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Abstract: Distance measures are used to quantify the extent to which information is
preserved or altered by quantum processes, and thus are indispensable tools in quantum
information and quantum computing. In this paper we propose a new distance measure for
mixed quantum states, which we call the dynamic distance measure, and we show that it is a
proper distance measure. The dynamic distance measure is defined in terms of a measurable
quantity, which makes it suitable for applications. In a final section we compare the dynamic
distance measure with the well-known Bures distance measure.
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1. Introduction

Quantum information has the reputation of being a futuristic field full of far-reaching promises.
The field has attracted researchers from many different branches of science and engineering, whose
efforts have greatly improved our understanding of the physical nature of information, and hopefully
will provide us with new cutting-edge technological innovations in the future. Quantum information
theory has been applied to such diverse areas as bio-science, nano-technology, economics, and
game theory [1–3].

In recent years, new experimental results have shed light on some murky and hidden parts of quantum
information, and have also opened up new opportunities beyond our expectations. Furthermore, new
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theoretical tools, mostly from geometry and topology, have been successfully applied to the field.
For example, geometrical considerations led to the important characterization of entanglement and the
development of efficient, error-prone systems for quantum computers.

Distance measures are some of the most basic geometrical tools used in quantum information theory.
Such measures are, for example, used to compare the input and output of quantum channels and
gates, and hence to quantify to what extent information is preserved, or altered, by quantum processes.
Examples of well-known distance measures are the trace-distance, fidelity, and Bures distance [4–6]. In
this paper we propose a new distance measure that we call the dynamic distance measure. This distance
measure is defined for all pairs of isospectral, i.e., unitarily equivalent, mixed states. We show that
the dynamic distance is a proper distance measure—a verification that, despite the naturalness of the
definition, requires a surprisingly extensive geometric machinery.

Here is the outline of the paper. In Section 2 we define the dynamic distance measure, and state the
main result. In Section 3 we introduce a geometric framework, designed and tailored to our needs, and
in Section 4 we in detail discuss properties of the dynamic distance measure and prove the main result.
Section 5 contains a derivation of the dynamic distance between distinguishable isospectral mixed states.
Finally, in Section 6 we compare the dynamic distance measure and the Bures distance.

2. Isospectral Mixed States and the Dynamic Distance Measure

Mixed quantum states can be represented by density operators, i.e., self-adjoint, positive, trace-class
operators with unit trace. We denote the space of density operators for a quantum system modeled on a
Hilbert spaceH by D(H), and its subspace of density operators with finite rank at most k by Dk(H).

A density operator that evolves according to a von Neumann equation remains in a single orbit of the
left conjugation action of the unitary group ofH on D(H). The orbits are in one-to-one correspondence
with the possible spectra for density operators onH. By the spectrum of a density operator of rank k we
mean its descending sequence σ = (p1, p2, . . . , pk) of positive eigenvalues, repeated in accordance with
their multiplicity. We henceforth assume σ to be fixed, and write D(σ) for the corresponding orbit.

Suppose ρ0 and ρ1 are two density operators in D(σ). Let H be a Hamiltonian operator on H, and
assume that a curve ρ satisfies the boundary value von Neumann equation:

iρ̇ = [H, ρ], ρ(t0) = ρ0, ρ(t1) = ρ1 (1)

We then define the H-distance from ρ0 and ρ1 to be the path integral of the uncertainty of H along ρ,

DH(ρ0, ρ1) =

∫ t1

t0

√
Tr(H2ρ)− Tr(Hρ)2 dt (2)

We also define the dynamic distance between ρ0 and ρ1 to be

D(ρ0, ρ1) = inf
H
DH(ρ0, ρ1) (3)

where the infimum is taken over all Hamiltonians H for which the boundary value problem in
Equation (1) has a solution. The dynamic distance measure is defined for each pair of isospectral density
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operators because any two such can be connected by a solution to some von Neumann equation. The
main result of this paper is that the dynamic distance measure is a proper distance measure on D(σ):

Theorem 1. The dynamic distance measure is a proper distance measure.

Recall that a proper distance measure is a binary function dist that satisfies the following conditions:

Positivity: dist(ρ0, ρ1) ≥ 0

Non-degeneracy: dist(ρ0, ρ1) = 0 ⇐⇒ ρ0 = ρ1

Symmetry: dist(ρ0, ρ1) = dist(ρ1, ρ0)

Triangle inequality: dist(ρ0, ρ2) ≤ dist(ρ0, ρ1) + dist(ρ1, ρ2)

One can show that the dynamic distance measure is also unitarily invariant:

D(Uρ0U
†, Uρ1U

†) = D(ρ0, ρ1) (4)

The proof of Theorem 1 will be based on a fairly involved mathematical setup.

3. Standard Purification of Isospectral Mixed States

A state is called pure if its density operator has rank 1. In quantum mechanics, especially quantum
information theory, purification refers to the fact that every density operator can be thought of as
representing the reduced state of a pure state. More precisely, if ρ is a density operator acting on H,
and K is a Hilbert space of large enough dimension, then there is a normalized ket |Ψ〉 in H ⊗ K
such that ρ is the partial trace of |Ψ〉〈Ψ| with respect to K. By the standard purification of density
operators on H of rank at most k we will mean the surjective map π : S(H ⊗ Ck∗) → Dk(H) defined
by π|Ψ〉 = TrCk∗ |Ψ〉〈Ψ|. Here, Ck∗ is the space of linear functionals on Ck and S(H⊗ Ck∗) is the unit
sphere inH⊗Ck∗. If we canonically identifyH⊗Ck∗ with the space L(Ck,H) of linear maps from Ck

toH, equipped with the Hilbert–Schmidt inner product, then

π(Ψ) = ΨΨ† (5)

Write P (σ) for the diagonal k×k matrix that has σ as its diagonal, and let S(σ) be the space of those
Ψ in L(Ck,H) that satisfies Ψ†Ψ = P (σ) when Ψ†Ψ is expressed as a matrix relative to the standard
basis in Ck. Then S(σ) is a subspace of the unit sphere in L(Ck,H), and the standard purification in
Equation (5) restricted to S(σ) is a principal fiber bundle over D(σ) with right acting gauge group U(σ),

U ·Ψ = ΨU, U ∈ U(σ), Ψ ∈ S(σ) (6)

consisting of those unitaries in U(k) that commutes with P (σ). The following two special cases are
well known.

Example 1. If σ = (1), then D(σ) is the complex projective n-space, S(σ) is the (2n + 1)-dimensional
unit sphere, and π is the generalized Hopf bundle.

Example 2. If σ = ( 1
k
, 1
k
, . . . , 1

k
), then D(σ) is the Grassmann manifold of k-planes in H, S(σ) is the

Stiefel manifold of k-frames inH, and π is the Stiefel bundle.
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The vertical and horizontal bundles over S(σ) are the subbundles VS(σ) = Ker dπ and HS(σ) =

VS(σ)⊥ of the tangent bundle of S(σ). Here ⊥ denotes orthogonal complement with respect to the
Hilbert–Schmidt product. Vectors in VS(σ) and HS(σ) are called vertical and horizontal, respectively,
and a curve in S(σ) is called horizontal if its velocity vectors are horizontal. Recall that for every curve
ρ in D(σ) and every Ψ0 in the fiber over the initial operator ρ(t0), there is a unique horizontal lift of ρ
to S(σ) that extends from Ψ0 [7] (page 69, Prop 3.1). For convenience, we assume that all curves in this
paper are defined on a common unspecified interval t0 ≤ t ≤ t1. Moreover, we assume that they are
piecewise smooth.

The infinitesimal generators of the gauge group action in Equation (6) yield canonical isomorphisms
between the Lie algebra u(σ) of U(σ) and the fibers in VS(σ). The Lie algebra consists of all anti-
Hermitian k × k matrices that commutes with P (σ), and the isomorphisms are

u(σ) 3 ξ 7→ Ψξ ∈ VΨS(σ) (7)

Furthermore, HS(σ) is the kernel bundle of the gauge invariant mechanical connection form AΨ =

I
−1
Ψ JΨ, where IΨ : u(σ) → u(σ)∗ and JΨ : TΨS(σ) → u(σ)∗ are the locked inertia tensor and moment

map, respectively,

IΨξ · η =
1

2
Tr
((
ξ†η + η†ξ

)
P (σ)

)
, JΨ(X) · ξ =

1

2
Tr
(
X†Ψξ + ξ†Ψ†X

)
(8)

Using Equation (8) we can derive an explicit formula for the connection form. Indeed, ifm1,m2, . . . ,ml

are the multiplicities of the different eigenvalues in σ, with m1 being the multiplicity of the greatest
eigenvalue, m2 the multiplicity of the second greatest eigenvalue, etc., and if for j = 1, 2, . . . , l,

Ej = diag(0m1 , . . . ,0mj−1
,1mj

,0mj+1
, . . . ,0ml

)

then

IΨ

(∑
j

EjΨ
†XEjP (σ)−1

)
· ξ =

1

2
Tr
((∑

j

P (σ)−1EjX
†ΨEjξ + ξ†

∑
j

EjΨ
†XEjP (σ)−1

)
P (σ)

)
=

1

2
Tr
(∑

j

Ej(X
†Ψξ + ξ†Ψ†X)Ej

)
=

1

2
Tr
(
X†Ψξ + ξ†Ψ†X

)
= JΨ(X) · ξ

(9)

for every X in TΨS(σ) and every ξ in u(σ). Hence

AΨ(X) =
∑
j

EjΨ
†XEjP (σ)−1 (10)

Observe that the orthogonal projection of TΨS(σ) onto VΨS(σ) is given by the connection form
followed by the identification in Equation (7). Therefore, the vertical and horizontal projections of
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X in TΨS(σ) are X⊥ = ΨAΨ(X) and X || = X −ΨAΨ(X), respectively. We finish this section with a
discussion on the distance between the fibers of π over two given density operators ρ0 and ρ1 in D(σ).

Consider the space Ω(ρ0, ρ1) of piecewise smooth curves that start in the fiber π−1(ρ0) and end in the
fiber π−1(ρ1). This space can be given a natural smooth structure such that the tangent space at a curve
Ψ consists of all smooth vector fields χ along Ψ that are vertical at the end points of Ψ. Let E be the
energy functional on Ω(ρ0, ρ1),

E[Ψ] =
1

2

∫ t1

t0

Tr(Ψ̇†Ψ̇) dt (11)

The differential of E at Ψ is given by

dE[Ψ]χ =
1

2

[
Tr(χ†Ψ̇ + Ψ̇†χ)

]t1
t0
− 1

2

∫ t1

t0

Tr(χ†∇tΨ̇ +∇tΨ̇
†χ) dt (12)

where ∇tΨ̇ denotes the covariant derivative of Ψ̇ along Ψ. We call Ψ an extremal for E if dE[Ψ] = 0.
Clearly, extremals for E are geodesics: ∇tΨ̇ = 0.

The length of a curve Ψ in S(σ) is

L[Ψ] =

∫ t1

t0

√
Tr(Ψ̇†Ψ̇) dt (13)

Moreover, the distance between π−1(ρ0) and π−1(ρ1) is defined as the infimum of the lengths of all
curves in Ω(ρ0, ρ1). There is at least one curve in Ω(ρ0, ρ1) whose length equals the distance between
the two fibers. This is because the fibers are compact. In addition, each such curve is an extremal for E.
Therefore they are horizontal:

Proposition 2. If Ψ is a geodesic in S(σ), then JΨ(Ψ̇) is constant.

Proof. Choose any η in u(σ) and consider the variation Ψε(t) = Ψ(t) exp(εη). We have that
Tr(Ψ̇†εΨ̇ε) = Tr(Ψ̇†Ψ̇) since U(σ) acts through isometries. Hence

0 =
1

2

d

dε

[∫ τ1

τ0

Tr(Ψ̇†εΨ̇ε) dt

]
ε=0

=
1

2

[
Tr(η†Ψ†Ψ̇ + Ψ̇†Ψη)

]τ1
τ0
− 1

2

∫ τ1

τ0

Tr(η†Ψ†∇tΨ̇ +∇tΨ̇
†Ψη) dt

=
[
JΨ(Ψ̇) · η

]τ1
τ0

(14)

for any t0 ≤ τ0 ≤ τ1 ≤ t1. We conclude that JΨ(Ψ̇) is constant.

4. Properties of the Dynamic Distance Measure

In this section we prove that D(ρ0, ρ1) equals the distance between the fibers π−1(ρ0) and π−1(ρ1).
Theorem 1 follows easily from this observation.

Proposition 3. Suppose ρ solves Equation (1). Let Φ be a horizontal lift of ρ. Then DH(ρ0, ρ1) ≥ L[Φ].
Moreover, DH(ρ0, ρ1) = L[Φ] if iΦ̇ = HΦ.
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Lemma 4. We have that Tr(ξ2P (σ)) ≤ Tr(ξP (σ))2 for every ξ in u(σ), and Tr(ξ2P (σ)) = Tr(ξP (σ))2

if and only if ξ is a constant multiple of the identity.

Proof. Write iξ = UδU †, where δ is a real diagonal matrix and U belongs to U(σ). We have
that Tr(ξ2P (σ)) = −Tr(δ2P (σ)) and Tr(ξP (σ))2 = −Tr(δP (σ))2 since P (σ) commutes with U .
Moreover, Tr(δP (σ))2 ≤ Tr(δ2P (σ)), and Tr(δP (σ))2 = Tr(δ2P (σ)) if and only if δ is a constant
multiple of the identity. This is because x 7→ x2 is strongly convex.

Proof of Proposition 3. Let Φ be a horizontal lift of ρ, and let Ψ be any lift of ρ such that iΨ̇ = HΨ and
Ψ(t0) = Φ(t0). Then

Φ = ΨU, U(t) = exp+

(
−
∫ t

t0

AΨ(Ψ̇) dt

)
(15)

where exp+ is the positive time-ordered exponential. Now,

Tr(H2ρ)− Tr(Hρ)2 = Tr(Ψ†H2Ψ)− Tr(Ψ†HΨ)2

= Tr(Ψ̇†Ψ̇) + Tr(Ψ†Ψ̇)2

= Tr(Ψ̇†Ψ̇) + Tr(EjΨ
†Ψ̇Ej)

2

= Tr(Ψ̇†Ψ̇) + Tr(AΨ(Ψ̇)P (σ))2

(16)

and

Tr(Φ̇†Φ̇) = Tr
(
U †
(

Ψ̇† +AΨ(Ψ̇)Ψ†)(Ψ̇−ΨAΨ(Ψ̇)
)
U
)

= Tr
(

Ψ̇†Ψ̇ + (Ψ†Ψ̇− Ψ̇†Ψ)AΨ(Ψ̇)−AΨ(Ψ̇)2P (σ)
)

= Tr(Ψ̇†Ψ̇) + 2 Tr(Ψ†Ψ̇AΨ(Ψ̇))− Tr(AΨ(Ψ̇)2P (σ))

= Tr(Ψ̇†Ψ̇) + 2 Tr(Ψ†Ψ̇EjΨ
†Ψ̇EjP (σ)−1)− Tr(AΨ(Ψ̇)2P (σ))

= Tr(Ψ̇†Ψ̇) + 2 Tr

((
EjΨ

†Ψ̇Ej

)2

P (σ)−1

)
− Tr(AΨ(Ψ̇)2P (σ))

= Tr(Ψ̇†Ψ̇) + Tr(AΨ(Ψ̇)2P (σ))

(17)

Hence

Tr(H2ρ)− Tr(Hρ)2 = Tr(Ψ̇†Ψ̇) + Tr(AΨ(Ψ̇)P (σ))2

≥ Tr(Ψ̇†Ψ̇) + Tr(AΨ(Ψ̇)2P (σ))

= Tr(Φ̇†Φ̇)

(18)

by Lemma 4. We conclude that DH(ρ0, ρ1) ≥ L[Φ]. Moreover, if Ψ is horizontal, and thus Ψ = Φ, then
Tr(H2ρ)− Tr(Hρ)2 = Tr(Φ̇†Φ̇) according to Equation (16). In this case DH(ρ0, ρ1) = L[Φ].

Corollary 5. The dynamic distance between two density operators ρ0 and ρ1 inD(σ) equals the distance
between the fibers π−1(ρ0) and π−1(ρ1).
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Proof. Immediate from Proposition 3 and the fact that every curve in S(σ) is the solution to some
Schrödinger equation. This is because the unitary group ofH acts transitively on S(σ).

Proposition 3 and Corollary 5 shows that for any pair of density operators ρ0 and ρ1 inD(σ), there is a
curve Ψ in S(σ) that extends from the fiber over ρ0, ends in the fiber over ρ1, and for which D(ρ0, ρ1) =

L[Ψ]. This observation makes the proof of Theorem 1 fairly straightforward:

Proof of Theorem 1. The function D is positive because DH(ρ0, ρ1) is always a non-negative number by
Equation (2). Moreover,D is non-degenerate. Indeed, let Ψ be a curve in Ω(ρ0, ρ1) such thatD(ρ0, ρ1) =

L[Ψ]. If D(ρ0, ρ1) = 0, then Ψ is stationary, and hence ρ0 = ρ1. The opposite implication is obvious.
To see that D is symmetric let Ψ be a curve like the one in the proof of non-degeneracy. Define

Φ by Φ(t) = Ψ(t1 + t0 − t). Then Φ is a horizontal curve that projects onto a curve in D(σ) from
ρ1 to ρ0. Consequently, D(ρ1, ρ0) ≤ L[Φ] = L[Ψ] = D(ρ0, ρ1). An identical argument shows that
D(ρ0, ρ1) ≤ D(ρ1, ρ0). Thus, D is symmetric.

Finally, to see that D satisfies the triangle inequality let Ψij be a horizontal curve in S(σ) covering a
curve in D(σ) from ρi to ρj , i, j = 0, 1, 2. Also assume that D(ρi, ρj) = L[Ψij]. Then

Φ(t) =

Ψ01(2t− t0), if t0 ≤ t ≤ (t1 + t0)/2

Ψ12(2t− t1), if (t1 + t0)/2 ≤ t ≤ t1
(19)

is a horizontal curve connecting the fibers over ρ0 and ρ2. Therefore,

D(ρ0, ρ2) ≤ L[Φ] = L[Ψ01] + L[Ψ12] = D(ρ0, ρ1) +D(ρ1, ρ2) (20)

Thus, D satisfies the triangle inequality.

5. Dynamic Distance Between Distinguishable Mixed States

Assume the dimension of H is not less than twice the length of σ. Let ρ0 and ρ1 be density operators
in D(σ) that represent distinguishable states in the sense that the fidelity between ρ0 and ρ1 vanishes.
Furthermore, let Ψ0 and Ψ1 be any purifications of ρ0 and ρ1, and define a curve Ψ = Ψ(t) by

Ψ(t) = cos tΨ0 + sin tΨ1, 0 ≤ t ≤ π/2 (21)

The curve Ψ is a distance minimizing geodesic when regarded a curve in the unit sphere in L(Ck,H),
and as such it has length π/2. Accordingly, D(ρ0, ρ1) ≥ π/2. On the other hand, Ψ is contained in S(σ)

because the supports of Ψ0 and Ψ1 are orthogonal:

Ψ†0Ψ1 = Ψ†1Ψ0 = 0 =⇒ Ψ(t)†Ψ(t) = cos2 tΨ†0Ψ0 + sin t cos t(Ψ†0Ψ1 + Ψ†0Ψ1) + sin2 tΨ†1Ψ1 = P (σ)

(22)
Hence, D(ρ0, ρ1) ≤ L[Ψ] = π/2. We conclude that

D(ρ0, ρ1) = π/2 (23)

A HamiltonianH that transports ρ0 to ρ1 in such a way that theH-distance between ρ0 and ρ1 is equal
to the dynamic distance can be obtained as follows. The sequence

1
√
p1

Ψ0e1,
1
√
p1

Ψ1e1,
1
√
p2

Ψ0e2,
1
√
p2

Ψ1e2, . . . ,
1
√
pk

Ψ0ek,
1
√
pk

Ψ1ek (24)
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where ej is the j th standard basis vector in Ck, is an orthonormal 2k-frame in H. Let H be any
Hamiltonian that satisfies

HΨ0ej = iΨ1ej, HΨ1ej = −iΨ0ej, j = 1, 2, . . . k (25)

Then Ψ is the solution to the Schrödinger equation of H with initial value Ψ0.

6. Relation Between the Dynamic Distance Measure and Bures Distance

Suppose H is n-dimensional. Let Sinv(Cn,H) be the space of all invertible maps in L(Cn,H)

with unit norm, and Dinv(H) be the space of all invertible density operators acting on H. Then
Π : Sinv(Cn,H)→ Dinv(H) defined by Π(Ψ) = ΨΨ† is a U(n)-bundle, which we call Uhlmann’s bundle
since it first appeared in [6]. The geometry of Uhlmann’s bundle has been thoroughly investigated, and
it is an important tool in quantum information theory, mainly due to its close relationship with the Bures
distance measure [8,9].

Uhlmann’s bundle is equipped with the mechanical connection, which means that the horizontal
bundle is the orthogonal complement of the vertical bundle with respect to the Hilbert–Schmidt inner
product. Moreover, the Bures distance between two density operators in Dinv(H) equals the distance
between the corresponding fibers of Π, see [9]. We denote the Bures distance measure by DB.

Suppose σ has length n. Then S(σ) is a submanifold of Sinv(Cn,H). Moreover, the vertical bundle of
S(σ) is subbundle of the restriction of the vertical bundle of Sinv(Cn,H) to S(σ). However, no nonzero
horizontal vector in Uhlmann’s bundle is tangential to S(σ). To see this, let Ψ be any element in S(σ).
ThenX in TΨSinv(Cn,H) is horizontal, i.e., is annihilated by the mechanical connection of the Uhlmann
bundle, if and only if

Ψ†X −X†Ψ = 0 (26)

see [6]. On the other hand, every X in TΨS(σ) satisfies

Ψ†X +X†Ψ = 0 (27)

since Ψ†Ψ = P (σ). Clearly, only the zero vector satisfies both Equations (26) and (27).
The distance between ρ0 and ρ1 in D(σ) is never smaller than the Bures distance between them.

Indeed, every curve between π−1(ρ0) and π−1(ρ1) in S(σ) is a curve between Π−1(ρ0) and Π−1(ρ1) in
Sinv(Cn,H), and since the metrics on the total spaces of the two bundles are induced from a common
ambient metric we can conclude that

D(ρ0, ρ1) ≥ DB(ρ0, ρ1) (28)

Uhlmann [9] and Dittmann [10,11] have derived explicit formulas for the Bures distance for density
operators on finite dimensional Hilbert spaces. For density operators on C2 the formula reads

DB(ρ, ρ+ δρ)2 =
1

4
Tr
(
δρδρ+

1

det ρ
(δρ− ρδρ)2

)
(29)
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We use this formula to show that there are density operators ρ0 and ρ1 acting on C2 for which the
inequality in Equation (28) is strict.

Suppose σ = (p1, p2), let ε > 0, and define a curve Ψ in S(σ) by

Ψ(t) =

[ √
p1 cos(εt)

√
p2 sin(εt)

−√p1 sin(εt)
√
p2 cos(εt)

]
, 0 ≤ t ≤ 1 (30)

Set ρ0 = Ψ(0)Ψ(0)† and ρ1 = Ψ(1)Ψ(1)†. Then, for ε small enough, the length of Ψ equals D(ρ0, ρ1).
In this case, D(ρ0, ρ1) = L[Ψ] = ε. However, Equation (29) yields

DB(ρ0, ρ1) =
p1 − p2√

2
| sin ε|

√
2 +

(p1 − p2)2

2p1p2

sin2 ε (31)

7. Conclusion

In summary, we have introduced a measurable quantity called the dynamic distance measure on each
space of isospectral density operators, and shown that it is a proper distance measure, i.e., a positive,
non-degenerate, symmetric binary function that satisfies the triangle inequality. The main result was
formulated in Section 2, but its proof was postponed until Section 4 to make the paper accessible also to
those readers who are mainly interested in the result rather than the extensive geometrical setup and fairly
technical proof. We have also compared our dynamic distance measure with the Bures distance. The
outcome of that comparison is that the dynamic distance measure and the Bures distance are different. In
fact, the dynamic distance measure is bounded from below by the Bures distance. Because the dynamic
distance measure is defined in terms of Hamiltonians we believe that our results have many interesting
applications in fields such as quantum computing and condense matter, where Hamiltonians for specific
quantum operations or specific quantum systems are usually defined explicitly.
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