: there is no content] For [image: there is no content] consider a sequence [image: there is no content] with [image: there is no content], such that [image: there is no content](Pt,Bt)≤r for all t. Then:



[image: there is no content](P,B)=−∑[image: there is no content]g(π)∑[image: there is no content]P(F)logB(F)=∑[image: there is no content]∑[image: there is no content][image: there is no content]−g(π)P(F)logB(F).



(28)




If [image: there is no content] and [image: there is no content] converges to zero, then there is an [image: there is no content] such that for all [image: there is no content], [image: there is no content] Thus, [image: there is no content] cannot converge to zero if [image: there is no content] Since [image: there is no content] converges, it has to converge to some [image: there is no content] Thus, when [image: there is no content] we have that [image: there is no content] From [image: there is no content](Pt,Bt)≤r, we conclude that:


∑[image: there is no content]∑[image: there is no content][image: there is no content]−g(π)P(F)logB(F)=limt→∞∑[image: there is no content]∑[image: there is no content][image: there is no content]−g(π)Pt(F)logBt(F)≤r



(29)




 ■
Proposition 5. For all [image: there is no content]:



infB∈⟨[image: there is no content]⟩supP∈[image: there is no content][image: there is no content](P,B)=supP∈[image: there is no content]infB∈⟨[image: there is no content]⟩[image: there is no content](P,B)








Proof: It suffices to verify that the conditions of Lemma 4 are satisfied.

[image: there is no content],⟨[image: there is no content]⟩ are subsets of [image: there is no content], [image: there is no content] respectively, thus naturally equipped with the induced topology. ⟨[image: there is no content]⟩ is compact and Hausdorff (see Lemma 1). [image: there is no content]:[image: there is no content]×⟨[image: there is no content]⟩→[0,∞] is lower semicontinuous (see Lemma 5).

We need to show that one of the connectivity conditions holds. In fact, they all hold, as we shall see.

Note that [image: there is no content],⟨[image: there is no content]⟩ are connected, since they are convex.

For the [image: there is no content] and [image: there is no content] consider any B∈⟨[image: there is no content]⟩ and suppose that P,[image: there is no content]∈[image: there is no content] are such that [image: there is no content](P,B)>≥λ and [image: there is no content]([image: there is no content],B)>≥λ. Then for [image: there is no content] we have:



[image: there is no content](ηP+(1−η)[image: there is no content],B)=−∑[image: there is no content]g(π)∑[image: there is no content](ηP+(1−η)[image: there is no content])(F)logB(F)=η[image: there is no content](P,B)+(1−η)[image: there is no content]([image: there is no content],B)>≥λ



(30)




Thus,


{P∈[image: there is no content]|[image: there is no content](P,B)>≥λ}



(31)




is convex for all B∈⟨[image: there is no content]⟩.
Thus, every intersection of such sets is convex. Hence, these intersections are connected. (If any such intersection is empty, then it is trivially connected.)

For the [image: there is no content] and [image: there is no content], note that for every P∈[image: there is no content], we have that



{B∈⟨[image: there is no content]⟩|[image: there is no content](P,B)<≤λ}



(32)




is convex, which follows from Proposition 4 by noting that for a convex function (here, [image: there is no content](P,·)) on a convex set (here, ⟨[image: there is no content]⟩), the set of elements in the domain that are mapped to a number (strictly) less than λ is convex for all [image: there is no content]
Thus, every intersection of such sets is convex. Hence, these intersections are connected.  ■

The suprema and infima referred to in Proposition 5 may not be achieved at points of [image: there is no content]. If not, they will be achieved instead at points in the closure, [[image: there is no content]], of [image: there is no content]. We shall use argsupP∈[image: there is no content] (and arginfP∈[image: there is no content]) to refer to the points in [[image: there is no content]] that achieve the supremum (respectively, infimum), whether or not these points are in [image: there is no content].

Theorem 2. As usual, [image: there is no content] is taken to be convex and g inclusive. We have that:



argsupP∈[image: there is no content][image: there is no content](P)=arginfB∈[image: there is no content]supP∈[image: there is no content]Sglog(P,B)



(33)




Proof: We shall prove the following slightly stronger equality, allowing B to range in ⟨[image: there is no content]⟩, instead of [image: there is no content]:



argsupP∈[image: there is no content][image: there is no content](P)=arginfB∈⟨[image: there is no content]⟩supP∈[image: there is no content]Sglog(P,B)



(34)




The theorem then follows from the following fact. The right-hand side of Equation (34) is an optimization problem, where the optimum (here, we look for the infimum of supP∈[image: there is no content]Sglog(P,·)) uniquely obtains for a certain value (here, [image: there is no content]). Restricting the domain of the variables (here, from ⟨[image: there is no content]⟩ to [image: there is no content]) in the optimization problem, to a subdomain that contains optimum [image: there is no content]∈[[image: there is no content]]⊆[image: there is no content]⊆⟨[image: there is no content]⟩, does not change where the optimum obtains nor the value of the optimum.
Note that:



supP∈[image: there is no content][image: there is no content](P)=supP∈[image: there is no content]Sglog(P,P)=supP∈[image: there is no content]infB∈⟨[image: there is no content]⟩Sglog(P,B)=infB∈⟨[image: there is no content]⟩supP∈[image: there is no content]Sglog(P,B)



(35)




The first equality is simply the definition of [image: there is no content] The second equality follows directly from strict propriety (Corollary 3). To obtain the third line, we apply Proposition 5.
It remains to show that we can introduce arg on both sides of Equation (33).

The following sort of argument seems to be folklore in game theory; we here adapt (Lemma 4.1 on p. 1384 in [3]) for our purposes. We have:



[image: there is no content]:=argsupP∈[image: there is no content][image: there is no content](P,P)



(36)






=argsupP∈[image: there is no content]infB∈⟨[image: there is no content]⟩[image: there is no content](P,B)



(37)




The [image: there is no content] in Equation (36) is unique (Corollary 2). Equation (37) follows from strict propriety of [image: there is no content] (Corollary 3). Now let:


[image: there is no content]∈arginfB∈⟨[image: there is no content]⟩supP∈[image: there is no content][image: there is no content](P,B)



(38)




Then:


[image: there is no content]([image: there is no content],[image: there is no content])=supP∈[image: there is no content]infB∈⟨[image: there is no content]⟩[image: there is no content](P,B)=infB∈⟨[image: there is no content]⟩[image: there is no content]([image: there is no content],B)≤[image: there is no content]([image: there is no content],[image: there is no content])≤supP∈[image: there is no content][image: there is no content](P,[image: there is no content])



(39)






=infB∈⟨[image: there is no content]⟩supP∈[image: there is no content][image: there is no content](P,B)



(40)




The first equality follows from the definition of [image: there is no content]; see Equations (36) and (37). That we may drop the sup again follows from the definition of [image: there is no content], since [image: there is no content] maximises infB∈⟨[image: there is no content]⟩[image: there is no content](·,B). The inequalities hold, since dropping a minimisation and introducing a maximisation can only lead to an increase. The final inequality is immediate from the definition of [image: there is no content] minimising supP∈[image: there is no content][image: there is no content](P,·).

By Proposition 5, all inequalities above are in fact equalities. From [image: there is no content]([image: there is no content],[image: there is no content])=[image: there is no content]([image: there is no content],[image: there is no content]) and strict propriety, we may now infer that [image: there is no content]=[image: there is no content].  ■

In sum, then, if an agent is to minimise her worst-case g-score, then her belief function needs to be the probability function in [image: there is no content] that maximises g-entropy, as long as this entropy maximiser is in [image: there is no content]. That the belief function is to be a probability function is the content of the probability norm; that it is to be in [image: there is no content] is the content of the calibration norm; that it is to maximise g-entropy is related to the equivocation norm. We shall defer a full discussion of the equivocation norm to Section 4. In the next section, we shall show that the arguments of this section generalise to belief as defined over sentences rather than propositions. This will imply that logically equivalent sentences should be believed to the same extent—an important component of the probability norm in the sentential framework.

We shall conclude this section by providing a slight generalisation of the previous result. Note that, thus far, when considering worst-case g-score, this worst case is with respect to a chance function taken to be in [image: there is no content]=⟨[image: there is no content]⟩. However, the evidence determines something more precise, namely that the chance function is in [image: there is no content], which is not assumed to be convex. The following result indicates that our main argument will carry over to this more precise setting.

Theorem 3. Suppose [image: there is no content]⊆[image: there is no content] is such that the unique g-entropy maximiser, [image: there is no content], for [[image: there is no content]]=[⟨[image: there is no content]⟩], is in [[image: there is no content]]. Then:



[image: there is no content]=argsupP∈[image: there is no content][image: there is no content](P)=arginfB∈[image: there is no content]supP∈[image: there is no content]Sglog(P,B)



(41)




Proof: As in the previous proof, we shall prove a slightly stronger equality:



[image: there is no content]=argsupP∈[image: there is no content][image: there is no content](P)=arginfB∈⟨[image: there is no content]⟩supP∈[image: there is no content]Sglog(P,B)



(42)




The result follows for the same reasons given in the proof of Theorem 2.
From the strict propriety of [image: there is no content], we have:



[image: there is no content]([image: there is no content],[image: there is no content])=infB∈⟨[image: there is no content]⟩[image: there is no content]([image: there is no content],B)≤infB∈⟨[image: there is no content]⟩supP∈[image: there is no content][image: there is no content](P,B)≤infB∈⟨[image: there is no content]⟩supP∈⟨[image: there is no content]⟩[image: there is no content](P,B)=supP∈⟨[image: there is no content]⟩[image: there is no content](P,[image: there is no content])=[image: there is no content]([image: there is no content],[image: there is no content])



(43)




where the last two equalities are simply Theorem 2. Hence:


infB∈⟨[image: there is no content]⟩supP∈[image: there is no content][image: there is no content](P,B)=[image: there is no content]([image: there is no content],[image: there is no content])=supP∈[image: there is no content][image: there is no content](P)=supP∈[image: there is no content][image: there is no content](P)








That is, the lowest worst case expected loss is the same for P∈[[image: there is no content]] and P∈[⟨[image: there is no content]⟩].
Furthermore, since [image: there is no content]([image: there is no content],[image: there is no content])=supP∈[⟨[image: there is no content]⟩][image: there is no content](P,[image: there is no content]) and since [image: there is no content]∈[[image: there is no content]], we have [image: there is no content]([image: there is no content],[image: there is no content])=supP∈[image: there is no content][image: there is no content](P,[image: there is no content]). Thus, B=[image: there is no content] minimises supP∈[image: there is no content][image: there is no content](P,B).

Now, suppose that [image: there is no content]∈⟨[image: there is no content]⟩ is different from [image: there is no content]. Then:



supP∈[image: there is no content][image: there is no content](P,[image: there is no content])≥[image: there is no content]([image: there is no content],[image: there is no content])>[image: there is no content]([image: there is no content],[image: there is no content])



(44)




where the strict inequality follows from strict propriety. This shows that adopting [image: there is no content]≠[image: there is no content] leads to an avoidably bad score.
Hence, B=[image: there is no content] is the unique function in ⟨[image: there is no content]⟩ which minimises supP∈[image: there is no content][image: there is no content](P,B).  ■




3. Belief over Sentences

Armed with our results for beliefs defined over propositions, we now tackle the case of beliefs defined over sentences, S[image: there is no content], of a propositional language, [image: there is no content]. The plan is as follows. First, we normalise the belief functions in Section 3.1. In Section 3.2, we motivate the use of logarithmic loss as a default loss function. We are able to define our logarithmic scoring rule in Section 3.3, and we show there that, with respect to our scoring rule, the generalised entropy maximiser is the unique belief function that minimises the worst-case expected loss.

Again, we shall not impose any restriction—such as additivity—on the agent’s belief function, now defined on the sentences of the propositional language [image: there is no content]. In particular, we do not assume that the agent’s belief function assigns logically equivalent sentences the same degree of belief. We shall show that any belief function violating this property incurs an avoidable loss. Thus, the results of this section allow us to show more than we could in the case of belief functions defined over propositions.

Several of the proofs in this section are analogous to the proofs of corresponding results presented in Section 2. They are included here in full for the sake of completeness; the reader may wish to skim over those details that are already familiar.


3.1. Normalisation

S[image: there is no content] is the set of sentences of propositional language [image: there is no content], formed as usual by recursively applying the connectives, [image: there is no content], to the propositional variables, [image: there is no content]. A non-normalised belief function, [image: there is no content]:S[image: there is no content]⟶R≥0, is thus a function that maps any sentence of the language to a non-negative real number. As in Section 2.1, for technical convenience, we shall focus our attention on normalised belief functions.

Definition 9 (Representation). A sentence, θ∈S[image: there is no content], represents the proposition [image: there is no content]. Let [image: there is no content] be a set of pairwise distinct propositions. We say that Θ⊆S[image: there is no content] is a set of representatives of [image: there is no content], if and only if each sentence in Θ represents some proposition in [image: there is no content] and each proposition in [image: there is no content] is represented by a unique sentence in Θ. A set, ρ, of representatives of [image: there is no content] will be called a representation. We denote by ϱ the set of all representations. For a set of pairwise distinct propositions, [image: there is no content], and a representation, [image: there is no content], we denote by ρ([image: there is no content])⊂S[image: there is no content] the set of sentences in ρ that represent the propositions in [image: there is no content].

We call π[image: there is no content]⊆S[image: there is no content] a partition of S[image: there is no content], if and only if it is a set of representatives of some partition [image: there is no content] of propositions. We denote by Π[image: there is no content] the set of these π[image: there is no content].

Definition 10 (Normalised belief function on sentences). Define the set of normalized belief functions on S[image: there is no content] as:



[image: there is no content][image: there is no content]:={B[image: there is no content]:S[image: there is no content]⟶[image: there is no content]:∑φ∈π[image: there is no content]B[image: there is no content](φ)≤1 for all π[image: there is no content]∈Π[image: there is no content] and ∑φ∈π[image: there is no content]B[image: there is no content](φ)=1 for some π[image: there is no content]∈Π[image: there is no content]}








The set of probability functions is defined as:



[image: there is no content][image: there is no content]:={P[image: there is no content]:S[image: there is no content]⟶[image: there is no content]:∑φ∈π[image: there is no content]P[image: there is no content](φ)=1 for all π[image: there is no content]∈Π[image: there is no content]}








As in the proposition case, we have:

Proposition 6. P[image: there is no content]∈[image: there is no content][image: there is no content] iff P[image: there is no content]:S[image: there is no content]⟶[image: there is no content] satisfies the axioms of probability:


	P1:

	P[image: there is no content](τ)=1 for all tautologies [image: there is no content]



	P2:

	If [image: there is no content] then P[image: there is no content](φ∨ψ)=P[image: there is no content](φ)+P[image: there is no content](ψ).





Proof: Suppose P[image: there is no content]∈[image: there is no content][image: there is no content]. For any tautology, τ∈S[image: there is no content], it holds that P[image: there is no content](τ)=1, because [image: there is no content] is a partition in Π[image: there is no content].P[image: there is no content](¬τ)=0, because [image: there is no content] is a partition in Π[image: there is no content] and P[image: there is no content](τ)=1.

Suppose that φ,ψ∈S[image: there is no content] are such that [image: there is no content]. We shall proceed by cases to show that P[image: there is no content](φ∨ψ)=P[image: there is no content](φ)+P[image: there is no content](ψ). In the first three cases, one of the sentences is a contradiction, in the last two cases, there are no contradictions.


	(i)

	[image: there is no content] and [image: there is no content] then [image: there is no content] Thus, by the above P[image: there is no content](φ)=1 and P[image: there is no content](ψ)=0, and hence, P[image: there is no content](φ∨ψ)=1=P[image: there is no content](φ)+P[image: there is no content](ψ).



	(ii)

	[image: there is no content] and [image: there is no content] then [image: there is no content] Thus, P[image: there is no content](φ∨ψ)=0=P[image: there is no content](φ)+P[image: there is no content](ψ).



	(iii)

	[image: there is no content][image: there is no content] and [image: there is no content] then [image: there is no content] and [image: there is no content] are both partitions in Π[image: there is no content]. Thus, P[image: there is no content](φ∨ψ)+P[image: there is no content](¬φ∨ψ)=1=P[image: there is no content](φ)+P[image: there is no content](¬φ∨ψ). Putting these observations together, we now find P[image: there is no content](φ∨ψ)=P[image: there is no content](φ)=P[image: there is no content](φ)+P[image: there is no content](ψ).



	(iv)

	[image: there is no content][image: there is no content] and [image: there is no content] then [image: there is no content] is a partition and [image: there is no content] is a tautology. Hence, P[image: there is no content](φ)+P[image: there is no content](ψ)=1 and P[image: there is no content](φ∨ψ)=1. This now yields P[image: there is no content](φ)+P[image: there is no content](ψ)=P[image: there is no content](φ∨ψ).



	(v)

	[image: there is no content][image: there is no content] and [image: there is no content] then none of the following sentences is a tautology or a contradiction: [image: there is no content] Since [image: there is no content] and [image: there is no content] are both partitions in Π[image: there is no content], we obtain P[image: there is no content](φ)+P[image: there is no content](ψ)=1−P[image: there is no content](¬(φ∨ψ))=P[image: there is no content](φ∨ψ). So, P[image: there is no content](φ)+P[image: there is no content](ψ)=P[image: there is no content](φ∨ψ).





On the other hand, suppose P1 and P2 hold. That ∑φ∈π[image: there is no content]P[image: there is no content](φ)=1 holds for all π[image: there is no content]∈Π[image: there is no content] can be seen by induction on the size of π[image: there is no content]. If |π[image: there is no content]|=1, then [image: there is no content] for some tautology τ∈S[image: there is no content], and P[image: there is no content](τ)=1 by P1. Suppose then that π[image: there is no content]={φ1,…,φk+1} for k≥1. Now, ∑i=1k−1P[image: there is no content](φi)+P[image: there is no content](φk∨φk+1)=1 by the induction hypothesis. Furthermore, P[image: there is no content](φk∨φk+1)=P[image: there is no content](φk)+P[image: there is no content](φk+1) by P2, so ∑φ∈π[image: there is no content]P[image: there is no content](φ)=1, as required.  ■

Definition 11 (Respects logical equivalence). We say that a belief function B[image: there is no content]∈⟨[image: there is no content][image: there is no content]⟩respects logical equivalence if and only if [image: there is no content] implies B[image: there is no content](φ)=B[image: there is no content](ψ).

Proposition 7. The probability functions P[image: there is no content]∈[image: there is no content][image: there is no content] respect logical equivalence.

Proof: Suppose P[image: there is no content]∈[image: there is no content][image: there is no content] and assume that φ,ψ∈S[image: there is no content] are logically equivalent. Note that [image: there is no content][image: there is no content] and that [image: there is no content] and [image: there is no content] are partitions in Π[image: there is no content]. Hence:



P[image: there is no content](φ)+P[image: there is no content](¬φ)=1=P[image: there is no content](ψ)+P[image: there is no content](¬φ)



(45)




Therefore, P[image: there is no content](φ)=P[image: there is no content](ψ).
Thus, the P[image: there is no content]∈[image: there is no content][image: there is no content] assign logically equivalent formulae the same probability.  ■



3.2. Loss

By analogy with the line of argument of Section 2.3, we shall suppose that a default loss function, L:S[image: there is no content]×⟨[image: there is no content][image: there is no content]⟩→(−∞,∞], satisfies the following requirements:


	L1. 

	L(φ,B[image: there is no content])=0, if B[image: there is no content](φ)=1.



	L2. 

	L(φ,B[image: there is no content]) strictly increases as B[image: there is no content](φ) decreases from one towards zero.



	L3. 

	L(φ,B[image: there is no content]) only depends on B[image: there is no content](φ).





Suppose we have a fixed belief function, B[image: there is no content]∈⟨[image: there is no content][image: there is no content]⟩, such that B[image: there is no content](τ)=1 for any tautology, τ, and [image: there is no content]=[image: there is no content]1∪[image: there is no content]2, where [image: there is no content]1 and [image: there is no content]2 are independent sublanguages, written [image: there is no content]1⫫B[image: there is no content][image: there is no content]2, i.e., B[image: there is no content](ϕ1∧ϕ2)=B[image: there is no content](ϕ1)·B[image: there is no content](ϕ2) for all ϕ1∈S[image: there is no content]1 and ϕ2∈S[image: there is no content]2. Let B⇂[image: there is no content]1(ϕ1):=B[image: there is no content](ϕ1), B⇂[image: there is no content]2(ϕ2):=B[image: there is no content](ϕ2).

	L4. 

	Losses are additive when the language is composed of independent sublanguages: if [image: there is no content]=[image: there is no content]1∪[image: there is no content]2 for [image: there is no content]1⫫B[image: there is no content][image: there is no content]2, then L(ϕ1∧ϕ2,B[image: there is no content])=[image: there is no content](ϕ1,B⇂[image: there is no content]1)+L2(ϕ2,B⇂[image: there is no content]2), where [image: there is no content] are loss functions defined on [image: there is no content]1,[image: there is no content]2, respectively.





Theorem 4. If a loss function, L, on S[image: there is no content]×⟨[image: there is no content][image: there is no content]⟩ satisfies L1–4, then L(φ,B[image: there is no content])=−klogB[image: there is no content](φ), where the constant, [image: there is no content], does not depend on the language, [image: there is no content].

Proof: We shall first focus on a loss function, L, defined with respect to a language, [image: there is no content], that contains at least two propositional variables.

L3 implies that L(φ,B[image: there is no content])=f[image: there is no content](B[image: there is no content](φ)) for some function, f[image: there is no content]:[image: there is no content]⟶(−∞,∞]. For our fixed [image: there is no content] and all [image: there is no content], choose some B[image: there is no content]∈⟨[image: there is no content][image: there is no content]⟩ such that [image: there is no content]=[image: there is no content]1∪[image: there is no content]2, [image: there is no content]1⫫B[image: there is no content],[image: there is no content]2B[image: there is no content](ϕ1)=x, and B[image: there is no content](ϕ2)=y for some ϕ1∈S[image: there is no content]1,ϕ2∈S[image: there is no content]2. This is possible, because [image: there is no content] contains at least two propositional variables.

Note that since [image: there is no content]1 and [image: there is no content]2 are independent sublanguages, given some specific tautology, [image: there is no content], of [image: there is no content]1:



1=B[image: there is no content]([image: there is no content])=B⇂[image: there is no content]1([image: there is no content])



(46)




B[image: there is no content]([image: there is no content]) is well defined, since [image: there is no content] is a tautology of S[image: there is no content]1, and every sentence in S[image: there is no content]1 is a sentence in S[image: there is no content]. Similarly, B⇂[image: there is no content]2([image: there is no content])=1 for some specific tautology [image: there is no content] of [image: there is no content]2. By L1, then, [image: there is no content]([image: there is no content],B⇂[image: there is no content]1)=L2([image: there is no content],B⇂[image: there is no content]2)=0, where [image: there is no content], respectively, [image: there is no content] are the loss functions with respect to S[image: there is no content]1 and S[image: there is no content]2 satisfying L1–4. Thus:


f[image: there is no content](x·y)=f[image: there is no content](B[image: there is no content](ϕ1)·B[image: there is no content](ϕ2))=L3L(ϕ1∧ϕ2,B[image: there is no content])=L4[image: there is no content](ϕ1,B⇂[image: there is no content]1)+L2(ϕ2,B⇂[image: there is no content]2)=L4[L(ϕ1∧[image: there is no content],B[image: there is no content])−L2([image: there is no content],B⇂[image: there is no content]2)]+[L([image: there is no content]∧ϕ2,B[image: there is no content])−[image: there is no content]([image: there is no content],B⇂[image: there is no content]1)]=L1L(ϕ1∧[image: there is no content],B[image: there is no content])+L([image: there is no content]∧ϕ2,B[image: there is no content])=L3f[image: there is no content](B[image: there is no content](ϕ1∧[image: there is no content]))+f[image: there is no content](B[image: there is no content](ϕ2∧[image: there is no content]))=f[image: there is no content](B⇂[image: there is no content]1(ϕ1)·B⇂[image: there is no content]2([image: there is no content]))+f[image: there is no content](B⇂[image: there is no content]1([image: there is no content])·B⇂[image: there is no content]2(ϕ2))=(46)f[image: there is no content](B⇂[image: there is no content]1(ϕ1))+f[image: there is no content](B⇂[image: there is no content]2(ϕ2))=f[image: there is no content](B[image: there is no content](ϕ1))+f[image: there is no content](B[image: there is no content](ϕ2))=f[image: there is no content](x)+f[image: there is no content](y)



(47)




The negative logarithm on [image: there is no content] is characterisable up to a multiplicative constant, k[image: there is no content], in terms of this additivity, together with the condition that f[image: there is no content](x)≥0, which is implied by L1–2 (see, e.g., Theorem 0.2.5 in [7]). L2 ensures that f[image: there is no content] is not zero everywhere, so k[image: there is no content]>0. As in the corresponding proof for propositions, it follows that f[image: there is no content](0)=+∞.

Thus far, we have shown that for a fixed language, [image: there is no content], with at least two propositional variables, L(F,B[image: there is no content])=−k[image: there is no content]logB[image: there is no content](F) on [image: there is no content]

Now, focus on an arbitrary language, [image: there is no content]1, and a corresponding loss function, [image: there is no content]. We can choose [image: there is no content]2,[image: there is no content],B[image: there is no content] such that [image: there is no content] is composed of independent sublanguages, [image: there is no content]1 and [image: there is no content]2. By reasoning analogous to that above:



f[image: there is no content]1(B⇂[image: there is no content]1(ϕ1))=[image: there is no content](ϕ1,B⇂[image: there is no content]1)=L(ϕ1∧[image: there is no content],B[image: there is no content])=f[image: there is no content](B[image: there is no content](ϕ1∧[image: there is no content]))=f[image: there is no content](B[image: there is no content](ϕ1)·1)=−k[image: there is no content]logB⇂[image: there is no content]1(ϕ1)



(48)




Therefore, the loss function for [image: there is no content]1 is [image: there is no content](ϕ1,B⇂[image: there is no content]1)=−k[image: there is no content]logB⇂[image: there is no content]1(ϕ1). Thus, the constant, k[image: there is no content], does not depend on [image: there is no content] after all.

In general, then, L(F,B[image: there is no content])=−klogB[image: there is no content](F) for some positive k.  ■

Since multiplication by a constant is equivalent to a change of base, we can take log to be the natural logarithm. Since we will be interested in the belief functions that minimise loss, rather than in the absolute value of any particular losses, we can take [image: there is no content] without loss of generality. Theorem 4 thus allows us to focus on the logarithmic loss function:



Llog(F,B[image: there is no content]):=−logB[image: there is no content](F)



(49)






3.3. Score, Entropy and Their Connection

In the case of belief over sentences, the expected loss varies according to which sentences are used to represent the various partitions of propositions. We can define the g-score to be the worst-case expected loss, where this worst case is taken over all possible representations:

Definition 12 (g-score). Given a loss function, [image: there is no content] an inclusive weighting function, g:Π⟶[image: there is no content], and a representation, [image: there is no content], we define the representation-relative g-score Sg,ρL:[image: there is no content][image: there is no content]×⟨[image: there is no content][image: there is no content]⟩⟶[−∞,∞] by



Sg,ρL(P[image: there is no content],B[image: there is no content]):=∑[image: there is no content]g(π)∑φ∈ρ(π)P[image: there is no content](φ)L(φ,B[image: there is no content])



(50)




and the (representation-independent) g-score Sg,[image: there is no content]L:[image: there is no content][image: there is no content]×⟨[image: there is no content][image: there is no content]⟩⟶[−∞,∞] by


Sg,[image: there is no content]L(P[image: there is no content],B[image: there is no content]):=sup[image: there is no content]Sg,ρL(P[image: there is no content],B[image: there is no content])



(51)




In particular, for the logarithmic loss function under consideration here, we have:



Sg,ρlog(P[image: there is no content],B[image: there is no content]):=−∑[image: there is no content]g(π)∑φ∈ρ(π)P[image: there is no content](φ)logB[image: there is no content](φ)



(52)




and:


Sg,[image: there is no content]log(P[image: there is no content],B[image: there is no content]):=sup[image: there is no content]Sg,ρlog(P[image: there is no content],B[image: there is no content])



(53)




We can thus define the g-entropy of a belief function on S[image: there is no content] as:


Hg,[image: there is no content](B[image: there is no content]):=Sg,[image: there is no content]log(B[image: there is no content],B[image: there is no content])



(54)




There is a canonical one-to-one correspondence between the B[image: there is no content]∈⟨[image: there is no content][image: there is no content]⟩ which respect logical equivalence and the B∈⟨[image: there is no content]⟩. In particular, [image: there is no content][image: there is no content] can be identified with [image: there is no content]. Moreover, any convex [image: there is no content]⊆[image: there is no content] is in one-to-one correspondence with a convex [image: there is no content][image: there is no content]⊆[image: there is no content][image: there is no content]. In the following, we shall make frequent use of this correspondence. For a B[image: there is no content]∈⟨[image: there is no content][image: there is no content]⟩ which respects logical equivalence, we denote by B the function in ⟨[image: there is no content]⟩ with which it stands in one-to-one correspondence.

Lemma 6. If B[image: there is no content]∈⟨[image: there is no content][image: there is no content]⟩ respects logical equivalence, then for all [image: there is no content], we have Sg,[image: there is no content]log(P[image: there is no content],B[image: there is no content])=sup[image: there is no content]Sg,ρlog(P[image: there is no content],B[image: there is no content])=[image: there is no content](P,B).

Proof: Simply note that Sg,ρlog(P[image: there is no content],B[image: there is no content]) does not depend on [image: there is no content]  ■

Lemma 7. For all convex [image: there is no content][image: there is no content]⊆[image: there is no content][image: there is no content]:



B[image: there is no content]†∈arginfB[image: there is no content]∈⟨[image: there is no content][image: there is no content]⟩supP[image: there is no content]∈[image: there is no content][image: there is no content]sup[image: there is no content]Sg,ρlog(P[image: there is no content],B[image: there is no content])








respects logical equivalence.
Proof: Suppose that:



B[image: there is no content]†∈arginfB[image: there is no content]∈⟨[image: there is no content][image: there is no content]⟩supP[image: there is no content]∈[image: there is no content][image: there is no content]sup[image: there is no content]Sg,ρlog(P[image: there is no content],B[image: there is no content])



(55)




and assume that B[image: there is no content]† does not respect logical equivalence. Then, define:


B[image: there is no content]inf(φ):=infθ∈S[image: there is no content]⊧θ↔φB[image: there is no content]†(θ)



(56)




Since B[image: there is no content]† does not respect logical equivalence, there are logically equivalent [image: there is no content] such that B[image: there is no content]†(φ)≠B[image: there is no content]†(ψ). Hence, B[image: there is no content]inf(φ)<max{B[image: there is no content]†(φ),B[image: there is no content]†(ψ)}. Thus, for every π[image: there is no content]∈Π[image: there is no content] with φ∈π[image: there is no content], we have ∑χ∈π[image: there is no content]B[image: there is no content]inf(χ)<1. Thus, B[image: there is no content]inf∉[image: there is no content][image: there is no content].B[image: there is no content]inf respects logical equivalence by definition.
Now, consider the function Binf:PΩ⟶[image: there is no content] which is determined by B[image: there is no content]inf. Clearly, Binf∉[image: there is no content]. There are two cases to consider.

(a) Binf∈⟨[image: there is no content]⟩∖[image: there is no content]. Since Binf∉[image: there is no content], by Theorem 2, we have that:



supP∈[image: there is no content][image: there is no content](P,Binf)>infB∈⟨[image: there is no content]⟩supP∈[image: there is no content][image: there is no content](P,B)



(57)




(b) Binf∉⟨[image: there is no content]⟩. Then, define [image: there is no content] by [image: there is no content](F):=Binf(F)+δ for all [image: there is no content], where [image: there is no content] is minimal such that [image: there is no content]∈⟨[image: there is no content]⟩. In particular, [image: there is no content](∅)≥δ>0, thus [image: there is no content]∉[image: there is no content]. Moreover, whenever [image: there is no content], it holds that −P(F)logBinf(F)>−P(F)log[image: there is no content](F)<+∞. For the remainder of this proof, we shall extend the definition of the logarithmic g-score [image: there is no content](P,B) by allowing the belief function, B, to be any non-negative function defined on [image: there is no content] rather than just B∈⟨[image: there is no content]⟩—if B∉⟨[image: there is no content]⟩, we shall be careful not to appeal to results that assume B∈⟨[image: there is no content]⟩. We thus find for all P∈[image: there is no content] that [image: there is no content](P,Binf)>[image: there is no content](P,[image: there is no content])<+∞. Thus, by Theorem 2, we obtain the sharp inequality in the following:



supP∈[image: there is no content][image: there is no content](P,Binf)≥supP∈[image: there is no content][image: there is no content](P,[image: there is no content])>infB∈⟨[image: there is no content]⟩supP∈[image: there is no content][image: there is no content](P,B)



(58)




For both cases, we will obtain a contradiction:



[image: there is no content]([image: there is no content],[image: there is no content])=supP∈[image: there is no content]Sglog(P,[image: there is no content])



(59)






=supP[image: there is no content]∈[image: there is no content][image: there is no content]sup[image: there is no content]Sg,ρlog(P[image: there is no content],P[image: there is no content]†)



(60)






≥infB[image: there is no content]∈⟨[image: there is no content][image: there is no content]⟩supP[image: there is no content]∈[image: there is no content][image: there is no content]sup[image: there is no content]Sg,ρlog(P[image: there is no content],B[image: there is no content])



(61)






=(55)supP[image: there is no content]∈[image: there is no content][image: there is no content]sup[image: there is no content]Sg,ρlog(P[image: there is no content],B[image: there is no content]†)



(62)






=supP[image: there is no content]∈[image: there is no content][image: there is no content]−∑[image: there is no content]g(π)∑φ∈ρ(π)P[image: there is no content](φ)infθ∈S[image: there is no content]⊧θ↔φlogB[image: there is no content]†(θ)forallρ∈ϱ



(63)






=supP[image: there is no content]∈[image: there is no content][image: there is no content]Sg,ρlog(P[image: there is no content],B[image: there is no content]inf)forallρ∈ϱ



(64)






=supP∈[image: there is no content]Sglog(P,Binf)



(65)






>infB∈⟨[image: there is no content]⟩supP∈[image: there is no content]Sglog(P,B)



(66)






=[image: there is no content]([image: there is no content],[image: there is no content])



(67)




We obtain Equation (59) by noticing that [image: there is no content] is the unique function minimising worst-case g-expected loss (Theorem 2) and recalling that the expressions in Equation (39) and Equation (40) are equal.

Equation (60) is immediate, as the probability functions respect logical equivalence. For Equation (63), note that P[image: there is no content] respects logical equivalence. Furthermore, since [image: there is no content] is strictly decreasing, a smaller value of B[image: there is no content](φ) leads to a greater score.

Equation (64) follows from Equation (56) and Lemma 6, since B[image: there is no content]inf respects logical equivalence. Hence, Sg,ρlog(P,B[image: there is no content]inf) does not depend on the partition [image: there is no content]

The inequality (66), we have seen above in the two cases, Equation (57) and Equation (58). Equation (67) is again implied by Theorem 2.

We have thus found a contradiction. Hence, the



B[image: there is no content]†∈arginfB[image: there is no content]∈⟨[image: there is no content][image: there is no content]⟩supP[image: there is no content]∈[image: there is no content][image: there is no content]sup[image: there is no content]Sg,ρlog(P[image: there is no content],B[image: there is no content])



(68)




have to respect logical equivalence.  ■
Theorem 2, the key result in the case of belief over propositions, generalises to the case of belief over sentences:

Theorem 5. As usual, [image: there is no content][image: there is no content]⊆[image: there is no content][image: there is no content] is taken to be convex and g inclusive. We have that:



argsupP[image: there is no content]∈[image: there is no content][image: there is no content]Hg,[image: there is no content](P[image: there is no content])=arginfB[image: there is no content]∈[image: there is no content][image: there is no content]supP[image: there is no content]∈[image: there is no content][image: there is no content]Sg,[image: there is no content]log(P[image: there is no content],B[image: there is no content])








Proof: As in the corresponding theorem for the proposition (Theorem 2), we shall prove a slightly stronger equality:



argsupP[image: there is no content]∈[image: there is no content][image: there is no content]Hg,[image: there is no content](P[image: there is no content])=arginfB[image: there is no content]∈⟨[image: there is no content][image: there is no content]⟩supP[image: there is no content]∈[image: there is no content][image: there is no content]Sg,[image: there is no content]log(P[image: there is no content],B[image: there is no content])








Theorem 5 then follows for the same reasons given in the previous section.
Denote by ⟨[image: there is no content][image: there is no content]le⟩⊂⟨[image: there is no content][image: there is no content]⟩ the convex hull of functions B[image: there is no content]∈[image: there is no content][image: there is no content] that respect logical equivalence. Let Rep:⟨[image: there is no content]⟩⟶⟨[image: there is no content][image: there is no content]le⟩ be the bijective map that assigns to any B∈⟨[image: there is no content]⟩ the unique B[image: there is no content]∈⟨[image: there is no content][image: there is no content]⟩ which represents it (i.e., B(F)=B[image: there is no content](φ), whenever [image: there is no content] is represented by φ∈S[image: there is no content]).



arginfB[image: there is no content]∈⟨[image: there is no content][image: there is no content]⟩supP[image: there is no content]∈[image: there is no content][image: there is no content]Sg,[image: there is no content]log(P[image: there is no content],B[image: there is no content])=arginfB[image: there is no content]∈⟨[image: there is no content][image: there is no content]le⟩supP[image: there is no content]∈[image: there is no content][image: there is no content]Sg,[image: there is no content]log(P[image: there is no content],B[image: there is no content])



(69)






=Rep(arginfB∈[image: there is no content]supP∈[image: there is no content]Sglog(P,B))



(70)






=Rep([image: there is no content])



(71)






=P[image: there is no content]†



(72)




Equation (69) is simply Lemma 7. Equation (70) follows directly from applying Lemma 6, and Equation (71) is simply Theorem 2.  ■

In the above, we used P[image: there is no content]† to denote the probability function in [image: there is no content][image: there is no content] which represents the g-entropy maximiser, [image: there is no content]∈[image: there is no content]. Now, note that Hg,[image: there is no content](P[image: there is no content])=[image: there is no content](P). Thus, P[image: there is no content]† is not only the function representing [image: there is no content]; it is also the unique function in [image: there is no content][image: there is no content] which maximises g-entropy Hg,[image: there is no content].

Theorem 3 also extends to the sentence framework. As we shall now see, the worst-case g-score can be taken with respect to a chance function in [image: there is no content][image: there is no content]*, rather than [image: there is no content][image: there is no content]=⟨[image: there is no content][image: there is no content]*⟩.

Theorem 6. If [image: there is no content][image: there is no content]*⊆[image: there is no content][image: there is no content] is such that the unique g-entropy maximiser, P[image: there is no content]†, of [[image: there is no content][image: there is no content]]=[⟨[image: there is no content][image: there is no content]*⟩], is in [[image: there is no content][image: there is no content]*], then:



P[image: there is no content]†=argsupP[image: there is no content]∈[image: there is no content][image: there is no content]Hg,[image: there is no content](P[image: there is no content])=arginfB∈[image: there is no content][image: there is no content]supP[image: there is no content]∈[image: there is no content][image: there is no content]*Sg,[image: there is no content]log(P[image: there is no content],B[image: there is no content])








Proof: Again, we shall prove a slightly stronger statement with B[image: there is no content] ranging in ⟨[image: there is no content][image: there is no content]⟩.

Since g is inclusive, we have that [image: there is no content] is a strictly proper scoring rule. Hence, for a fixed [image: there is no content], Sg,ρlog(P[image: there is no content],·) is minimal if and only if P[image: there is no content](φ)=B[image: there is no content](φ) for all [image: there is no content]

Now, suppose B[image: there is no content]∈⟨[image: there is no content][image: there is no content]⟩ is different from a fixed P[image: there is no content]∈[image: there is no content][image: there is no content]. Then, there is some φ∈S[image: there is no content] such that B[image: there is no content](φ)≠P[image: there is no content](φ). Now, pick some [image: there is no content] such that [image: there is no content] Then, strict propriety implies the sharp inequality below:



Sg,[image: there is no content]log(P[image: there is no content],B[image: there is no content])=sup[image: there is no content]Sg,ρlog(P[image: there is no content],B[image: there is no content])≥Sg,ρ′log(P[image: there is no content],B[image: there is no content])>Sg,ρ′log(P[image: there is no content],P[image: there is no content])=sup[image: there is no content]Sg,ρlog(P[image: there is no content],P[image: there is no content])=Sg,[image: there is no content]log(P[image: there is no content],P[image: there is no content])



(73)




The second equality follows since the P[image: there is no content]∈[image: there is no content][image: there is no content] respect logical equivalence, and hence, Sg,ρL(P[image: there is no content],P[image: there is no content]) does not depend on [image: there is no content] Thus, for all P[image: there is no content]∈[image: there is no content][image: there is no content], we find arginfB[image: there is no content]∈⟨[image: there is no content][image: there is no content]⟩[image: there is no content](P[image: there is no content],B[image: there is no content])=P[image: there is no content]. Hence, for P[image: there is no content]=P[image: there is no content]†, we obtain:


Sg,[image: there is no content]log(P[image: there is no content]†,P[image: there is no content]†)=infB[image: there is no content]∈⟨[image: there is no content][image: there is no content]⟩Sg,[image: there is no content]log(P[image: there is no content]†,B[image: there is no content])≤infB[image: there is no content]∈⟨[image: there is no content][image: there is no content]⟩supP[image: there is no content]∈[image: there is no content][image: there is no content]*Sg,[image: there is no content]log(P[image: there is no content],B[image: there is no content])≤infB[image: there is no content]∈⟨[image: there is no content][image: there is no content]⟩supP[image: there is no content]∈⟨[image: there is no content][image: there is no content]*⟩Sg,[image: there is no content]log(P[image: there is no content],B[image: there is no content])=supP[image: there is no content]∈⟨[image: there is no content][image: there is no content]*⟩Sg,[image: there is no content]log(P[image: there is no content],P[image: there is no content]†)=Sg,[image: there is no content]log(P[image: there is no content]†,P[image: there is no content]†)



(74)




where the last two equalities are simply Theorem 5. Hence:


infB[image: there is no content]∈⟨[image: there is no content][image: there is no content]⟩supP[image: there is no content]∈[image: there is no content][image: there is no content]*Sg,[image: there is no content]log(P[image: there is no content],B[image: there is no content])=Sg,[image: there is no content]log(P[image: there is no content]†,P[image: there is no content]†)=supP[image: there is no content]∈⟨[image: there is no content][image: there is no content]*⟩Hg,[image: there is no content](P)








That is, the lowest worst-case expected loss is the same for P[image: there is no content]∈[[image: there is no content][image: there is no content]*] and P[image: there is no content]∈[⟨[image: there is no content][image: there is no content]*⟩].
Furthermore, since Sg,[image: there is no content]log(P[image: there is no content]†,P[image: there is no content]†)=supP[image: there is no content]∈⟨[image: there is no content][image: there is no content]*⟩Sg,[image: there is no content]log(P[image: there is no content],P[image: there is no content]†) and since P[image: there is no content]†∈[[image: there is no content][image: there is no content]*], we have Sg,[image: there is no content]log(P[image: there is no content]†,P[image: there is no content]†)=supP[image: there is no content]∈[image: there is no content][image: there is no content]*Sg,[image: there is no content]log(P[image: there is no content],P[image: there is no content]†). Thus, B[image: there is no content]=P[image: there is no content]† minimises supP[image: there is no content]∈[image: there is no content][image: there is no content]*Sg,[image: there is no content]log(P[image: there is no content],B[image: there is no content]).

Now, suppose that B[image: there is no content]′∈⟨[image: there is no content][image: there is no content]⟩ is different from P[image: there is no content]†. Then:



supP[image: there is no content]∈[image: there is no content][image: there is no content]*Sg,[image: there is no content]log(P[image: there is no content],B[image: there is no content]′)≥Sg,[image: there is no content]log(P[image: there is no content]†,B[image: there is no content]′)>Sg,[image: there is no content]log(P[image: there is no content]†,P[image: there is no content]†)








where the strict inequality follows as seen above. This now shows that adopting B[image: there is no content]′≠P[image: there is no content]† leads to an avoidably bad score.
Hence, B[image: there is no content]=P[image: there is no content]† is the unique function in ⟨[image: there is no content][image: there is no content]⟩ which minimises supP[image: there is no content]∈[image: there is no content][image: there is no content]*Sg,[image: there is no content]log(P[image: there is no content],B[image: there is no content]).  ■

We see, then, that the results of Section 2 concerning beliefs defined on propositions extend naturally to beliefs defined on the sentences of a propositional language. In light of these findings, our subsequent discussions will, for ease of exposition, solely focus on propositions. It should be clear how our remarks generalise to sentences.




4. Relationship to Standard Entropy Maximisation

We have seen so far that there is a sense in which our notions of entropy and expected loss depend on the weight given to each partition under consideration—i.e., on the weighting function, g. It is natural to demand that no proposition should be entirely dismissed from consideration by being given zero weight—that g be inclusive. In which case, the belief function that minimises worst-case g-expected loss is just the probability function in [image: there is no content] that maximises g-entropy, if there is such a function. This result provides a single justification of the three norms of objective Bayesianism: the belief function should be a probability function, it should be in [image: there is no content], i.e., calibrated to evidence of physical probability, and it should otherwise be equivocal, where the degree to which a belief function is equivocal can be measured by its g-entropy.

This line of argument gives rise to two questions. Which g-entropy should be maximised? Does the standard entropy maximiser count as a rational belief function?

On the former question, the task is to isolate some set, [image: there is no content], of appropriate weighting functions. Thus far, the only restriction imposed on a weighting function, g, has been that it should be inclusive; this is required in order that scoring rules evaluate all beliefs, rather than just a select few. We shall put forward two further conditions that can help to narrow down a proper subclass, [image: there is no content], of weighting functions.

A second natural desideratum is the following:

Definition 13 (Symmetric weighting function). A weighting function, g, is symmetric, if and only if whenever [image: there is no content] can be obtained from π by permuting the [image: there is no content] in [image: there is no content] then g([image: there is no content])=g(π).

For example, for [image: there is no content] and symmetric g, we have that [image: there is no content] Note that [image: there is no content],g[image: there is no content] and [image: there is no content] are all symmetric. The symmetry condition can also be stated as follows: [image: there is no content] is only a function of the spectrum of π, i.e., of the multi-set of sizes of the members of π. In the above example, the spectrum of both partitions is [image: there is no content].

It turns out that inclusive and symmetric weighting functions lead to g-entropy maximisers that satisfy a variety of intuitive and plausible properties—see Appendix B.

In addition, it is natural to suppose that if [image: there is no content] is a refinement of partition π, then g should not give any less weight to [image: there is no content] than it does to π—there are no grounds to favour coarser partitions over more fine-grained partitions; although, as Keynes (Chapter 4 in [19]) argued, there may be grounds to prefer finer-grained partitions over coarser partitions.

Definition 14 (Refined weighting function). A weighting function, g, is refined, if and only if whenever [image: there is no content] refines π, then g([image: there is no content])≥g(π).

[image: there is no content] and [image: there is no content] are refined, but g[image: there is no content] is not.

Let [image: there is no content]0 be the set of weighting functions that are inclusive, symmetric and refined. One might plausibly set [image: there is no content]=[image: there is no content]0. We would at least suggest that all the weighting functions in [image: there is no content]0 are appropriate weighting functions for scoring rules; we shall leave it open as to whether [image: there is no content] should contain some weighting functions—such as the proposition weighting, g[image: there is no content]—that lie outside [image: there is no content]0. We shall thus suppose in what follows that the set [image: there is no content] of appropriate weighting functions is such that [image: there is no content]0⊆[image: there is no content]⊆[image: there is no content]inc, where [image: there is no content]inc is the set of inclusive weighting functions.

One might think that the second question posed above—does the standard entropy maximiser count as a rational belief function?—should be answered in the negative. We saw in Section 2.2 that the standard entropy, [image: there is no content]-entropy, has a weighting function, [image: there is no content], that is not inclusive. Therefore, there is no guarantee that the standard entropy maximiser minimises worst-case g-expected loss for some g∈[image: there is no content]. Indeed, Figure 1 showed that the standard entropy maximiser need neither coincide with the partition entropy maximiser nor the proposition entropy maximiser.

However, it would be too hasty to conclude that the standard entropy maximiser fails to qualify as a rational belief function. Recall that the equivocation norm says that an agent’s belief function should be sufficiently equivocal, rather than maximally equivocal. This qualification is essential to cope with the situation in which there is no maximally equivocal function in [image: there is no content], i.e., the situation in which for any function in [image: there is no content], there is another function in [image: there is no content] that is more equivocal. This arises, for instance, when one has evidence that a coin is biased in favour of tails, [image: there is no content]=[image: there is no content]={P:P(Tails)>1/2}. In this case, supP∈[image: there is no content][image: there is no content](P) is achieved by the probability function which gives probability [image: there is no content] to tails, which is outside [image: there is no content]. This situation also arises in certain cases when evidence is determined by quantified propositions (§2 in [20]). The best one can do in such a situation is adopt a probability function in [image: there is no content] that is sufficiently equivocal, where what counts as sufficiently equivocal may depend on pragmatic factors, such as the required numerical accuracy of predictions and the computational resources available to isolate a suitable function.

Let ⇓[image: there is no content] be the set of belief functions that are sufficiently equivocal. Plausibly:


	E1:

	⇓[image: there is no content]≠∅. An agent is always entitled to hold some beliefs.



	E2:

	⇓[image: there is no content]⊆[image: there is no content]. Sufficiently equivocal belief functions are calibrated with evidence.



	E3:

	For all g∈[image: there is no content], there is some ϵ>infB∈[image: there is no content]supP∈[image: there is no content][image: there is no content](P,B) such that if R∈[image: there is no content] and supP∈[image: there is no content][image: there is no content](P,R)<ϵ, then R∈⇓[image: there is no content]., i.e., if R has sufficiently low worst-case g-expected loss for some appropriate g, then R is sufficiently equivocal.



	E4:

	⇓⇓[image: there is no content]=⇓[image: there is no content]. Any function, from those that are calibrated with evidence, that is sufficiently equivocal, is a function, from those that are calibrated with evidence and are sufficiently equivocal, that is sufficiently equivocal.



	E5:

	If P is a limit point of ⇓[image: there is no content] and P∈[image: there is no content], then P∈⇓[image: there is no content].





A closely related set of conditions was put forward in [20]. Note that we will not need to appeal to E4 in this paper. E1 is a consequence of the other principles together with the fact that [image: there is no content]≠∅.
Conditions E2, E3 and E5 allow us to answer our two questions. Which g-entropy should be maximised? By E3, it is rational to adopt any g-entropy maximiser that is in [image: there is no content], for g∈[image: there is no content]⊇[image: there is no content]0. Does the standard entropy maximiser count as a rational belief function? Yes, if it is in [image: there is no content] (which is the case, for instance, if [image: there is no content] is closed):

Theorem 7 (Justification of maxent). If [image: there is no content] contains its standard entropy maximiser, [image: there is no content]:=argsup[image: there is no content][image: there is no content], then [image: there is no content]∈⇓[image: there is no content].

Proof: We shall first see that there is a sequence of [image: there is no content] in [image: there is no content] such that the [image: there is no content]-entropy maximisers Pt†∈[[image: there is no content]] converge to [image: there is no content]. All respective entropy maximisers are unique, due to Corollary 2.

Let [image: there is no content]({{ω}:ω∈Ω})=1, and put [image: there is no content](π):=1t for all other [image: there is no content] The [image: there is no content] are in [image: there is no content], because they are inclusive, symmetric and refined. [image: there is no content]-entropy has the following form:



[image: there is no content]:=supP∈[image: there is no content]H[image: there is no content](P)=supP∈[image: there is no content]∑[image: there is no content]−[image: there is no content](π)∑[image: there is no content]P(F)logP(F)








Now note that [image: there is no content](π) converges to [image: there is no content](π) and that [image: there is no content] is finite for all [image: there is no content] Thus, for all P∈[image: there is no content], [image: there is no content] converges to [image: there is no content](P) as t approaches infinity. Hence, supP∈[image: there is no content]H[image: there is no content](P)=[image: there is no content] tends to supP∈[image: there is no content][image: there is no content](P)=[image: there is no content].
Let us now compute:



|[image: there is no content]([image: there is no content])−[image: there is no content]([image: there is no content])|=|[image: there is no content]([image: there is no content])−H[image: there is no content]([image: there is no content])+H[image: there is no content]([image: there is no content])−[image: there is no content]([image: there is no content])|≤|[image: there is no content]([image: there is no content])−H[image: there is no content]([image: there is no content])|+|H[image: there is no content]([image: there is no content])−[image: there is no content]([image: there is no content])|=|[image: there is no content]([image: there is no content])−H[image: there is no content]([image: there is no content])|+|[image: there is no content]−[image: there is no content]|
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As we noted above, [image: there is no content] converges to [image: there is no content]. Furthermore, [image: there is no content] is a bounded sequence. Hence, H[image: there is no content]([image: there is no content]) converges to [image: there is no content]([image: there is no content]). Furthermore, recall that [image: there is no content] tends to [image: there is no content]. Overall, we find that limt→∞[image: there is no content]([image: there is no content])=[image: there is no content]([image: there is no content]).
Since [image: there is no content](·) is a strictly concave function on [[image: there is no content]] and [[image: there is no content]] is convex, it follows that [image: there is no content] converges to [image: there is no content]

Note that the [image: there is no content] are not necessarily in [image: there is no content]. However, they are in [[image: there is no content]], and there will be some sequence of Pt‡∈⇓[image: there is no content] close to [image: there is no content] such that [image: there is no content], as we shall now see.

If [image: there is no content]∈[image: there is no content], then simply let Pt‡=[image: there is no content], which is in ⇓[image: there is no content] by E3.

If [image: there is no content]∉[image: there is no content], then there exists a [image: there is no content]∈[image: there is no content] which is different from [image: there is no content], such that all the points on the line segment between [image: there is no content] and [image: there is no content] are in [image: there is no content]; with the exception of [image: there is no content]. Now define [image: there is no content](ω)=(1−[image: there is no content])[image: there is no content](ω)+[image: there is no content][image: there is no content](ω)=[image: there is no content](ω)+[image: there is no content]([image: there is no content](ω)−[image: there is no content](ω)). Note that for [image: there is no content] we have, for all [image: there is no content], that [image: there is no content](ω)>0 implies [image: there is no content]

Then, with



mt:=min[image: there is no content][image: there is no content](ω)>0{[image: there is no content](ω)}








and [image: there is no content], it follows from Proposition 18 that for all [image: there is no content] and all P∈[image: there is no content], [image: there is no content] implies [image: there is no content](F)>0. Thus, for such an F, we have [image: there is no content](F)≥mt>[image: there is no content]>0.
Adopting the purely notational convention that [image: there is no content], we find for P∈[[image: there is no content]] and [image: there is no content] that:



|S[image: there is no content]log(P,[image: there is no content])−S[image: there is no content]log(P,[image: there is no content])|≤∑[image: there is no content][image: there is no content](π)|∑[image: there is no content]P(F)log[image: there is no content](F)−log[image: there is no content](F)|≤∑[image: there is no content][image: there is no content](π)∑[image: there is no content][image: there is no content]P(F)|log[image: there is no content](F)−log[image: there is no content](F)|≤∑[image: there is no content][image: there is no content](π)∑[image: there is no content][image: there is no content]P(F)|log[image: there is no content](F)−[image: there is no content]·|[image: there is no content](F)−[image: there is no content](F)|[image: there is no content](F)|≤∑[image: there is no content][image: there is no content](π)∑[image: there is no content][image: there is no content]P(F)|log[image: there is no content](F)−[image: there is no content][image: there is no content](F)|≤∑[image: there is no content][image: there is no content](π)∑[image: there is no content][image: there is no content]P(F)|logmt−[image: there is no content]mt|=|logmt−[image: there is no content]mt|∑[image: there is no content][image: there is no content](π)
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For fixed [image: there is no content] and all P∈[[image: there is no content]],|S[image: there is no content]log(P,[image: there is no content])−S[image: there is no content]log(P,[image: there is no content])| becomes arbitrarily small for small [image: there is no content] moreover, the upper bound we established does not depend on [image: there is no content] In particular, for all [image: there is no content], there exists a [image: there is no content] such that for all [image: there is no content] and all P∈[[image: there is no content]], it holds that |S[image: there is no content]log(P,Pt,1[image: there is no content]‡)−S[image: there is no content]log(P,[image: there is no content])|<χt.

Now, let ϵt>infB∈[image: there is no content]supP∈[image: there is no content]S[image: there is no content]log(P,B)=[image: there is no content]. Then, with χt=ϵt−[image: there is no content]2>0, we have for big enough [image: there is no content] that:



supP∈[image: there is no content]S[image: there is no content]log(P,Pt,1[image: there is no content]‡)−supP∈[image: there is no content]S[image: there is no content]log(P,[image: there is no content])≤χt
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Thus:


supP∈[image: there is no content]S[image: there is no content]log(P,Pt,1[image: there is no content]‡)≤χt+supP∈[image: there is no content]S[image: there is no content]log(P,[image: there is no content])=ϵt−[image: there is no content]2+[image: there is no content]<ϵt
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Hence, [image: there is no content]∈⇓[image: there is no content] by E3 for small enough [image: there is no content] since worst-case [image: there is no content]-expected loss of [image: there is no content] becomes arbitrarily close to [image: there is no content].
Now, pick a sequence [image: there is no content], such that [image: there is no content] is small enough to ensure that for every t, it holds that [image: there is no content]∈⇓[image: there is no content]. Clearly, the sequence ([image: there is no content])[image: there is no content] converges to the limit of the sequence [image: there is no content], and this limit is [image: there is no content] Therefore, the sequence [image: there is no content] converges to [image: there is no content], which is, by our assumption, in [image: there is no content].

By E5, we have [image: there is no content]∈⇓[image: there is no content].  ■

So far, we have seen that, as long as the standard entropy maximiser is not ruled out by the available evidence, it is sufficiently equivocal, and hence, it is rational for an agent to adopt this function as her belief function. On the other hand, the above considerations also imply that if the entropy maximiser [image: there is no content]is ruled out by the available evidence (i.e., [image: there is no content]∈[[image: there is no content]]∖[image: there is no content]), it is rational to adopt some function P close enough to [image: there is no content], because such a function will be sufficiently equivocal:

Corollary 4. For all [image: there is no content], there exists a P∈⇓[image: there is no content] such that |P(ω)−[image: there is no content](ω)|<ϵ for all [image: there is no content]

Proof: Consider the same sequence, [image: there is no content], as in the above proof. Recall that [image: there is no content] converges to [image: there is no content] Now, pick a t such that |[image: there is no content](ω)−[image: there is no content](ω)|<ϵ2 for all [image: there is no content] For this t, it holds that [image: there is no content]∈⇓[image: there is no content] for small enough [image: there is no content] and that [image: there is no content] converges to [image: there is no content]. Thus, for small enough [image: there is no content], we have |[image: there is no content](ω)−[image: there is no content](ω)|<ϵ2 for all [image: there is no content] Thus, |[image: there is no content](ω)−[image: there is no content](ω)|<ϵ for all [image: there is no content]  ■

Is there anything that makes the standard entropy maximiser stand out among all those functions that are sufficiently equivocal? One consideration is language invariance. Suppose g[image: there is no content] is a family of weighting functions, defined for each [image: there is no content]. g[image: there is no content] is language invariant, as long as merely adding new propositional variables to the language does not undermine the g[image: there is no content]-entropy maximiser:

Definition 15 (Language invariant family of weighting functions). Suppose we are given, as usual, a set [image: there is no content] of probability functions on a fixed language [image: there is no content]. For any [image: there is no content]′ extending [image: there is no content], let [image: there is no content]′=[image: there is no content]×[image: there is no content][image: there is no content]′∖[image: there is no content] be the translation of [image: there is no content] into the richer language [image: there is no content]′. A family of weighting functions is language invariant, if for any such [image: there is no content],[image: there is no content], any [image: there is no content]∈argsupP∈[image: there is no content]Hg[image: there is no content](P) on [image: there is no content], and for any language [image: there is no content]′ extending [image: there is no content], there is some [image: there is no content]∈argsupP∈[image: there is no content]′Hg[image: there is no content]′(P) on [image: there is no content]′ such that P⇂[image: there is no content]‡=[image: there is no content], i.e., [image: there is no content](ω)=[image: there is no content](ω) for each state ω of [image: there is no content].

It turns out that many families of weighting functions—including the partition weightings and the proposition weightings—are not language invariant:

Proposition 8. The family of partition weightings, [image: there is no content], and the family of proposition weightings, g[image: there is no content], are not language invariant.

Proof: Let [image: there is no content]={A1,A2} and [image: there is no content]={P∈[image: there is no content]:P([image: there is no content])+2P([image: there is no content])+3P([image: there is no content])+4P([image: there is no content])=1.7}. The partition entropy maximiser [image: there is no content] and the proposition entropy maximiser P[image: there is no content]† for this language and this set [image: there is no content] of calibrated functions are given in the first two rows of the table below.



We now add one propositional variable, [image: there is no content], to [image: there is no content] and, thus, obtain [image: there is no content]′. Denote the states of [image: there is no content]′ by χ1=[image: there is no content]∧¬[image: there is no content],χ2=[image: there is no content]∧[image: there is no content], and so on. Assuming that we have no information at all concerning [image: there is no content], the set of calibrated probability functions is given by the solutions of the constraint, ([image: there is no content](χ1)+[image: there is no content](χ2))+2([image: there is no content](χ3)+[image: there is no content](χ4))+3([image: there is no content](χ5)+[image: there is no content](χ6))+4([image: there is no content](χ7)+[image: there is no content](χ8))=1.7. Language invariance would now entail that [image: there is no content]([image: there is no content])=[image: there is no content](χ1)+[image: there is no content](χ2),[image: there is no content]([image: there is no content])=[image: there is no content](χ3)+[image: there is no content](χ4),[image: there is no content]([image: there is no content])=[image: there is no content](χ5)+[image: there is no content](χ6),[image: there is no content]([image: there is no content])=[image: there is no content](χ7)+[image: there is no content](χ8). However, neither the partition entropy maximisers nor the proposition entropy maximisers form a language invariant family, as can be seen from the last two rows of the above table.  ■

On the other hand, it is well known that standard entropy maximisation is language invariant (p. 76 in [21]). This can be seen to follow from the fact that certain families of weighting functions that only assign positive weight to a single partition are language invariant:

Lemma 8. Suppose a function f picks out a partition π for any language [image: there is no content], in such a way that if [image: there is no content]′⊇[image: there is no content], then f([image: there is no content]′) is a refinement of f([image: there is no content]), with each F∈f([image: there is no content]) being refined into the same number k of members F1,…,Fk∈f([image: there is no content]′), for [image: there is no content]. Suppose g[image: there is no content] is such that for any [image: there is no content], g[image: there is no content](f([image: there is no content]))=c>0, but g[image: there is no content](π)=0 for all other partitions π. Then, g[image: there is no content] is language invariant.

Proof: Let [image: there is no content] denote a g[image: there is no content]-entropy maximiser (in [[image: there is no content]]), and let [image: there is no content] denote a g[image: there is no content]′-entropy maximiser in [[image: there is no content]]×[image: there is no content][image: there is no content]′∖[image: there is no content]. Since g[image: there is no content] and g[image: there is no content]′ need not be inclusive, Hg,[image: there is no content] and Hg,[image: there is no content]′ need not be strictly concave. Thus, there need not be unique entropy maximisers. Given [image: there is no content] refined into subsets [image: there is no content] of [image: there is no content], [image: there is no content]⊆[image: there is no content] is defined by [image: there is no content]. One can restrict [image: there is no content] to [image: there is no content] by setting [image: there is no content](ω)=∑[image: there is no content]∈[image: there is no content],[image: there is no content]⊧ω[image: there is no content]([image: there is no content]) for [image: there is no content], so, in particular, [image: there is no content](F)=[image: there is no content]([image: there is no content])=[image: there is no content](F1)+…+[image: there is no content](Fk) for [image: there is no content].

The g[image: there is no content]-entropy of [image: there is no content] is closely related to the g[image: there is no content]′-entropy of [image: there is no content]:



−c∑F∈f([image: there is no content])[image: there is no content](F)log[image: there is no content](F)≥−c∑F∈f([image: there is no content])[image: there is no content](F)log[image: there is no content](F)=−c∑F∈f([image: there is no content])([image: there is no content](F1)+…+[image: there is no content](Fk))log([image: there is no content](F1)+…+[image: there is no content](Fk))=−c∑F∈f([image: there is no content])([image: there is no content](F1)+…+[image: there is no content](Fk))logk+log[image: there is no content](F1)+…+[image: there is no content](Fk)k≥LSI−clogk−c∑F∈f([image: there is no content])[image: there is no content](F1)log[image: there is no content](F1)+…+[image: there is no content](Fk)log[image: there is no content](Fk)=−clogk−c∑G∈f([image: there is no content]′)[image: there is no content](G)log[image: there is no content](G)=−clogk−c∑F∈f([image: there is no content])[image: there is no content](F1)log[image: there is no content](F1)+…+[image: there is no content](Fk)log[image: there is no content](Fk)≥−clogk−c∑F∈f([image: there is no content])[image: there is no content](F)klog[image: there is no content](F)k+…+[image: there is no content](F)klog[image: there is no content](F)k=−clogk−c∑F∈f([image: there is no content])[image: there is no content](F)log[image: there is no content](F)k=−c∑F∈f([image: there is no content])[image: there is no content](F)log[image: there is no content](F)
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LSI refers to the log sum inequality introduced in Lemma 3. The first and last inequality above follow from the fact that [image: there is no content] and [image: there is no content] are entropy maximisers over [image: there is no content],[image: there is no content]′, respectively. Hence, all inequalities are indeed equalities. These entropy maximisers are unique on f([image: there is no content]),f([image: there is no content]′), so [image: there is no content](F)=k·[image: there is no content](F1)=…=k·[image: there is no content](Fk)=[image: there is no content](F) for F∈f([image: there is no content]).
Now, take an arbitrary [image: there is no content]∈argsupP∈[image: there is no content]Hg[image: there is no content](P), and suppose [image: there is no content]. Any [image: there is no content] such that [image: there is no content](ω)=[image: there is no content](ω) and [image: there is no content](F1)=…=[image: there is no content](Fk)=[image: there is no content](F)/k will be a g[image: there is no content]′-entropy maximiser on [image: there is no content]′. Thus, g[image: there is no content] is language invariant.

Note that if, for some [image: there is no content], f([image: there is no content])={Ω[image: there is no content],∅}, where Ω[image: there is no content] denotes the set of states of [image: there is no content], then Hg[image: there is no content](P)=−P(Ω[image: there is no content])logP(Ω[image: there is no content])−P(∅)logP(∅)=0−0=0. Likewise, if f([image: there is no content]′)={Ω[image: there is no content]′}, then Hg[image: there is no content]′(P)=0. For such g-entropies, every probability maximises g-entropy trivially, since all probability functions have the same g-entropy.  ■

Taking f([image: there is no content])={{ω}:ω∈Ω} and [image: there is no content], we have the language invariance of standard entropy maximisation:

Corollary 5. The family of weighting functions [image: there is no content] is language invariant.

While giving weight in this way to just one partition is sufficient for language invariance, it is not necessary, as we shall now see. Define a family of weighting functions, the substate weighting functions, by giving weight to just those partitions that are partitions of states of sublanguages. For any sublanguage, [image: there is no content]−⊆[image: there is no content]={A1,…,An}, let [image: there is no content] be the set of states of [image: there is no content]−, and let [image: there is no content] be the partition of propositions of [image: there is no content] that represents the partition of states of the sublanguage, [image: there is no content]−, i.e., [image: there is no content]={{ω∈Ω:ω⊧ω−}:ω−∈[image: there is no content]}. Then,



g⊆[image: there is no content](π)=1:π=[image: there is no content] for some [image: there is no content]−⊆[image: there is no content]0:otherwise



(80)




Example 2. For [image: there is no content]={A1,A2}, there are three sublanguages: [image: there is no content] itself and the two proper sublanguages, [image: there is no content] Then, g⊆[image: there is no content] assigns the following three partitions of Ω the same positive weight: [image: there is no content], [image: there is no content], [image: there is no content]. g⊆[image: there is no content] assigns all other [image: there is no content] weight zero.

Note that there are [image: there is no content]−1 non-empty sublanguages of [image: there is no content], so g⊆[image: there is no content] gives positive weight to [image: there is no content]−1 partitions.

Proposition 9. The family of substate weighting functions is language invariant.

Proof: Consider an extension, [image: there is no content]′={A1,…,An,An+1}, of [image: there is no content]. Let [image: there is no content],[image: there is no content] be [image: there is no content]-entropy maximisers on [image: there is no content],[image: there is no content]′, respectively. For simplicity of exposition, we shall view these functions as defined over sentences, so that we can talk of [image: there is no content](An+1∧ω−), etc. For the purposes of the following calculation we shall consider the empty language to be a language. Entropies over the empty language vanish. Summing over the empty language ensures, for example, that the expression [image: there is no content](An+1)log[image: there is no content](An+1) appears in Equation (81).



2Hg⊆[image: there is no content]([image: there is no content])=−2∑[image: there is no content]−⊆[image: there is no content]∑ω−∈[image: there is no content][image: there is no content](ω−)log[image: there is no content](ω−)≥−2∑[image: there is no content]−⊆[image: there is no content]∑ω−∈[image: there is no content][image: there is no content](ω−)log[image: there is no content](ω−)=−∑[image: there is no content]−⊆[image: there is no content]∑ω−∈[image: there is no content][image: there is no content](ω−)log[image: there is no content](ω−)−∑[image: there is no content]−⊆[image: there is no content]∑ω−∈[image: there is no content][image: there is no content](An+1∧ω−)+[image: there is no content](¬An+1∧ω−)×log[image: there is no content](An+1∧ω−)+[image: there is no content](¬An+1∧ω−)=−∑[image: there is no content]−⊆[image: there is no content]∑ω−∈[image: there is no content][image: there is no content](ω−)log[image: there is no content](ω−)−∑[image: there is no content]−⊆[image: there is no content]∑ω−∈[image: there is no content][image: there is no content](An+1∧ω−)+[image: there is no content](¬An+1∧ω−)×log2·[image: there is no content](An+1∧ω−)+[image: there is no content](¬An+1∧ω−)1+1≥−∑[image: there is no content]−⊆[image: there is no content]∑ω−∈[image: there is no content][image: there is no content](ω−)log[image: there is no content](ω−)−∑[image: there is no content]−⊆[image: there is no content]∑ω−∈[image: there is no content][log2+[image: there is no content](An+1∧ω−)log[image: there is no content](An+1∧ω−)+[image: there is no content](¬An+1∧ω−)log[image: there is no content](¬An+1∧ω−)]



(81)






=−clog2−∑[image: there is no content]−⊆[image: there is no content]′{An+1}∉[image: there is no content]′∑ω−∈[image: there is no content][image: there is no content](ω−)log[image: there is no content](ω−)−∑[image: there is no content]−⊆[image: there is no content]′{An+1}∈[image: there is no content]′∑ω−∈[image: there is no content][image: there is no content](ω−)log[image: there is no content](ω−)=−clog2−∑[image: there is no content]−⊆[image: there is no content]′∑ω−∈[image: there is no content][image: there is no content](ω−)log[image: there is no content](ω−)=−clog2+Hg⊆[image: there is no content]′([image: there is no content])=−clog2−∑[image: there is no content]−⊆[image: there is no content]∑ω−∈[image: there is no content][image: there is no content](ω−)log[image: there is no content](ω−)−∑[image: there is no content]−⊆[image: there is no content]∑ω−∈[image: there is no content][[image: there is no content](An+1∧ω−)log[image: there is no content](An+1∧ω−)+[image: there is no content](¬An+1∧ω−)log[image: there is no content](¬An+1∧ω−)]≥−clog2−∑[image: there is no content]−⊆[image: there is no content]∑ω−∈[image: there is no content][image: there is no content](ω−)log[image: there is no content](ω−)−∑[image: there is no content]−⊆[image: there is no content]∑ω−∈[image: there is no content][image: there is no content](ω−)log[image: there is no content](ω−)2=−2∑[image: there is no content]−⊆[image: there is no content]∑ω−∈[image: there is no content][image: there is no content](ω−)log[image: there is no content](ω−)=2Hg⊆[image: there is no content]([image: there is no content])
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where c is some constant and where the second inequality is an application of the log-sum inequality. As in the previous proof, all inequalities are thus equalities, [image: there is no content](±An+1∧ω)=[image: there is no content](ω)/2 and [image: there is no content] extends [image: there is no content], as required.  ■
In general the substate entropy maximisers differ from the standard entropy maximisers, as well as the partition entropy maximisers and the proposition entropy maximisers:

Example 3. For [image: there is no content]={A1,A2} and the substate weighting function, g⊆[image: there is no content] on [image: there is no content] (see Example 2), we find for [image: there is no content]={P∈[image: there is no content]:P(A1∧A2)+2P(A1∧¬A2)=0.1} that the standard entropy maximiser, the partition entropy maximiser, the proposition entropy maximiser and the substate weighting entropy maximiser are pairwise different.




Table 2. Standard, partition, proposition and substate entropy maximisers.









	
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]





	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	P[image: there is no content]†
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	Pg⊆[image: there is no content]†
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]







Observe that the standard entropy maximiser, the partition entropy maximiser and the proposition entropy maximiser are all symmetric in [image: there is no content] and [image: there is no content] while the substate weighting entropy maximiser is not. This break of symmetry is caused by the fact that g⊆[image: there is no content] is not symmetric in [image: there is no content] and [image: there is no content]

We have seen that the substate weighting functions are not symmetric. Neither are they inclusive nor refined. We conjecture that if [image: there is no content]=[image: there is no content]0, the set of inclusive, symmetric and refined g, then the only language invariant family, g[image: there is no content], that gives rise to entropy maximisers that are sufficiently equivocal is the family that underwrites standard entropy maximisation: if g[image: there is no content] is language invariant and the g[image: there is no content]-entropy maximiser is in ⇓[image: there is no content], then g[image: there is no content]=[image: there is no content].

In sum, there is a compelling reason to prefer the standard entropy maximiser over other g-entropy maximisers: the standard entropy maximiser is language invariant, while other—perhaps, all other—appropriate g-entropy maximisers are not. In Appendix B.3, we show that there are three further ways in which the standard entropy maximiser differs from other g-entropy maximisers: it satisfies the principles of irrelevance, relativisation and independence.



5. Discussion


5.1. Summary

In this paper, we have seen how the standard concept of entropy generalises rather naturally to the notion of g-entropy, where g is a function that weights the partitions that contribute to the entropy sum. If loss is taken to be logarithmic, as is forced by desiderata L1–4 for a default loss function, then the belief function that minimises worst-case g-expected loss, where the expectation is taken with respect to a chance function known to lie in a convex set [image: there is no content], is the probability function in [image: there is no content] that maximises g-entropy, if there is such a function. This applies whether belief functions are thought of as defined over the sentences of an agent’s language or over the propositions picked out by those sentences.

This fact suggests a justification of the three norms of objective Bayesianism: a belief function should be a probability function, it should lie in the set [image: there is no content] of potential chance functions and it should otherwise be equivocal in that it should have maximum g-entropy.

However, the probability function with maximum g-entropy may lie outside [image: there is no content], on its boundary, in which case that function is ruled out of contention by available evidence. Therefore, objective Bayesianism only requires that a belief function be sufficiently equivocal—not that it be maximally equivocal. Principles E1–5 can be used to constrain the set ⇓[image: there is no content], of sufficiently equivocal functions. Arguably, if the standard entropy maximiser is in [image: there is no content], then it is also in ⇓[image: there is no content]. Moreover, the standard entropy maximiser stands out as being language invariant. This then provides a qualified justification of the standard maximum entropy principle: while an agent is rationally entitled to adopt any sufficiently equivocal probability function in [image: there is no content] as her belief function, if the standard entropy maximiser is in [image: there is no content], then that function is a natural choice.

Some questions arise. First, what are the consequences of this sort of account for conditionalisation and Bayes’ theorem? Second, how does this account relate to imprecise probability, advocates of which reject our starting assumption that the strengths of an agent’s beliefs are representable by a single belief function? Third, the arguments of this paper are overtly pragmatic; can they be reformulated in a non-pragmatic way? We shall tackle these questions in turn.



5.2. Conditionalisation, Conditional Probabilities and Bayes’ Theorem

Subjective Bayesians endorse the probability norm and often also some sort of calibration norm, but do not go so far as to insist on equivocation. This leads to relatively weak constraints on degrees of belief, so subjective Bayesians typically appeal to Bayesian conditionalisation as a means to tightly constrain the way in which degrees of belief change in the light of new evidence. Objective Bayesians do not need to invoke Bayesian conditionalisation as a norm of belief change, because the three norms of objective Bayesianism already tightly constrain any new belief function that an agent can adopt. In fact, if the objective Bayesian adopts the policy of adopting the standard entropy maximiser as her belief function, then objective Bayesian updating often agrees with updating by conditionalisation, as shown by Seidenfeld (Result 1 in [22]):

Theorem 8. Suppose that [image: there is no content] is the set of probability functions calibrated with evidence E, and that [image: there is no content] can be written as the set of probability functions which satisfy finitely many constraints of the form, ci=∑[image: there is no content]di,ωP(ω). Suppose [image: there is no content]′ is the set of probability functions calibrated with evidence [image: there is no content], and that PE†,P[image: there is no content]† are functions in [image: there is no content],[image: there is no content]′, respectively, that maximise standard entropy. If:


	(i) 

	[image: there is no content],



	(ii) 

	the only constraints imposed by [image: there is no content] are the constraints ci=∑[image: there is no content]di,ωP(ω) imposed by E together with the constraint [image: there is no content],



	(iii) 

	the constraints in (ii) are consistent, and



	(iv) 

	PE†(·|G)∈[image: there is no content],

then P[image: there is no content]†(F)=PE†(F|G) for all [image: there is no content].





This fact has various consequences. First, it provides a qualified justification of Bayesian conditionalisation: a standard entropy maximiser can be thought of as applying Bayesian conditionalisation in many natural situations. Second, if conditions (i)–(iv) of Theorem 8 hold, then there is no need to maximise standard entropy to compute the agent’s new degrees of belief—instead, Bayesian conditionalisation can be used to calculate these degrees of belief. Third, conditions (i)–(iv) of Theorem 8 can each fail, so the two forms of updating do not always agree, and Bayesian conditionalisation is less central to an objective Bayesian who maximises standard entropy than it is to a subjective Bayesian. As pointed out in Williamson [1] (Chapter 4) and Williamson [23] (§§8,9), standard entropy maximisation is to be preferred over Bayesian conditionalisation where any of these conditions fail. Fourth, conditional probabilities, which are crucial to subjective Bayesianism on account of their use in Bayesian conditionalisation, are less central to the objective Bayesian, because conditionalisation is only employed in a qualified way. For the objective Bayesian, conditional probabilities are merely ratios of unconditional probabilities—they are not generally interpretable as conditional degrees of belief (§4.4.1 in [1]). Fifth, Bayes’ theorem, which is an important tool for calculating conditional probabilities, used routinely in Bayesian statistics, for example, is less central to objective Bayesianism, because of the less significant role played by conditional probabilities.

Interestingly, while Theorem 8 appeals to standard entropy maximisation, an analogous result holds for g-entropy maximisation, for any inclusive g, as we show in Appendix B.2:

Theorem 9. Suppose that convex and closed [image: there is no content] is the set of probability functions calibrated with evidence E, and [image: there is no content]′ is the set of probability functions calibrated with evidence [image: there is no content]. Furthermore, suppose that PE†,P[image: there is no content]† are functions in [image: there is no content],[image: there is no content]′, respectively, that maximise g-entropy for some fixed g∈[image: there is no content]inc∪{[image: there is no content]}. If:


	(i) 

	[image: there is no content],



	(ii) 

	the only constraints imposed by [image: there is no content] are the constraints imposed by E together with the constraint [image: there is no content],



	(iii) 

	the constraints in (ii) are consistent, and



	(iv) 

	PE†(·|G)∈[image: there is no content],

then P[image: there is no content]†(F)=PE†(F|G) for all [image: there is no content].





Thus, the preceding comments apply equally in the more general context of this paper.



5.3. Imprecise Probability

Advocates of imprecise probability argue that an agent’s belief state is better represented by a set of probability functions—for example, by the set [image: there is no content] of probability functions calibrated with evidence—than by a single belief function [24]. This makes decision making harder. An agent whose degrees of belief are represented by a single probability function can use that probability function to determine which of the available acts maximises expected utility. However, an imprecise agent will typically find that the acts that maximise expected utility vary according to which probability function in her imprecise belief state is used to determine the expectation. The question then arises, with respect to which probability function in her belief state should such expectations be taken?

This question motivates a two-step procedure for imprecise probability: first, isolate a set of probability functions as one’s belief state; then, choose a probability function from within this set for decision making—this might be done in advance of any particular decision problem arising—and use that function to make decisions by maximising expected utility. While this sort of procedure is not the only way of thinking about imprecise probability, it does have some adherents. It is a component of the transferrable belief model of Smets and Kennes [25], for instance, and Keynes advocated a similar sort of view:


the prospect of a European war is uncertain, or the price of copper and the rate of interest twenty years hence, or the obsolescence of a new invention, or the position of private wealth-owners in the social system in 1970. About these matters there is no scientific basis on which to form any calculable probability whatever. We simply do not know. Nevertheless, the necessity for action and for decision compels us as practical men to do our best to overlook this awkward fact and to behave exactly as we should if we had behind us a good Benthamite calculation of a series of prospective advantages and disadvantages, each multiplied by its appropriate probability, waiting to be summed.

(p. 214 in [26])



(We are very grateful to an anonymous referee for pointing out that Smets and Kennes adopt this sort of position, and to Hykel Hosni for alerting us to this view of Keynes.)
The results of this paper can be applied at the second step of this two-step procedure. If one wants a probability function for decision making that controls worst-case g-expected default loss, then one should choose a function in one’s belief state with sufficiently high g-entropy (or a limit point of such functions), where g is in [image: there is no content], the set of appropriate weighting functions. The resulting approach to imprecise probability is conceptually different to objective Bayesian epistemology, but the two approaches are formally equivalent, with the decision function for imprecise probability corresponding to the belief function for objective Bayesian epistemology.



5.4. A Non-Pragmatic Justification

The line of argument in this paper is thoroughly pragmatic: one ought to satisfy the norms of objective Bayesianism in order to control worst-case expected loss. However, the question has recently arisen as to whether one can adapt arguments that appeal to scoring rules to provide a non-pragmatic justification of the norms of rational belief—see, e.g., Joyce [9]. There appears to be some scope for reinterpreting the arguments of this paper in non-pragmatic terms, along the following lines. Instead of viewing L1–4 as isolating an appropriate default loss function, one can view them as postulates on a measure of the inaccuracy of one’s belief in a true proposition: believing a true proposition does not expose one to inaccuracy; inaccuracy strictly increases as the degree of belief in the true proposition decreases; inaccuracy with respect to a proposition only depends on the degree of belief in that proposition; inaccuracy is additive over independent sublanguages. (L4 would need to be changed insofar as that it would need to be physical probability, [image: there is no content], rather than the agent’s belief function, B, that determines whether sublanguages are independent. This change does not affect the formal results.) A g-scoring rule then measures expected inaccuracy. Strict propriety implies that the physical probability function has minimum expected inaccuracy. (If [image: there is no content] is deterministic, i.e., [image: there is no content](ω)=1 for some [image: there is no content] then the unique probability function that puts all mass on ω has minimum expected inaccuracy. In this sense, we can say that strictly proper scoring rules are truth-tracking, which is an important epistemic good.) In order to minimise worst-case g-expected inaccuracy, one would need degrees of belief that are probabilities, that are calibrated to physical probability and that maximise g-entropy.

The main difference between the pragmatic and the non-pragmatic interpretations of the arguments of this paper appears to lie in the default nature of the conclusions under a pragmatic interpretation. It is argued here that loss should be taken to be logarithmic in the absence of knowledge of the true loss function. If one does know the true loss function, [image: there is no content], and this loss function turns out not to be logarithmic, then one should arguably do something other than minimising worst-case expected logarithmic loss—one should minimise worst-case expected [image: there is no content]-loss. Under a non-pragmatic interpretation, on the other hand, one might argue that L1-4 characterises the correct measure of the inaccuracy of a belief in a true proposition, not a measure that is provisional in the sense that logarithmic loss is. Thus, the conclusions of this paper are arguably firmer—less provisional—under a non-pragmatic construal.



5.5. Questions for Further Research

We noted above that if one knows the true loss function, [image: there is no content], then one should arguably minimise worst-case expected [image: there is no content]-loss. [3] generalise standard entropy in a different direction to that pursued in this paper, in order to argue that minimising worst-case expected [image: there is no content]-loss requires maximising entropy in their generalised sense. One interesting question for further research is whether one can generalise the notion of g-entropy in an analogous way, to try to show that minimising worst-case g-expected [image: there is no content]-loss requires maximising g-entropy in this further generalised sense.

A second question concerns whether one can extend the discussion of belief over sentences in Section 3 to predicate, rather than propositional, languages. A third question is whether other justifications of the logarithmic score can be used to the justify logarithmic g-score—for example, is the logarithmic g-score the only local strictly proper g-score? Fourth, we suspect that Theorem 3 can be further generalised. Finally, it would be interesting to investigate language invariance in more detail in order to test the conjecture at the end of Section 4.
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Appendix


A. Entropy of Belief Functions

Axiomatic characterizations of standard entropy on probability functions have featured heavily in the literature—see [27]. In this appendix, we provide two characterizations of g-entropy on belief functions, which closely resemble the original axiomatisation provided by Shannon (§6 in [6]). (We appeal to these characterisations in the proof of Proposition 12 in Section B.2.)

We shall need some new notation. Let [image: there is no content] and [image: there is no content] then denote by [image: there is no content] the tuple [image: there is no content] For [image: there is no content] and [image: there is no content], we denote by [image: there is no content] the vector, [image: there is no content] For a vector [image: there is no content], let [image: there is no content] Assume in the following that all [image: there is no content] and all [image: there is no content] are in [image: there is no content] Furthermore, let [image: there is no content] henceforth denote the number of components in [image: there is no content], respectively, [image: there is no content].

Proposition 10 (First characterisation). Let H(B)=∑[image: there is no content]g(π)f(π,B), where [image: there is no content] for [image: there is no content] and:



h:⋃[image: there is no content]{⟨x1,⋯,xk⟩:[image: there is no content]≥0&∑i=1k[image: there is no content]≤1}⟶[0,∞)








Suppose also that the following conditions hold:

	H1: 

	h is continuous;



	H2: 

	if [image: there is no content] then [image: there is no content];



	H3: 

	if 0<|[image: there is no content]|1≤1 and if [image: there is no content] for [image: there is no content] then



h(x1·y1→,⋯,xk·yk→)=h(x1,⋯,xk)+∑i=1k[image: there is no content]h(yi→)










	H4: 

	[image: there is no content] for [image: there is no content];





then, H(B)=−∑[image: there is no content]g(π)∑[image: there is no content]B(F)logB(F).
Proof: We first apply the proof of Paris [21] (pp. 77–78), which implies (using only H1, H2 and H3) that:



h([image: there is no content])=−c∑i=1k[image: there is no content]log[image: there is no content]



(83)




for all [image: there is no content] with |[image: there is no content]|1=1, where [image: there is no content] is some constant.
Now suppose 0<|[image: there is no content]|1<1. Then, with yi:=[image: there is no content]|[image: there is no content]|1, we have [image: there is no content]=|[image: there is no content]|1·[image: there is no content] and |[image: there is no content]|1=1. Thus:



h([image: there is no content])=h(|[image: there is no content]|1·[image: there is no content])=H3h(|[image: there is no content]|1)+|[image: there is no content]|1h([image: there is no content])=(83)h(|[image: there is no content]|1)−|[image: there is no content]|1c∑i=1lyilogyi.



(84)




We will next show that [image: there is no content] for [image: there is no content] Thus, note that [image: there is no content] For [image: there is no content], we now find:



−c1tlog1t=h(1t)=H41qh(1t@q)=1qh(qt·1q@q)=H31qh(qt)+qth(1q@q)=(83)1qh(qt)+qt(−cq1qlog1q)



(85)




Thus:



h(qt)=−cqtlog(1t)−log(1q)=−cqtlogqt



(86)




Hence, h is of the claimed form for rational numbers in [image: there is no content] The continuity axiom, H1, now guarantees that [image: there is no content] for all [image: there is no content] Putting our results together, we obtain:


h([image: there is no content])=−c|[image: there is no content]|1log|[image: there is no content]|1−c|[image: there is no content]|1∑i=1lyilogyi=−c|[image: there is no content]|1(∑i=1lyilog|[image: there is no content]|1+∑i=1lyilogyi)=−c|[image: there is no content]|1∑i=1lyilog(|[image: there is no content]|1·yi)=−c∑i=1l[image: there is no content]log[image: there is no content]



(87)




Finally, note that h does satisfy all the axioms. The constant, c, can then be absorbed into the weighting function, g, to give H(B)=−∑[image: there is no content]g(π)∑[image: there is no content]B(F)logB(F), as required.  ■

A tighter analysis reveals that the axiomatic characterization above may be weakened. We may replace H3 by the following two instances of H3:

A: If |[image: there is no content]|1=1 and if [image: there is no content] for [image: there is no content] then



h(x1·y1→,⋯,xk·yk→)=h(x1,⋯,xk)+∑i=1k[image: there is no content]h(yi→)








B: If [image: there is no content] and if |[image: there is no content]|1=1, then



h(x·[image: there is no content])=h(x)+xh([image: there is no content])








Property A is, of course, Shannon’s original axiom H3. The axiom H3 used above is the straightforward generalization of Shannon’s H3 to vectors [image: there is no content] summing to less than one.
Proposition 11 (Second characterisation). Let H(B)=∑[image: there is no content]g(π)f(π,B), where [image: there is no content] for [image: there is no content] and:



h:⋃[image: there is no content]{⟨x1,⋯,xk⟩:[image: there is no content]≥0&∑i=1k[image: there is no content]≤1}⟶[0,∞)








Suppose also that the following conditions hold:

	H1: 

	h is continuous;



	H2: 

	if [image: there is no content] then [image: there is no content];



	A: 

	if |[image: there is no content]|1=1 and if [image: there is no content] for [image: there is no content] then



h(x1·y1→,⋯,xk·yk→)=h(x1,⋯,xk)+∑i=1k[image: there is no content]h(yi→)










	B: 

	: if [image: there is no content] and if |[image: there is no content]|1=1, then



h(x·[image: there is no content])=h(x)+xh([image: there is no content])










	C: 

	for [image: there is no content] it holds that [image: there is no content];



	D: 

	for [image: there is no content] it holds that [image: there is no content];





then, H(B)=−∑[image: there is no content]g(π)∑[image: there is no content]B(F)logB(F).
Proof: We shall again invoke the proof in Paris [21] (pp. 77–78) to show (using only H1, H2 and A) that:



h([image: there is no content])=−c∑i=1k[image: there is no content]log[image: there is no content]
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for all [image: there is no content] with |[image: there is no content]|1=1 and some constant, [image: there is no content].
Now suppose 0<|[image: there is no content]|1<1. Then, with yi:=[image: there is no content]|[image: there is no content]|1, we have [image: there is no content]=|[image: there is no content]|1·[image: there is no content] and |[image: there is no content]|1=1. Thus:



h([image: there is no content])=h(|[image: there is no content]|1·[image: there is no content])=H3h(|[image: there is no content]|1)+|[image: there is no content]|1h([image: there is no content])=(88)h(|[image: there is no content]|1)−|[image: there is no content]|1c∑i=1lyilogyi








As we have seen in the previous proof, it now only remains to show that [image: there is no content] for [image: there is no content].
We next show by induction that for all non-zero [image: there is no content], [image: there is no content]

The base case is immediate, observe that:



[image: there is no content]
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Using the induction hypothesis (IH), the inductive step is straightforward too:



h(12t)=C12t−1h(12)+12h(12t−1)=IH−c12tlog(12)+12tlog(12t−1)=−c12tlog12t
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We next show by induction on [image: there is no content] that for all non-zero natural numbers [image: there is no content], [image: there is no content]
For the base case, simply note that [image: there is no content], and thus:



[image: there is no content]



(91)




The inductive step follows for [image: there is no content]:



h([image: there is no content])=Cm2t−1h(12)+12h(m2t−1)=IH−cm2t−112log(12)−c12m2t−1log(m2t−1)=−c[image: there is no content]log[image: there is no content]
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For [image: there is no content], we find:


h([image: there is no content])=Dh([image: there is no content],2t−m2t)−h(2t−m2t)=(88)−c[image: there is no content]log([image: there is no content])+2t−m2tlog(2t−m2t)−h(2t−m2t)=IH−c[image: there is no content]log([image: there is no content])+2t−m2tlog(2t−m2t)+c2t−m2tlog(2t−m2t)=−c[image: there is no content]log[image: there is no content]
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Since rational numbers of the form [image: there is no content] are dense in [image: there is no content], we can use the continuity axiom, H1, to conclude that h has to be of the desired form.
Finally, note that h does satisfy all the axioms. The constant, c, can then be absorbed into the weighting function, g, to give the required form of [image: there is no content].  ■

We can combine B and C to form one single axiom, H5, which implies B and C:

H5: if [image: there is no content] and if |[image: there is no content]|1≤1, then



h(x·[image: there is no content])=|[image: there is no content]|1h(x)+xh([image: there is no content])
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Clearly, H5 is a natural way to generalize A to belief functions. It now follows easily that H1, H2, A, H5 and D jointly constrain h to h([image: there is no content])=−c∑i=1k[image: there is no content]log[image: there is no content].
Although it is certainly possible to consider the g-entropy of a belief function, maximising standard entropy over [image: there is no content]—as opposed to [image: there is no content]⊆[image: there is no content]—has bizarre consequences. For [image: there is no content], we have that {Bz∈[image: there is no content]:z∈[image: there is no content],Bz(Ω)=z,Bz(∅)=1−z,Bz([image: there is no content])=Bz([image: there is no content])=1e} is the set of entropy maximisers. This follows from considering the following optimization problem:



maximize−B([image: there is no content])logB([image: there is no content])−B([image: there is no content])logB([image: there is no content])subjectto0≤B(∅),B(Ω),B([image: there is no content]),B([image: there is no content])B([image: there is no content])+B([image: there is no content])≤1B(∅)+B(Ω)≤1B(∅)+B(Ω)=1orB([image: there is no content])+B([image: there is no content])=1








Putting [image: there is no content] ensures that the last two constraints are satisfied and permits the choice of [image: there is no content], [image: there is no content] such that [image: there is no content] For non-negative [image: there is no content], we have that [image: there is no content] obtains the unique maximum at [image: there is no content] The claimed optimality result follows.
It is worth pointing out that this phenomenon does not depend on the base of the logarithm. For [image: there is no content], however, intuition honed by considering the entropy of probability functions does not lead one astray. For [image: there is no content] any belief function B with [image: there is no content] for [image: there is no content] does maximize standard entropy.

Similarly bizarre consequences also obtain in the case of other g-entropies. For [image: there is no content] and g([image: there is no content])+g([image: there is no content])≪g({[image: there is no content]},{[image: there is no content]}), belief functions maximizing g-entropy satisfy [image: there is no content] To see this, simply note that for such g, the optimum obtains for [image: there is no content]

For the proposition entropy for [image: there is no content] there are two entropy maximisers in [image: there is no content]. They are B1†(∅)=B1†(Ω)=12,B1†([image: there is no content])=B1†([image: there is no content])=1e and B2†(∅)=B2†(Ω)=1e,B2†([image: there is no content])=B2†([image: there is no content])=12.

Thus, an agent adopting a belief function maximizing g-entropy over [image: there is no content] may violate the probability norm. Furthermore, the agent may have to choose a belief function from finitely or infinitely many such non-probabilistic functions. For an agent minimizing worst-case g-expected loss, these bizarre situations do not arise. From Theorem 2 and knowing that for inclusive g, minimizing worst-case g-expected loss forces the agent to adopt a probability function that maximizes g-entropy over the set [image: there is no content] of calibrated probability functions. By Corollary 2, this probability function is unique.



B. Properties of g-Entropy Maximisation

The general properties of standard entropy (defined on probability functions) have been widely studied in the literature. Here, we examine general properties of the g-entropy of a probability function, for g∈[image: there is no content]. We have already seen one difference between standard and g-entropy in Section 4: standard entropy satisfies language invariance; g-entropy, in general, need not. Surprisingly, language invariance seems to be an exception. Standard entropy and g-entropy behave in many respects in the same way.


B.1. Preserving the Equivocator

For example, as we shall see now, if g is inclusive and symmetric then the probability function that is deemed most equivocal—i.e., the function, out of all probability functions, with maximum g-entropy—is the equivocator function, [image: there is no content], which gives each state the same probability.

Definition 16 (Equivocator-preserving). A weighting function g is called equivocator-preserving, if and only if argsupP∈[image: there is no content][image: there is no content](P)=[image: there is no content].

That symmetry and inclusiveness are sufficient for g to be equivocator-preserving will follow from the following lemma:

Lemma 9. For inclusive [image: there is no content] g is equivocator-preserving if and only if:



z(ω):=∑[image: there is no content][image: there is no content]∑[image: there is no content][image: there is no content]−g(π)(1−log|Ω|+log|F|)=c
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for some constant, c.
Proof: Recall from Proposition 2 that g-entropy is strictly concave on [image: there is no content]. Thus, every critical point in the interior of [image: there is no content] is the unique maximiser of [image: there is no content] on [image: there is no content].

Now consider the Lagrange function, [image: there is no content]:



[image: there is no content]=λ(−1+∑[image: there is no content]P(ω))+[image: there is no content](P)=λ(−1+∑[image: there is no content]P(ω))+∑[image: there is no content]−g(π)∑[image: there is no content]∑[image: there is no content]P(ω)log∑[image: there is no content]P(ω)
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For fixed [image: there is no content] and [image: there is no content], denote by [image: there is no content] the unique [image: there is no content] such that [image: there is no content] and [image: there is no content] Taking derivatives, we obtain:


∂∂P(ω)Lag(P)=λ+∑[image: there is no content]−g(π)(1+log∑ν∈[image: there is no content]P(ν))forallω∈Ω
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Now, if [image: there is no content] maximises g-entropy, then for all [image: there is no content], the following must vanish:


∂∂P(ω)Lag([image: there is no content])=λ+∑[image: there is no content]−g(π)(1+log[image: there is no content]([image: there is no content]))=λ+∑[image: there is no content]−g(π)(1+log|[image: there is no content]||Ω|)=λ+∑[image: there is no content]−g(π)(1−log|Ω|+log|[image: there is no content]|)=λ+∑[image: there is no content][image: there is no content]∑[image: there is no content][image: there is no content]−g(π)(1−log|Ω|+log|F|)
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Since this expression has to vanish for all [image: there is no content], it does not depend on [image: there is no content]
On the other hand, if g is such that:



∑[image: there is no content][image: there is no content]∑[image: there is no content][image: there is no content]−g(π)(1−log|Ω|+log|F|)
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does not depend on [image: there is no content] then [image: there is no content] is a critical point of [image: there is no content] and, thus, is the entropy maximiser.  ■
Corollary 6. If g is symmetric and inclusive, then it is equivocator-preserving.

Proof: By Lemma 9, we only need to show that:



∑[image: there is no content][image: there is no content]∑[image: there is no content][image: there is no content]−g(π)(1−log|Ω|+log|F|)
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does not depend on [image: there is no content]
Denote by [image: there is no content], respectively [image: there is no content], the result of replacing [image: there is no content] by [image: there is no content] and vice versa in [image: there is no content] respectively [image: there is no content] By the symmetry of g, we have g(π)=g([image: there is no content]). Since |F|=|[image: there is no content]|, we then find for all [image: there is no content],[image: there is no content]∈Ω:



∑[image: there is no content][image: there is no content]∈F∑[image: there is no content][image: there is no content]−g(π)(1−log|Ω|+log|F|)=∑[image: there is no content][image: there is no content]∈F∑[image: there is no content][image: there is no content]−g([image: there is no content])(1−log|Ω|+log|[image: there is no content]|)=∑[image: there is no content][image: there is no content]∈F∑[image: there is no content][image: there is no content]∈π−g(π)(1−log|Ω|+log|[image: there is no content]|)=∑[image: there is no content][image: there is no content]∈F∑[image: there is no content][image: there is no content]−g(π)(1−log|Ω|+log|F|)
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 ■
Are there are any non-symmetric, inclusive g that are equivocator-preserving? We pose this as an interesting question for further research.



B.2. Updating

Next, we show that there is widespread agreement between updating by conditionalisation and updating by g-entropy maximisation, a result to which we alluded in Section 5.

Proposition 12. Suppose that [image: there is no content] is the set of probability functions calibrated with evidence E. Let g be inclusive and [image: there is no content] such that [image: there is no content]′={P∈[image: there is no content]:P(G)=1}≠∅, where [image: there is no content]′ is the set of probability functions calibrated with evidence [image: there is no content]. Then, the following are equivalent:


	PE†(·|G)∈[[image: there is no content]]


	P[image: there is no content]†(·)=PE†(·|G),




where PE†,P[image: there is no content]† are functions in [image: there is no content],[image: there is no content]′, respectively, that maximise g-entropy.
Proof: First, suppose that PE†(·|G)∈[[image: there is no content]].

Observe that if [image: there is no content]′=[image: there is no content], then there is nothing to prove. Thus, suppose that [image: there is no content]′⊂[image: there is no content]. Hence, there exists a function P∈[image: there is no content] with [image: there is no content] By Proposition 18, inclusive g are open-minded, hence [image: there is no content] (Note that the proof of Proposition 18 does not itself depend on Proposition 12.) Therefore, [image: there is no content] is well defined.

Now let [image: there is no content]:=P[image: there is no content]† and [image: there is no content]:=PE†. Then, assume for contradiction that [image: there is no content](F)≠[image: there is no content](F|G) for some [image: there is no content] By Corollary 2, the g-entropy maximiser [image: there is no content] in [[image: there is no content]′] is unique; furthermore, [image: there is no content](·|G)∈[[image: there is no content]′]. It follows that:



∑[image: there is no content]−g(π)∑[image: there is no content][image: there is no content]([image: there is no content])log[image: there is no content]([image: there is no content])=[image: there is no content]([image: there is no content])>[image: there is no content]([image: there is no content](·|G))=∑[image: there is no content]−g(π)∑[image: there is no content][image: there is no content]([image: there is no content]|G)log[image: there is no content]([image: there is no content]|G)
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Now, define [image: there is no content](·)=[image: there is no content](G)[image: there is no content](·|G)+[image: there is no content](G¯)[image: there is no content](·|G¯). Since [[image: there is no content]] is convex, [image: there is no content],[image: there is no content](·|G)∈[[image: there is no content]], and since [image: there is no content](·|G)=[image: there is no content], we have that [image: there is no content]∈[[image: there is no content]].

Using the above inequality, we observe, using axiom A of Appendix A with [image: there is no content]=⟨[image: there is no content](G),[image: there is no content](G¯)⟩,[image: there is no content]1=⟨[image: there is no content]([image: there is no content]|G):[image: there is no content]∈π⟩ and [image: there is no content]2=⟨[image: there is no content]([image: there is no content]|G):[image: there is no content]∈π⟩ that:



[image: there is no content]([image: there is no content])=∑[image: there is no content]−g(π)∑[image: there is no content][image: there is no content]([image: there is no content])log[image: there is no content]([image: there is no content])=∑[image: there is no content]−g(π)∑[image: there is no content]([image: there is no content](G)[image: there is no content]([image: there is no content]|G)+[image: there is no content](G¯)[image: there is no content]([image: there is no content]|G¯))log([image: there is no content](G)[image: there is no content]([image: there is no content]|G)+[image: there is no content](G¯)[image: there is no content]([image: there is no content]|G¯))=A∑[image: there is no content]−g(π)[image: there is no content](G)log[image: there is no content](G)+[image: there is no content](G¯)log[image: there is no content](G¯)+∑[image: there is no content]−g(π)[image: there is no content](G)∑[image: there is no content][image: there is no content]([image: there is no content]|G)log[image: there is no content]([image: there is no content]|G)+[image: there is no content](G¯)∑[image: there is no content][image: there is no content]([image: there is no content]|G¯)log[image: there is no content]([image: there is no content]|G¯)=∑[image: there is no content]−g(π)[image: there is no content](G)log[image: there is no content](G)+[image: there is no content](G¯)log[image: there is no content](G¯)+∑[image: there is no content]−g(π)[image: there is no content](G)∑[image: there is no content][image: there is no content]([image: there is no content])log[image: there is no content]([image: there is no content])+[image: there is no content](G¯)∑[image: there is no content][image: there is no content]([image: there is no content]|G¯)log[image: there is no content]([image: there is no content]|G¯)>∑[image: there is no content]−g(π)[image: there is no content](G)log[image: there is no content](G)+[image: there is no content](G¯)log[image: there is no content](G¯)+∑[image: there is no content]−g(π)[image: there is no content](G)∑[image: there is no content][image: there is no content]([image: there is no content]|G)log[image: there is no content]([image: there is no content]|G)+[image: there is no content](G¯)∑[image: there is no content][image: there is no content]([image: there is no content]|G¯)log[image: there is no content]([image: there is no content]|G¯)=[image: there is no content]([image: there is no content])
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Our above calculation contradicts that [image: there is no content] maximises g-entropy over [[image: there is no content]]. Thus, [image: there is no content](·)=[image: there is no content](·|G).

Conversely, suppose that PE†(·|G)=P[image: there is no content]†(·). Now, simply observe PE†(·|G)∈[[image: there is no content]′]⊆[[image: there is no content]].  ■

Theorem 9. Suppose that convex and closed [image: there is no content] is the set of probability functions calibrated with evidence E, and [image: there is no content]′ is the set of probability functions calibrated with evidence [image: there is no content]. Furthermore, suppose that PE†,P[image: there is no content]† are functions in [image: there is no content],[image: there is no content]′, respectively, that maximise g-entropy for some fixed g∈[image: there is no content]inc∪{[image: there is no content]}. If:


	(i) 

	[image: there is no content],



	(ii) 

	the only constraints imposed by [image: there is no content] are the constraints imposed by E together with the constraint [image: there is no content],



	(iii) 

	the constraints in (ii) are consistent, and



	(iv) 

	PE†(·|G)∈[image: there is no content],





then, P[image: there is no content]†(F)=PE†(F|G) for all [image: there is no content].
Proof: For g∈[image: there is no content]inc, this follows directly from Proposition 12. Simply note that [image: there is no content]=[[image: there is no content]] and, thus, PE†(·|G)∈[[image: there is no content]].

The proof of Proposition 12 also goes through for g=[image: there is no content]. This follows from the fact that all the ingredients in the proof—open-mindedness, uniqueness of the g-entropy maximiser on a convex set [image: there is no content] and the axiomatic characterizations in Appendix A—also hold for standard entropy.  ■

This extends Seidenfeld’s result for standard entropy, Theorem 8, to arbitrary convex sets, [image: there is no content]⊆[image: there is no content], and, also, to inclusive weighting functions.



B.3. Paris-Vencovská Properties

The following eight principles have played a central role in axiomatic characterizations of the maximum entropy principle by Paris and Vencovská—c.f., [21,28,29,30]. The first seven principles were first put forward in [29]. [28] views all eight principles as following from the following single common-sense principle: “Essentially similar problems should have essentially similar solutions.”

While Paris and Vencovská mainly considered linear constraints, we shall consider arbitrary convex sets, [image: there is no content],[image: there is no content]1. Adopting their definitions and using our notation, we investigate the following properties:

Definition 17 (1: Equivalence). [image: there is no content] only depends on [image: there is no content] and not on the constraints that give rise to [image: there is no content].

This clearly holds for every weighting function [image: there is no content]

Definition 18 (2: Renaming). Let [image: there is no content] be an element of the permutation group on [image: there is no content] For a proposition [image: there is no content] with [image: there is no content], define [image: there is no content] Next, let [image: there is no content] and per([image: there is no content])={per(P):P∈[image: there is no content]}. Then, g satisfies renaming if and only if P[image: there is no content]†(F)=Pper([image: there is no content])†(per(F)).

Proposition 13. If g is inclusive and symmetric, then g satisfies renaming.

Proof: For [image: there is no content] with [image: there is no content], define [image: there is no content] Using that g is symmetric for the second equality, we find:



[image: there is no content](P)=−∑[image: there is no content]g(π)∑[image: there is no content]P(F)logP(F)=−∑[image: there is no content]g(per−1(π))∑[image: there is no content]P(F)logP(F)=−∑[image: there is no content]g(π)∑F∈per(π)P(F)logP(F)=−∑[image: there is no content]g(π)∑[image: there is no content]P(per(F))logP(per(F))=[image: there is no content](per(P))
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Thus, Pper([image: there is no content])†=per([image: there is no content]), and hence, Pper([image: there is no content])†(per(F))=per([image: there is no content])(per(F))=[image: there is no content](F).  ■

Weighting functions g satisfying the renaming property satisfy a further symmetry condition, as we shall see now.

Definition 19 (Symmetric complement). For P∈[image: there is no content], define the symmetric complement of P with respect to [image: there is no content], denoted by [image: there is no content] as follows:



σi(P)(±A1∧…∧±Ai−1∧±[image: there is no content]∧±Ai+1∧…∧±An):=P(±A1∧…∧±Ai−1∧±[image: there is no content]∧±Ai+1∧…∧±An)








i.e., [image: there is no content], where [image: there is no content] is ω but with [image: there is no content] negated. A function P∈[image: there is no content] is called symmetric with respect to [image: there is no content] if and only if [image: there is no content]
We call [image: there is no content]⊆[image: there is no content] symmetric with respect to [image: there is no content] just when the following condition holds: P∈[[image: there is no content]], if and only if σi(P)∈[[image: there is no content]].

Corollary 7. For all symmetric and inclusive g and all [image: there is no content] that are symmetric with respect to [image: there is no content], it holds that:



[image: there is no content]=σi([image: there is no content])








Thus, if [image: there is no content] is symmetric with respect to [image: there is no content] so is [image: there is no content].

Proof: Since g is symmetric and inclusive, there is some function [image: there is no content], such that [image: there is no content](P)=∑[image: there is no content]−γ(|F|)P(F)logP(F) for all P∈[image: there is no content]. Hence:



[image: there is no content]([image: there is no content])=∑[image: there is no content]−γ(|F|)[image: there is no content](F)log[image: there is no content](F)=∑[image: there is no content]−γ(|F|)·σi([image: there is no content])(F)·log(σi([image: there is no content])(F))=[image: there is no content](σi([image: there is no content]))
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Since [image: there is no content] is symmetric with respect to [image: there is no content], we have that σi([image: there is no content])∈[[image: there is no content]]. Therefore, if [image: there is no content]≠σi([image: there is no content]) then there are two different probability functions in [[image: there is no content]] which both have maximum entropy. This contradicts the uniqueness of the g-entropy maximiser (Corollary 2).  ■
This Corollary explains the symmetries exhibited in the tables in the proof of Proposition 8. Since in that proof, [image: there is no content] is symmetric with respect to [image: there is no content], the proposition entropy and the partition entropy maximisers are symmetric with respect to [image: there is no content]. Thus, PPΩ,[image: there is no content]′†(ω∧[image: there is no content])=PPΩ,[image: there is no content]′†(ω∧¬[image: there is no content]) and PΠ,[image: there is no content]′†(ω∧[image: there is no content])=PΠ,[image: there is no content]′†(ω∧¬[image: there is no content]) for all [image: there is no content]

Definition 20 (3: Irrelevance). Let [image: there is no content]1,[image: there is no content]2 be the sets of probability functions on disjoint [image: there is no content]1,[image: there is no content]2, respectively. Then irrelevance holds if, for [image: there is no content]1⊆[image: there is no content]1 and [image: there is no content]2⊆[image: there is no content]2, we have that P[image: there is no content]1†(F×Ω2)=P[image: there is no content]1×[image: there is no content]2†(F×Ω2) for all propositions F of [image: there is no content]1, where P[image: there is no content]1†,P[image: there is no content]1×[image: there is no content]2† are the g-entropy maximisers on [image: there is no content]1∪[image: there is no content]2 with respect to [image: there is no content]1×[image: there is no content]2, respectively, [image: there is no content]1×[image: there is no content]2.

Proposition 14. Neither the partition nor the proposition weighting satisfy irrelevance.

Proof: Let [image: there is no content]1={A1,A2},[image: there is no content]2={[image: there is no content]},[image: there is no content]1={P∈[image: there is no content]1:P(A1∧A2)+2P(¬A1∧¬A2)=0.2} and [image: there is no content]2={P∈[image: there is no content]2:P([image: there is no content])=0.1}. Then, with [image: there is no content]=¬A1∧¬A2∧¬[image: there is no content],[image: there is no content]=¬A1∧¬A2∧[image: there is no content] and so on, we find:



Now, simply note that, for instance:



PΠ,[image: there is no content]1†(¬A1∧¬A2)=PΠ,[image: there is no content]1†([image: there is no content])+PΠ,[image: there is no content]1†([image: there is no content])≠PΠ,[image: there is no content]1×[image: there is no content]2†([image: there is no content])+PΠ,[image: there is no content]1×[image: there is no content]2†([image: there is no content])=PΠ,[image: there is no content]1×[image: there is no content]2†(¬A1∧¬A2)



(106)




(As we are going to see in Proposition 18, none of the values in the table can be zero. Therefore, the small numerical values found by computer approximation are not artifacts of the approximations involved.)  ■

Definition 21 (4: Relativisation). Let [image: there is no content], [image: there is no content]={P∈[image: there is no content]:P(F)=z}∩[image: there is no content]1∩[image: there is no content]2 and [image: there is no content]′={P∈[image: there is no content]:P(F)=z}∩[image: there is no content]1∩[image: there is no content]2′, where [image: there is no content]1 is determined by a set of constraints on the [image: there is no content] with [image: there is no content], and the [image: there is no content]2,[image: there is no content]2′ are determined by a set of constraints on the [image: there is no content] with G⊆[image: there is no content]. Then, P[image: there is no content]†(G)=P[image: there is no content]′†(G) for all [image: there is no content]

Proposition 15. Neither the partition not the proposition weighting satisfy relativisation.

Proof: Let [image: there is no content][image: there is no content][image: there is no content], and put [image: there is no content]1={P∈[image: there is no content]:P([image: there is no content])+2P([image: there is no content])+3P([image: there is no content])+4P([image: there is no content])=0.2},[image: there is no content]2=[image: there is no content],[image: there is no content]2′={P∈[image: there is no content]:P([image: there is no content])+2P([image: there is no content])+3P([image: there is no content])=0.7}. Then, PΠ,[image: there is no content]† and PΠ,[image: there is no content]′† differ substantially on three out of five [image: there is no content], as do PPΩ,[image: there is no content]† and PPΩ,[image: there is no content]′†, as can be seen from the following table:




Table A2. Partition entropy and proposition entropy maximisers and relativisation.













	
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]





	PΠ,[image: there is no content]†
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	PΠ,[image: there is no content]′†
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	PPΩ,[image: there is no content]†
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	PPΩ,[image: there is no content]′†
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]









 



■




Definition 22 (5: Obstinacy). If [image: there is no content]1 is a subset of [image: there is no content] such that P[image: there is no content]†∈[[image: there is no content]1], then P[image: there is no content]†=P[image: there is no content]1†.

Proposition 16. If g is inclusive, then it satisfies the obstinacy principle.

Proof: This follows directly from the definition of P[image: there is no content]†.  ■

Definition 23 (6: Independence). If [image: there is no content]={P∈[image: there is no content]|P(A1∧[image: there is no content])=α,P(A2∧[image: there is no content])=β,P([image: there is no content])=γ}, then for [image: there is no content], it holds that [image: there is no content](A1∧A2∧[image: there is no content])=αβγ.

Proposition 17. Neither the partition entropy nor the proposition weighting satisfy independence.

Proof: Let [image: there is no content]={A1,A2,[image: there is no content]},α=0.2,β=0.35,γ=0.6, then:



[image: there is no content](A1∧A2∧[image: there is no content])=0.1197≠0.1167=0.2·0.350.6








and


P[image: there is no content]†(A1∧A2∧[image: there is no content])=0.1237≠0.1167=0.2·0.350.6










 



■




Definition 24 (7: Open-mindedness). A weighting function g is open-minded, if and only if for all [image: there is no content] and all [image: there is no content], it holds that [image: there is no content](F)=0 if and only if [image: there is no content] for all P∈[image: there is no content].

Proposition 18. Any inclusive g is open-minded.

Proof: First, observe that [image: there is no content] for all P∈[image: there is no content], if and only if [image: there is no content] for all P∈[[image: there is no content]].

Now, note that if [image: there is no content] for all P∈[[image: there is no content]], then [image: there is no content] since [image: there is no content]∈[[image: there is no content]]. On the other hand, if there exists an [image: there is no content] such that [image: there is no content] for some P∈[[image: there is no content]], then [image: there is no content] Thus, adopting [image: there is no content] exposes one to an infinite loss, and by Theorem 2 adopting the g-entropy maximiser exposes one to the finite loss, [image: there is no content]([image: there is no content]). This is a contradiction. Thus, [image: there is no content](F)>0.

Overall, [image: there is no content](F)=0 if and only if [image: there is no content] for all P∈[[image: there is no content]].  ■

Definition 25 (8: Continuity). Let us recall the definition of the Blaschke metric, Δ, between two convex sets, [image: there is no content],[image: there is no content]1⊆[image: there is no content]:



Δ([image: there is no content],[image: there is no content]1)=inf{δ|∀P∈[image: there is no content]∃P1∈[image: there is no content]1:|P,P1|≤δ&∀P1∈[image: there is no content]1∃P∈[image: there is no content]:|P,P1|≤δ}








where [image: there is no content] is the usual Euclidean metric between elements of [image: there is no content].g satisfies continuity, if and only if the function argsupP∈[image: there is no content][image: there is no content](P) is continuous in the Blaschke metric.
Proposition 19. Any inclusive g satisfies the continuity property.

Proof: Since the g-entropy is strictly concave (see Proposition 2), we may apply Theorem 7.5 on p. 91 in [21]. Thus, if [image: there is no content] is determined by finitely many linear constraints, then g satisfies continuity. Paris [21] credits I. Maung for the proof of the theorem.

Now, let [image: there is no content]⊆[image: there is no content] be an arbitrary convex set. Note that we can approximate [image: there is no content] arbitrarily closely by two sequences [image: there is no content]t,[image: there is no content]t, where each member of the sequences is determined by finitely many linear constraints, such that [image: there is no content]t⊆[image: there is no content]t+1⊆[image: there is no content]⊆[image: there is no content]t+1⊆[image: there is no content]t. By this subset relation, we have supP∈[image: there is no content]t[image: there is no content](P)≤supP∈[image: there is no content][image: there is no content](P)≤supP∈[image: there is no content]t[image: there is no content](P). With P†t:=argsupP∈[image: there is no content]t[image: there is no content](P) and P†t:=argsupP∈[image: there is no content]t[image: there is no content](P), we have [image: there is no content] by Maung’s theorem.

Since [image: there is no content]t converges to [image: there is no content]t in the Blaschke metric, we have by Maung’s theorem that limt→∞supP∈[image: there is no content]t[image: there is no content](P)=limt→∞supP∈[image: there is no content]t[image: there is no content](P)=supP∈[image: there is no content][image: there is no content](P). Note that limt→∞P†t∈[[image: there is no content]]. Moreover, since [image: there is no content] is convex, [image: there is no content] is strictly concave, and since [image: there is no content]t converges to [image: there is no content], we have limt→∞[image: there is no content](P†t)=supP∈[image: there is no content][image: there is no content](P). By the uniqueness of the g-entropy maximiser on [image: there is no content], we thus find limt→∞P†t=[image: there is no content],limt→∞P†t=[image: there is no content] and [image: there is no content]

Since the sets determined by finitely many linear constraints are dense in the set of convex [image: there is no content]⊆[image: there is no content], we can use a standard approximation argument yielding that argsupP∈[image: there is no content][image: there is no content](P) is continuous in the Blaschke metric on the set of convex [image: there is no content]⊆[image: there is no content].  ■



B.4. The Topology of g-Entropy

We have so far investigated g-entropy for fixed g∈[image: there is no content]. We now briefly consider the location and shape of the set of g-entropy maximisers.

For standard entropy maximisation and g-entropy maximisation with inclusive and symmetric g, the respective maximisers all obtain at [image: there is no content], if [image: there is no content]∈[[image: there is no content]];cf. Corollary 6.

If [image: there is no content]∉[[image: there is no content]], then the maxima all obtain at the boundary of [image: there is no content] “facing” [image: there is no content]. To make this latter observation precise, we denote for P,[image: there is no content]∈[image: there is no content] the line segment in [image: there is no content] that connects P with [image: there is no content], end points included, by P[image: there is no content]¯.

Proposition 20 (g-entropy is maximised at the boundary). For inclusive and symmetric g, [image: there is no content][image: there is no content]¯∩[[image: there is no content]]={[image: there is no content]}.

Proof: If [image: there is no content]∈[[image: there is no content]], then [image: there is no content]=[image: there is no content], by Corollary 6.

If [image: there is no content]∉[[image: there is no content]], suppose that there exists a [image: there is no content]∈[image: there is no content][image: there is no content]¯∩[[image: there is no content]] different from [image: there is no content]. Then, by the concavity of g-entropy on [image: there is no content] (Proposition 2) and the equivocator-preserving property (Corollary 6), we have [image: there is no content]([image: there is no content])>[image: there is no content]([image: there is no content])>[image: there is no content]([image: there is no content]). By the convexity of [[image: there is no content]] and Proposition 2, we have [image: there is no content]([image: there is no content])>[image: there is no content](P) for all P∈[[image: there is no content]]∖{[image: there is no content]}. Contradiction.  ■

We saw in Theorem 7 that for a particular sequence [image: there is no content] converging to [image: there is no content], P[image: there is no content]† converges to [image: there is no content] We shall now show that this is an instance of a more general phenomenon. We will demonstrate that [image: there is no content] varies continuously for continuous changes in g for g∈[image: there is no content].

Proposition 21 (Continuity of g-entropy maximisation). For all [image: there is no content], the function:



argsupP∈[image: there is no content]H(·)(P):[image: there is no content]⟶[[image: there is no content]],g↦[image: there is no content]








is continuous on [image: there is no content].
Proof: Consider a sequence, [image: there is no content]⊆[image: there is no content], converging to some g∈[image: there is no content]. We need to show that P[image: there is no content]† converges to [image: there is no content].

From [image: there is no content] converging to g, it easily follows that H[image: there is no content](P) converges to [image: there is no content](P) for all P∈[image: there is no content].

Since g-entropy is strictly concave, we have that for every [image: there is no content]∈[[image: there is no content]]∖{[image: there is no content]}, there exists some [image: there is no content] such that [image: there is no content]([image: there is no content])+ϵ=[image: there is no content]([image: there is no content]). By the fact that H[image: there is no content](P) converges to [image: there is no content](P) for all P, we find that H[image: there is no content]([image: there is no content])+ϵ2<H[image: there is no content]([image: there is no content]) for all t which are greater than some [image: there is no content]

Since H[image: there is no content]([image: there is no content])≤H[image: there is no content](P[image: there is no content]†), it follows that [image: there is no content] cannot be a point of accumulation of the sequence, (P[image: there is no content]†)[image: there is no content].

The sequence P[image: there is no content]† takes values in the compact set [[image: there is no content]], so it has at least one point of accumulation. We have demonstrated above that [image: there is no content] is the only possible point of accumulation. Hence, [image: there is no content] is the only point of accumulation and, therefore, the limit of this sequence.  ■

The continuity of g-entropy maximisation will be instrumental in proving the next proposition, which asserts that the g-entropy maximisers are clustered together.

Proposition 22. For any [image: there is no content], if [image: there is no content]⊆[image: there is no content]inc is path-connected, then the set {[image: there is no content]:g∈[image: there is no content]} is path-connected.

Proof: By Proposition 21, the map argsupP∈[image: there is no content]H(·)(P) is continuous. The image of a path-connected set under a continuous map is path-connected.  ■

Corollary 8. For all [image: there is no content], the sets {[image: there is no content]:g∈[image: there is no content]inc} and {[image: there is no content]:g∈[image: there is no content]0} are path-connected.

Proof: [image: there is no content]inc and [image: there is no content]0 are convex; thus, they are path-connected. Now, apply Proposition 22.  ■

It is, in general, not the case that a convex combination of weighting functions generates a convex combination of the corresponding g-entropy maximisers:

Proposition 23. For a convex combination of weighting functions, [image: there is no content], in general, it fails to hold that [image: there is no content]=λPg1†+(1−λ)Pg2†. Moreover, in general, [image: there is no content]∉Pg1†Pg2†¯.

Proof: Let g1=[image: there is no content],g2=g[image: there is no content] and [image: there is no content] Then, for a language [image: there is no content] with two propositional variables and [image: there is no content]={P∈[image: there is no content]:P([image: there is no content])+2P([image: there is no content])+3P([image: there is no content])+4P([image: there is no content])=1.7}, we can see from the following table that P0.3[image: there is no content]+0.7g[image: there is no content]†≠0.3[image: there is no content]+0.7P[image: there is no content]†.



If P0.3[image: there is no content]+0.7g[image: there is no content]† were in [image: there is no content]P[image: there is no content]†¯, then the last line of the above table would be constant for all [image: there is no content] As we can see, the values in the last line do vary.  ■




C. Level of Generalisation

In this section we shall show that the generalisation of entropy and score used in the text above is essentially the right one. We shall do this by defining broader notions of entropy and score of which the g-entropy and g-score are special cases, and showing that entropy maximisation only coincides with minimisation of worst-case score in the special case of g-entropy and g-score as they are defined above.

We will focus on the case of belief over propositions; belief over sentences behaves similarly. Our broader notions will be defined relative to a weighting γ:PΩ⟶R≥0 of propositions, rather than a weighting g:Π⟶R≥0 of partitions.

Definition 26 (γ-entropy). Given a function γ:PΩ⟶R≥0, the γ-entropy of a normalised belief function is defined as:



Hγ(B):=−∑[image: there is no content]γ(F)B(F)logB(F)



(107)




Definition 27 (γ-score). Given a loss function, L, and a function γ:PΩ⟶R≥0, the γ-expected loss function or γ-scoring rule, or simply γ-score, is SγL:[image: there is no content]×⟨[image: there is no content]⟩⟶[−∞,∞] such that SγL(P,B)=∑[image: there is no content]γ(F)P(F)L(F,B).

Definition 28 (Equivalent to a weighting of partitions). A weighting of propositions γ:PΩ⟶R≥0 is equivalent to a weighting of partitions, if there exists a function g:Π⟶R≥0, such that for all [image: there is no content]:



γ(F)=∑[image: there is no content][image: there is no content]g(π)



(108)




We see then that the notions of g-entropy and g-score coincide with those of γ-entropy and γ-score, just when the weightings of propositions γ are equivalent to weightings of partitions. Next, we extend the notion of inclusivity to our more general weighting functions:

Definition 29 (Inclusive weighting of propositions). A weighting of propositions γ:PΩ⟶R≥0 is inclusive if [image: there is no content] for all [image: there is no content].

We shall also consider a slight generalisation of strict propriety (cf., discussion following Definition 6):

Definition 30 (Strictly [image: there is no content]-proper γ-score). For P⊆[image: there is no content]⊆⟨[image: there is no content]⟩, a γ-score SγL:[image: there is no content]×⟨[image: there is no content]⟩⟶[−∞,∞] is strictly [image: there is no content]-proper, if for all P∈[image: there is no content], the restricted function SγL(P,·):[image: there is no content]⟶[−∞,∞] has a unique global minimum at [image: there is no content]. A γ-score is strictly proper if it is strictly ⟨[image: there is no content]⟩-proper. A γ-score is merely [image: there is no content]-proper if for some P, this minimum at [image: there is no content] is not the only minimum.

Note that if a γ-score is strictly [image: there is no content]-proper, then it is strictly [image: there is no content]-proper for [image: there is no content]⊆[image: there is no content]⊆[image: there is no content]. Thus, if it is strictly proper, it is also strictly [image: there is no content]-proper and strictly [image: there is no content]-proper.

Proposition 24. The logarithmic γ-score [image: there is no content] is non-negative and convex as a function of B∈⟨[image: there is no content]⟩. For inclusive γ, convexity is strict, i.e., [image: there is no content](P,λ[image: there is no content]+(1−λ)[image: there is no content])<λ[image: there is no content](P,[image: there is no content])+(1−λ)[image: there is no content](P,[image: there is no content]) for [image: there is no content], unless [image: there is no content] and [image: there is no content] agree everywhere except where [image: there is no content].

Proof: The logarithmic γ-score is non-negative because [image: there is no content] for all F, so logB(F)≤0,γ(F)P(F)≥0 and γ(F)P(F)logB(F)≤0.

That [image: there is no content] is strictly convex as a function of ⟨[image: there is no content]⟩ follows from the strict concavity of [image: there is no content]. Take as distinct [image: there is no content],[image: there is no content]∈⟨[image: there is no content]⟩ and [image: there is no content], and let [image: there is no content]. Now:



γ(F)P(F)log(B(F))=γ(F)P(F)log(λ·[image: there is no content](F)+(1−λ)[image: there is no content](F))≥γ(F)P(F)λlog[image: there is no content](F)+(1−λ)log[image: there is no content](F)=λγ(F)P(F)log[image: there is no content](F)+(1−λ)γ(F)P(F)log[image: there is no content](F)



(109)




with equality iff either [image: there is no content] or [image: there is no content] (since in the latter case, [image: there is no content]).
Hence:



[image: there is no content]=−∑[image: there is no content]γ(F)P(F)logB(F)≤λ[image: there is no content](P,[image: there is no content])+(1−λ)[image: there is no content](P,[image: there is no content])



(110)




with equality if and only if [image: there is no content] and [image: there is no content] agree everywhere, except, possibly, where [image: there is no content].  ■
Corollary 9. For inclusive γ and fixed P∈[image: there is no content], arginfB∈⟨[image: there is no content]⟩[image: there is no content](P,B) is unique. For [image: there is no content]:=arginfB∈⟨[image: there is no content]⟩[image: there is no content](P,B) and for all [image: there is no content], we have [image: there is no content](F)>0 if and only if [image: there is no content] Moreover, [image: there is no content](Ω)=1 and [image: there is no content]∈[image: there is no content].

Proof: First of all, suppose that there is an [image: there is no content] such that [image: there is no content] and [image: there is no content] Then, [image: there is no content] Furthermore, [image: there is no content] for all P∈[image: there is no content]. Hence, for [image: there is no content]∈arginfB∈⟨[image: there is no content]⟩[image: there is no content](P,B), it holds that [image: there is no content] implies [image: there is no content](F)>0.

Now, note that for P∈[image: there is no content], we have [image: there is no content]. Furthermore, there are only two partitions, [image: there is no content] and [image: there is no content] which contain Ω or [image: there is no content] Minimising −γ(∅)P(∅)log[image: there is no content](∅)−γ(Ω)P(Ω)log[image: there is no content](Ω), i.e., −γ(Ω)log[image: there is no content](Ω), subject to the constraint [image: there is no content](∅)+[image: there is no content](Ω)≤1, is uniquely solved by taking [image: there is no content](Ω)=1, and hence, [image: there is no content](∅)=0. Thus, for any [image: there is no content] minimising [image: there is no content], it holds that [image: there is no content](∅)=0 and [image: there is no content](Ω)=1. Hence, [image: there is no content]∈⟨[image: there is no content]⟩ is in [image: there is no content].

Now, consider a P∈[image: there is no content] such that there is at least one [image: there is no content] with [image: there is no content] We will show that [image: there is no content](F)=0 for all [image: there is no content]∈arginfB∈⟨[image: there is no content]⟩[image: there is no content](P,B). In the second step, we will show that there is a unique infimum, [image: there is no content].

Therefore, suppose that the there is a [image: there is no content]∈arginfB∈⟨[image: there is no content]⟩[image: there is no content](P,B) such that [image: there is no content](F)>0=P(F). Assume that [image: there is no content] is for this [image: there is no content], with respect to subset inclusion, one such largest subset of [image: there is no content]

Now define B′′:PΩ→[image: there is no content] by [image: there is no content] for all [image: there is no content] and B′′(F):=[image: there is no content](F) otherwise. From [image: there is no content], we see that B′′∈[image: there is no content]; thus, [image: there is no content] is well defined. Since P∈[image: there is no content], we have for all [image: there is no content] that [image: there is no content] Thus, [image: there is no content](P,[image: there is no content])=[image: there is no content](P,B′′).

Note that since [image: there is no content]∈⟨[image: there is no content]⟩, we have 1≥[image: there is no content](H¯)+[image: there is no content](H)>[image: there is no content](H¯)=B′′(H¯). Now, define a function B′′′∈⟨[image: there is no content]⟩ by:



B′′′(H¯):=1B′′′(F):=B′′(F)forallF≠H¯








Since for all [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], we have:


[image: there is no content](P,[image: there is no content])=[image: there is no content](P,B′′)>[image: there is no content](P,B′′′)








We assumed that [image: there is no content] minimises [image: there is no content] over ⟨[image: there is no content]⟩. Hence, we have a contradiction. We have thus proven that for every B∈arginfB∈⟨[image: there is no content]⟩[image: there is no content](P,B), [image: there is no content] if and only if [image: there is no content] Hence, for all P∈[image: there is no content]:


arginfB∈⟨[image: there is no content]⟩[image: there is no content](P,B)=arginf{B∈⟨[image: there is no content]⟩:P(F)=0↔B(F)=0}[image: there is no content](P,B)
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By Proposition 24, we can assume that the right-hand side of Equation (111) is a strictly convex optimisation problem on a convex set, which has, hence, a unique infimum.  ■
Corollary 10. [image: there is no content] is strictly ⟨[image: there is no content]⟩-proper if and only if [image: there is no content] is strictly [image: there is no content]-proper.

Proof: Assume that [image: there is no content] is strictly ⟨[image: there is no content]⟩-proper. Then for all P∈[image: there is no content], we have P=arginfB∈⟨[image: there is no content]⟩[image: there is no content](P,B). Since [image: there is no content]⊂[image: there is no content]⊂⟨[image: there is no content]⟩, we hence have P=arginfB∈[image: there is no content][image: there is no content](P,B).

For the converse, suppose that [image: there is no content] is strictly [image: there is no content]-proper, i.e., for all P∈[image: there is no content] we have P=arginfB∈[image: there is no content][image: there is no content](P,B). Note that strict propriety implies that γ is inclusive. Corollary 9 implies then that no B∈⟨[image: there is no content]⟩∖[image: there is no content] can minimise [image: there is no content](P,B).  ■

Definition 31 (Symmetric weighting of propositions). A weighting of propositions, γ, is symmetric, if and only if whenever [image: there is no content] can be obtained from F by permuting the [image: there is no content] in [image: there is no content] then γ([image: there is no content])=γ(F).

Note that γ is symmetric, if and only if |F|=|[image: there is no content]| entails γ(F)=γ([image: there is no content]). For symmetric γ, we will sometimes write [image: there is no content] for [image: there is no content] if [image: there is no content]

Proposition 25. For inclusive and symmetric γ, [image: there is no content] is strictly [image: there is no content]-proper.

Proof: We have that for all [image: there is no content], |{F⊆Ω:|F|=n,ω∈F}|=|{G⊆{ω}¯:|G|=n−1}|=|Ω|−1n−1.

We recall from Example 1 that with [image: there is no content], we have:



∑[image: there is no content]|F|=nP(F)=νn·∑[image: there is no content]P(ω)=νn
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Multiplying the objective function in an optimisation problem by some positive constant does not change where optima obtain. Thus:



arginfQ∈[image: there is no content]−∑[image: there is no content]|F|=nγ(n)P(F)logQ(F)=arginfQ∈[image: there is no content]−∑[image: there is no content]|F|=nP(F)νnlogQ(F)=arginfQ∈[image: there is no content]−∑[image: there is no content]|F|=nP(F)νnlog(Q(F)νn·νn)=arginfQ∈[image: there is no content]−∑[image: there is no content]|F|=nP(F)νnlogQ(F)νn+logνn=arginfQ∈[image: there is no content]−∑[image: there is no content]|F|=nP(F)νnlogQ(F)νn
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Now, note that since Q,P∈[image: there is no content], we have that ∑[image: there is no content]|F|=nP(F)=νn=∑[image: there is no content]|F|=nQ(F), and hence, ∑[image: there is no content]|F|=nP(F)νn=1=∑[image: there is no content]|F|=nQ(F)νn. Put [image: there is no content], and let us understand [image: there is no content] as functions P(·)νn,Q(·)νn:Ψ⟶[image: there is no content] with ∑G∈Ψ[image: there is no content]νn=1=∑G∈ΨQ(G)νn. It follows that [image: there is no content] are formally probability functions on Ψ, satisfying certain further conditions which are not relevant in the following. Let [image: there is no content]Ψ denote the set of probability functions on Ψ, and let [image: there is no content]Ω⊆[image: there is no content]Ψ be the set of probability functions of the above form, [image: there is no content], where P,Q∈[image: there is no content].
Consider a scoring rule, [image: there is no content], in the standard sense, i.e., expectations over losses are taken with respect to members x of some set X. (At the beginning of Section 2.4, we considered states [image: there is no content].) Let [image: there is no content] denote the set of probability functions on the set X. Suppose that S is strictly [image: there is no content]-proper. Then, for any fixed set [image: there is no content]⊆[image: there is no content], it holds that arginfB∈[image: there is no content]S(P,B)=P for all P∈[image: there is no content]. It is well known that the standard logarithmic scoring rule on a given universal set is strictly [image: there is no content]-proper. Taking [image: there is no content], [image: there is no content]=[image: there is no content]Ψ and [image: there is no content]=[image: there is no content]Ω, we obtain for all P(·)νn∈[image: there is no content]Ω that:



P(·)νn=arginfQ(·)νn∈[image: there is no content]Ω−∑G∈Ψ[image: there is no content]νnlogQ(G)νn=arginfQ∈[image: there is no content]−∑G∈Ψ[image: there is no content]νnlogQ(G)νn
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We thus find:


P=arginfQ∈[image: there is no content]−∑[image: there is no content]|F|=nγ(n)P(F)logQ(F)
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Since P minimises Equation (115) for every n, it also minimises the sum over all [image: there is no content] and hence:



P=arginfQ∈[image: there is no content]−∑1≤n≤|Ω|∑[image: there is no content]|F|=nγ(F)P(F)logQ(F)=arginfQ∈[image: there is no content][image: there is no content](P,Q)
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          ■
Lemma 10. If γ is an inclusive weighting of propositions that is equivalent to a weighting of partitions, then [image: there is no content] is strictly [image: there is no content]-proper.

Proof: While this result follows directly from Corollary 3, we shall give another proof that will provide the groundwork for the proof of the next result, Theorem 10.

First, we shall fix a P∈[image: there is no content] and observe that the first part of Corollary 9 up to and including Equation (111) still holds with [image: there is no content] substituted for ⟨[image: there is no content]⟩. We shall thus concentrate on propositions [image: there is no content] with [image: there is no content] since it follows from Corollary 9 that whenever [image: there is no content] we must have [image: there is no content] and [image: there is no content] if [image: there is no content] is to be minimised. We thus let [image: there is no content] and:



[image: there is no content]+:={B∈[image: there is no content]:0<B(F)≤1forallF∈P+Ω,B(Ω)=1andB(F)=0forallotherF∈PΩ∖P+Ω}








In the following optimisation problem, we will thus only consider [image: there is no content] to be a variable if [image: there is no content]
We now investigate:



arginfB∈[image: there is no content]+[image: there is no content](P,B)
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To this end, we shall first find for all fixed [image: there is no content]:


arginfB∈[image: there is no content]+B(F)≥P(F)tforallF∈P+Ω[image: there is no content](P,B)
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Making this restriction on [image: there is no content] allows us to evade any problems that arise from taking the derivative of [image: there is no content] at [image: there is no content], which inevitably arise when we directly apply Karush-Kuhn-Tucker techniques to Equation (117).
With [image: there is no content]:={π∈Π:π≠[image: there is no content],π≠[image: there is no content]}, we thus need to solve the following optimisation problem:



minimize[image: there is no content]subjecttoB(F)≥P(F)t>0fort≥2andallF∈P+Ω∑G∈πG∈P+ΩB(G)≤1forallπ∈[image: there is no content]B(Ω)=1andB(F)=0forallotherF∈PΩ∖P+Ω








Note that the first and second constraints imply that [image: there is no content] for all [image: there is no content]
Observe that for [image: there is no content] with [image: there is no content][image: there is no content] and [image: there is no content] there is another partition in [image: there is no content] that subdivides G and agrees with π everywhere else. These two partitions, π,[image: there is no content], will give rise to the exact same constraint on the [image: there is no content] Including the same constraint multiple times does not affect the applicability of the Karush-Kuhn-Tucker techniques. Thus, the solutions of this optimisation problem are the solutions of Equation (118).

With Karush-Kuhn-Tucker techniques in mind, we shall define the following function for B∈[image: there is no content]+:



Lag(B)=−∑[image: there is no content]γ(F)P(F)logB(F)︷[image: there is no content]+∑[image: there is no content][image: there is no content]·(−1+∑G∈πG∈P+ΩB(G))+∑[image: there is no content][image: there is no content](P(F)t−BF)︷constraints=−∑[image: there is no content]γ(F)P(F)logB(F)+∑[image: there is no content][image: there is no content]·(−1+∑G∈πG∈P+ΩB(G))+∑[image: there is no content][image: there is no content](P(F)t−BF)
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First, recall that [image: there is no content] iff [image: there is no content]; thus, the first sum is always finite here. Since [image: there is no content] for all [image: there is no content], we can take derivatives with respect to the variables [image: there is no content] Recalling that [image: there is no content] for all [image: there is no content], we now find:


∂∂B(F)Lag(B)=−γ(F)P(F)[image: there is no content]+∑[image: there is no content][image: there is no content][image: there is no content]−[image: there is no content]forallF∈P+Ω



(120)




Equating these derivatives with zero, we obtain:


γ(F)P(F)[image: there is no content]=∑[image: there is no content][image: there is no content][image: there is no content]−[image: there is no content]forallF∈P+Ω
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γ is, by our assumption, equivalent to a weighting of partitions, γ(F)=∑[image: there is no content][image: there is no content]g(π). Letting [image: there is no content] and [image: there is no content] for [image: there is no content] solves the set of equations in Equation (121). For [image: there is no content] when [image: there is no content], we trivially have [image: there is no content], and hence, [image: there is no content] Furthermore, [image: there is no content] for [image: there is no content]
Thus, by the Karush-Kuhn-Tucker Theorem, [image: there is no content] for [image: there is no content] is a critical point of the optimisation problem in Equation (118) for all t and all P∈[image: there is no content], since all constraints are linear.

Note that the constraints, [image: there is no content][image: there is no content] and 0≤∑[image: there is no content]B(F)≤1 for [image: there is no content], ensure that B is a member of [image: there is no content], regardless of the actual value of [image: there is no content] for [image: there is no content] Thus, B∈[image: there is no content]+, if and only if [image: there is no content][image: there is no content]0≤∑[image: there is no content]B(F)≤1 for [image: there is no content] and [image: there is no content] iff [image: there is no content] Thus, [image: there is no content]+ is convex. It follows that Bt+:={B∈[image: there is no content]+:B(F)≥P(F)tforallF∈P+Ω} is convex for all [image: there is no content] Since [image: there is no content]+ is the feasible region of Equation (118), the critical point of the convex minimisation problem is the unique minimum.

Letting [image: there is no content] tend to zero, we see that [image: there is no content] for [image: there is no content] is the unique solution of Equation (117).

Thus, any function B∈[image: there is no content] minimizing [image: there is no content] has to agree with P on the [image: there is no content] By our introductory remarks, it has to hold that [image: there is no content] and [image: there is no content] for all other [image: there is no content] Thus, [image: there is no content] for all [image: there is no content]

We have thus shown that [image: there is no content] is strictly proper.  ■

Theorem 10. For inclusive γ with [image: there is no content], [image: there is no content] is strictly proper if and only if γ is equivalent to a weighting of partitions.

Proof: From Lemma 10, we have that the existence of the [image: there is no content] ensures propriety.

For the converse, suppose that [image: there is no content] is strictly [image: there is no content]-proper (equivalently, by Corollary 10, strictly proper). By our assumptions, we have [image: there is no content] We can thus put [image: there is no content] and [image: there is no content] Then [image: there is no content] and [image: there is no content]

Observe that for all P∈[image: there is no content], for any infimum of the minimisation problem arginfB∈[image: there is no content]Sγlog(P,B), there have to exist multipliers, [image: there is no content]≥0 and [image: there is no content], that solve Equation (121) and [image: there is no content] Now, fix a P∈[image: there is no content] such that [image: there is no content] for all [image: there is no content] If [image: there is no content] is strictly [image: there is no content]-proper, then the minimisation problem arginfB∈[image: there is no content]Sγlog(P,B) for this P has to be solved uniquely by [image: there is no content]. Thus, strict [image: there is no content]-propriety implies that:



0<γ(F)=∑[image: there is no content][image: there is no content][image: there is no content]−[image: there is no content]forall∅⊂F⊂Ωand[image: there is no content]1−ttP(F)=0forallF∈P+Ω








The latter conditions can only be satisfied if all [image: there is no content] vanish. Hence, we obtain the following conditions, which necessarily have to hold if [image: there is no content] is to be uniquely minimised by [image: there is no content]:


0<γ(F)=∑[image: there is no content][image: there is no content][image: there is no content]forall∅⊂F⊂Ω








Since all the constraints are inequalities, the corresponding multipliers, [image: there is no content], have to be greater than or equal to zero.
Thus, strict propriety of [image: there is no content] implies the existence of these [image: there is no content]≥0. This, in turn, implies that γ is equivalent to a weighting of partitions.

Note that for the purposes of this proof, we do not need to investigate what happens if P∈[image: there is no content] is such that there exists a proposition, [image: there is no content], with [image: there is no content]  ■

Note that [image: there is no content] is not a real restriction. The first component in [image: there is no content](·,·) is a probability function in the above proof. Thus, [image: there is no content] Hence [image: there is no content] regardless of [image: there is no content] The particular value of [image: there is no content] is thus irrelevant for strict propriety. Therefore, setting [image: there is no content] fulfills the conditions of the Theorem, but does not change the value of the γ-score. (The condition is required, because if [image: there is no content], then, while [image: there is no content] may be strictly proper, it cannot be a weighting of partitions.)

The importance of the condition in Theorem 10 that γ should be equivalent to a weighting of partitions is highlighted in the following:

Example 4. Let Ω={[image: there is no content],[image: there is no content],[image: there is no content]} and [image: there is no content] and [image: there is no content] Now, consider B∈[image: there is no content], defined as [image: there is no content][image: there is no content] if [image: there is no content], [image: there is no content] if [image: there is no content], and [image: there is no content] Then:



[image: there is no content]([image: there is no content],[image: there is no content])=−∑[image: there is no content][image: there is no content](ω)log[image: there is no content](ω)−10·∑[image: there is no content][image: there is no content][image: there is no content](F)log[image: there is no content](F)−[image: there is no content](Ω)·log[image: there is no content](Ω)=−3·13log13−3·10·23log23≈9.2079



(122)






[image: there is no content]([image: there is no content],B)=−∑[image: there is no content][image: there is no content](ω)logB(ω)−10·∑[image: there is no content][image: there is no content][image: there is no content](F)logB(F)−[image: there is no content](Ω)·logB(Ω)=−3·13log0.2−3·10·23log0.8≈6.0723
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Thus, [image: there is no content]([image: there is no content],B)<[image: there is no content]([image: there is no content],[image: there is no content]). Hence, [image: there is no content] is not strictly [image: there is no content]-proper, even though γ is inclusive and symmetric. Compare this with Proposition 25, where we proved that positivity and symmetry γ were enough to ensure that [image: there is no content] is strictly [image: there is no content]-proper.
Note that strict propriety is exactly what is needed in order to derive Theorem 2, as is apparent from its proof (see, also, the discussion at the start of Section 2.5). By Theorem 10, only a weighting of propositions that is equivalent to a weighting of partitions can be strictly proper (up to an inconsequential value for [image: there is no content]); hence, the generalisation of standard entropy and score in the main text, which focusses on weightings of partitions, is essentially the right one for our purposes.

Indeed, adopting a non-strictly proper scoring rule [image: there is no content] may result in Theorem 2 not holding:

Proposition 26. If [image: there is no content] is not strictly [image: there is no content]-proper (with [image: there is no content]⊆[image: there is no content]), then the worst case γ-expected loss minimisation and γ-entropy maximisation are, in general, achieved by different functions.

Proof: If [image: there is no content] is not merely proper, then there is a [image: there is no content]∈[image: there is no content] such that [image: there is no content]([image: there is no content],·) is not minimised over [image: there is no content] by [image: there is no content]. In particular, there is some Q∈[image: there is no content] such that [image: there is no content]([image: there is no content],Q)<[image: there is no content]([image: there is no content],[image: there is no content]). Suppose that [image: there is no content]={[image: there is no content]}. Trivially:



argsupP∈[image: there is no content][image: there is no content](P,P)=[image: there is no content]








By construction:


arginfQ∈[image: there is no content]supP∈[image: there is no content][image: there is no content](P,Q)=arginfQ∈[image: there is no content]supP∈{[image: there is no content]}[image: there is no content](P,Q)=arginfQ∈[image: there is no content][image: there is no content]([image: there is no content],Q)∌[image: there is no content]



(124)




Thus, the γ-entropy maximiser in [image: there is no content] (here, [image: there is no content]) is not a function in [image: there is no content] that minimises worst-case γ-expected loss.

Finally, consider the case in which [image: there is no content] is merely proper, i.e., there exists a [image: there is no content]∈[image: there is no content] such that [image: there is no content]([image: there is no content],·) is minimised by both [image: there is no content] and members of a non-empty subset, Q⊆[image: there is no content]∖{[image: there is no content]}. Then, with [image: there is no content]={[image: there is no content]}:



arginfQ∈[image: there is no content]supP∈[image: there is no content][image: there is no content](P,Q)=arginfQ∈[image: there is no content]supP∈{[image: there is no content]}[image: there is no content](P,Q)=arginfQ∈[image: there is no content][image: there is no content]([image: there is no content],Q)=Q∪{[image: there is no content]}








Thus there is some function other than the γ-entropy maximiser that also minimises the γ-score.  ■
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