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Abstract: Quantum time correlation functions are often the principal objects of interest
in experimental investigations of the dynamics of quantum systems. For instance, transport
properties, such as diffusion and reaction rate coefficients, can be obtained by integrating
these functions. The evaluation of such correlation functions entails sampling from quantum
equilibrium density operators and quantum time evolution of operators. For condensed phase
and complex systems, where quantum dynamics is difficult to carry out, approximations
must often be made to compute these functions. We present a general scheme for
the computation of correlation functions, which preserves the full quantum equilibrium
structure of the system and approximates the time evolution with quantum-classical Liouville
dynamics. Several aspects of the scheme are discussed, including a practical and general
approach to sample the quantum equilibrium density, the properties of the quantum-classical
Liouville equation in the context of correlation function computations, simulation schemes
for the approximate dynamics and their interpretation and connections to other approximate
quantum dynamical methods.

Keywords: quantum correlation functions; quantum-classical systems; nonadiabatic
dynamics

1. Introduction

The dynamical properties of condensed-phase or complex systems are often investigated
experimentally by applying external fields to weakly perturb a system and observe its relaxation back to



Entropy 2014, 16 201

the thermal equilibrium state. In such experiments, measurable quantities can be related to equilibrium
time correlation functions via linear response theory [1,2]:

CAB(t) =
1

ZQ
Tr
[
e−βĤÂ(0)B̂(t)

]
=

1

ZQ
Tr
[
e−βĤÂe

i
h̄
ĤtB̂e−

i
h̄
Ĥt
]

(1)

where Â and B̂ are operators corresponding to some specific dynamical variables under investigation,
Ĥ is the unperturbed Hamiltonian and ZQ is the quantum canonical partition function associated with Ĥ .
Many experiments employing spectroscopic methods directly probe such time correlation functions.

Exact numerical evaluation of Equation (1) for real condensed phase quantum systems is
prohibitive, since the computational cost scales exponentially with respect to the number of degrees
of freedom (DOF). Various approaches have been developed to address this challenging problem.
A common approach shared by many methods is to partition the entire system into a subsystem (whose
dynamical properties are of interest) and an environment (or bath) in which the subsystem resides. Other
recently developed schemes for computing quantum correlation functions do not rely on such a partition
and instead utilize approximations to treat the quantum evolution of the entire system in conjunction
with quantum equilibrium sampling [3–5]. In this paper, we focus on schemes based on the system-bath
partition, and using this partition, the Hamiltonian reads: Ĥ = Ĥb+ĥs+V̂c(R̂); where Ĥb = P̂ 2

2M
+V̂b(R̂)

and ĥs represent the pure bath and subsystem Hamiltonians, respectively. The last term in Ĥ is a coupling
potential that depends on the spatial coordinates of the bath wave functions. We shall always take the
bath part of the Hamiltonian in the coordinate representation; however, we can represent ĥs = p̂2

2m
+V̂s(r̂)

in some quantum basis: ĥs =
∑

ij |i〉 〈i| ĥs |j〉 〈j|.
Several methods based on various master equations [6–10] and path integral influence functional

methods [11,12] provide approximate schemes, often in the weak coupling limit, to systematically
project out the environmental DOF and yield a subsystem dynamics that incorporates dissipation and
decoherence, due to coupling to the environment. However, for many applications, such as proton and
electron transfer in condensed phases, it is desirable to explicitly simulate, even approximately, the bath
dynamics, since specific local bath DOF may be crucial for a description of the dynamics of the quantum
subsystem. For this purpose, several semiclassical [13–15] and mixed quantum-classical [16,17]
(MQC) methods, which either treat the entire dynamics semiclassically or simulate the dynamics of
the bath and subsystem with different levels of rigor (e.g., classical versus quantum mechanical), have
been formulated. Many semiclassical and mixed quantum-classical approaches, adopting powerful
classical simulation techniques, evaluate Equation (1) by combined Monte Carlo-molecular dynamics
(MC-MD) techniques.

In this paper, we formulate MC-MD schemes to evaluate Equation (1) within the framework of the
quantum-classical Liouville equation (QCLE) [18]. The QCLE employs a partial Wigner representation
of the environmental (bath) DOF and may be derived from full quantum dynamics by truncating the
quantum evolution operator to the first order in a small parameter related to the ratio of the characteristic
masses of quantum and bath DOF [18]. In particular, we suppose that the quantum subsystem has a
finite-dimension Hilbert space. Under this assumption, Equation (1) is cast in the following form [19,20]:

CAB(t) =
1

ZQ

∑
n1,n2

∫
dX
[(
e−βĤA

)n1n2

W
(X)Bn2n1

W (X, t)
]

(2)
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where the nj indices label the basis states (in some chosen quantum basis), X = (R,P ) represents the
Wigner-transformed phase space point for the bath, NB is the number of bath DOF and the subscript,W ,
on an operator indicates a partial Wigner transform on the bath DOF; e.g., an operator is partially Wigner
transformed as B̂W (X) =

∫
dZ
〈
R− Z

2

∣∣ B̂ ∣∣R + Z
2

〉
e
i
h̄
P ·Z .

Two main tasks are involved in evaluating Equation (2) with an MC-MD algorithm. First, one needs
to sample initial conditions (for an ensemble of trajectories) from the partially Wigner-transformed
quantum density,

(
ρ̂eqÂ

)
W

(X) with ρeq = e−βĤ/ZQ. There exist numerical algorithms to accomplish
such a task [21,22]. Second, one needs to propagate the initial points in the phase space. These
time-evolved trajectories may then be used to construct the matrix elements, Bnm

W (X, t), needed to
compute the correlation function. Various simulation methods, whose structure depends on the basis
chosen to represent the quantum degrees of freedom in the QCLE, have been devised to simulate the
mixed quantum-classical dynamics [23–31]. Simulation methods that utilize an adiabatic basis can be
cast into the form of surface-hopping dynamics, but in a way that includes coherent evolution segments
that account for creation and destruction of coherence in a proper manner. More recently, as in some
semiclassical approaches [32], the mapping basis [33] was used to describe the quantum degrees of
freedom in the QCLE in a continuous classical-like manner, leading to a trajectory description in the full
system phase space [30,31,34–36].

The goals and outline of the paper are as follows: We first consider how the two ingredients, quantum
equilibrium sampling and evolution of quantum operators, which are needed to compute quantum
correlation functions, may be carried out. In Section 2, we describe a path-integral scheme to perform
MC sampling from the partially Wigner transformed quantum density. In the Appendix, we also discuss
a simplified, but approximate sampling scheme that is useful in the high-temperature limit. Another
aim of this paper is to demonstrate how a recently-developed simulation method for the QCLE, the
forward-backward trajectory solution (FBTS), can be used to efficiently obtain quantum correlation
functions. To place these results in proper context, in Section 3, we sketch the important features
and properties of the QCLE and discuss both the adiabatic Trotter-based surface-hopping (TBSH)
algorithm and the FBTS, which is formulated in the mapping basis. In this section, we also present
the explicit form of the N-level generalization of the TBSH algorithm. Comparisons of the trajectories
that underlie these algorithms allow us to investigate how completely different ensembles of trajectories
can be used to simulate the same observable correlation function. The implementation and utility of the
simulation algorithms are illustrated on the dynamics in a two-level system coupled to a quartic oscillator
embedded in a bath of independent harmonic oscillators, described in Section 4. Finally, in Section 5,
we comment on the advantages, challenges and potential problems in adopting an approximate mixed
quantum-classical dynamics for the computation of quantum time-correlation functions.

2. Sampling from the Partially Wigner-Transformed Density

In general, analytical expressions for the Wigner transform of the density matrix cannot be determined
easily. In this section, we present a path-integral-based scheme to perform MC sampling from the
Wigner-transformed density,

(
ρ̂eqÂ

)n1n2

W
(X), in Equation (2).



Entropy 2014, 16 203

First, we recall the definition of partial Wigner transform:(
ρ̂eqÂ

)n1n2

W
(X) =

1

ZQ

∫
dZ

〈
n1, R−

Z

2

∣∣∣∣ e−βĤÂ ∣∣∣∣n2, R +
Z

2

〉
e
i
h̄
P ·Z (3)

where R represents the vector of bath coordinates, n denotes a basis state for the subsystem and
Ĥ = P̂ 2

2M
+ V̂b(R̂) + ĥ(R̂) with ĥ(R̂) ≡ ĥs + V̂c(R̂). One way to compute the integral on the right

side of Equation (3) is to first factorize e−βĤ =
∏
e−βLĤ into L − 1 pieces with βL = β/(L − 1).

Following the standard procedures for path integral calculations, we then insert resolutions of the
identity, I =

∫
dRi

∑
mi
|mi, Ri〉 〈mi, Ri|, between every pair of factorized operators and apply the

approximation, e−βLĤ ≈ e−βL
P2

2M e−βL(V̂b(R̂)+ĥ(R̂)). The integrand on the right side of Equation (3) can
then be written as follows:〈

n1, R−
Z

2

∣∣∣∣ e−βĤÂ ∣∣∣∣n2, R +
Z

2

〉
=

∫ L−1∏
i=1

dRi

∑
{mi}

〈
n1, R−

Z

2

∣∣∣∣ e−βLĤ ∣∣∣m1, R1

〉〈
m1, R1

∣∣∣ e−βLĤ ∣∣∣m2, R2

〉
. . .

×
〈
mL−1, RL−1

∣∣∣ Â ∣∣∣∣n2, R +
Z

2

〉
,

=

(
M

2πβLh̄
2

)NB(L−1)

2
∫ L−1∏

i=1

dRi

∑
{mi}

{
L−2∏
i=1

Mi,i+1(Ri)e
−βLVb(Ri)e

− M
2βLh̄

2 (Ri−Ri+1)2

}

×
〈
n1, R−

Z

2

∣∣∣∣ (e−βLĤ ∣∣∣m1, R1

〉〈
mL−1, RL−1

∣∣∣ Â) ∣∣∣∣n2, R +
Z

2

〉
(4)

where:

Mi,j = 〈mi| e−βLĥ(Ri) |mj〉 =

{
e−βLhij(Ri), i = j

−βLhij(Ri)e
−βLhij(R), i 6= j

(5)

which is correct to order O(β2
L). Substituting Equation (4) into Equation (3), the new integrand of

the Wigner transform becomes Â =
(
e−βLĤ |m1, R1〉 〈mL−1, RL−1| Â

)
, as shown in the last line of

Equation (4). An analytical approximation for the Wigner transform of Â can be obtained easily in most
cases when Â is a pure observable subsystem or if it depends on just one of the conjugate variables:
R or P . Since βL � 1, it is possible to replace the term, e−βLĤ , inside Â with its high-temperature
approximation (discussed in the Appendix). Letting ÂW (X) be the partial Wigner transform of Â,
Equation (3) reads:(
ρ̂eqÂ

)n1n2

W
(X) =

GNB(L−1)/2

ZQ

∫ L−1∏
i=1

dRi

∑
{mi}

{
L−2∏
i=1

Mi,i+1(Ri)e
−βLVb(Ri)e−πG(Ri−Ri+1)2

}
An1n2
W (X)

(6)
where G =

(
M

2πβLh̄
2

)
. Substituting Equation (6) into Equation (2), the time correlation function becomes:

CAB(t) =
GNB(L−1)/2

ZQ

∑
n1,n2

∑
{mi}

∫ L−1∏
i=1

dRi

{
L−2∏
i=1

Mi,i+1(Ri)e
−βLVb(Ri)e−πG(Ri−Ri+1)2

}

×
∫
dX
(
Â
)n1n2

W
(X)Bn2n1

W (X, t) (7)



Entropy 2014, 16 204

Following [37], we remark that the initial phase space coordinate X = (R,P ) and
auxiliary variables, {Ri}, can be sampled from probability densities constructed from ÂW (X) and
|Mi,i+1(Ri)|e−βLVb(Ri)e−πG(Ri−Ri+1)2 , respectively.

3. Quantum-Classical Liouville Equation

In this section, we discuss how one can simulate the time-evolved matrix elements, Bn2n1
W (X, t), in

Equation (2) using the QCLE:

∂B̂W (X, t)

∂t
=

i

h̄
[ĤW , B̂W ]− 1

2
({ĤW , B̂W} − {B̂W , ĤW})

= iL̂B̂W (X, t) =
i

h̄

( →
HΛ B̂W − B̂W

←
HΛ

)
(8)

where Λ =
←
∇P

→
∇R −

←
∇R

→
∇P . The arrow on top of a differential operator indicates the direction in which

it acts. In the first line, the square bracket and the curly brackets denote the quantum commutator and
classical Poisson brackets, respectively. The two kinds of Lie bracket act together as the generator of the
mixed quantum-classical dynamics. Due to the fact that ĤW (X) and B̂W (X, t) are quantum operators
with respect to the subsystem DOF, two differently ordered Poisson brackets are needed to properly
account for the mixed dynamics. However, in general, the dynamics described by the QCLE does not
have a Lie algebraic structure, a feature that is common to mixed quantum-classical approaches [38].
In the second line, we introduce the abstract, quantum-classical Liouville (QCL) superoperator, L̂.
Finally, the third equality is another equivalent representation of QCLE in terms of the forward and
backward mixed quantum-classical Hamiltonians:

→
HΛ = ĤW

(
1 +

h̄Λ

2i

)
,

←
HΛ =

(
1 +

h̄Λ

2i

)
ĤW (9)

The QCLE has many desirable features, such as the conservation of energy, momentum and phase
space volumes. Furthermore, the QCLE is equivalent to full quantum dynamics for arbitrary quantum
subsystems, which are bilinearly coupled to a harmonic bath. For instance, commonly used spin boson
models are of this type. In this circumstance, the combination of quantum and classical brackets in the
QCLE does have a Lie algebraic structure. For the more general bath and coupling potentials, the QCLE
provides an approximate description of the quantum dynamics. In this case, comparisons of simulations
of QCL dynamics with exact quantum results have indicated that it is quantitatively accurate for a wide
range of systems [36,39–48]

The QCLE equation can be simulated using ensembles of trajectories, which, in combination with
the quantum initial condition sampling discussed above, provides a way to compute quantum correlation
functions. As we shall see, the nature of the trajectories that enter in the simulations depends on the
algorithm and should not be ascribed physical significance. It is only the observable, in this case, the
correlation function, that has physical meaning and is independent of the manner in which it is simulated,
provided the simulation algorithm is capable of exactly solving the QCLE, which is not always the
case. One of the goals of this paper is to illustrate how a recently-developed FBTS [31] can be used to
easily compute quantum correlation functions. For this purpose, it is interesting to contrast the solution
using this scheme, and the trajectory description that underlies it, with the previously-developed and
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frequently-used TBSH algorithm [26]. Taking the adiabatic representation of the QCL superoperator is
the key step in implementing the TBSH algorithm. The last representation of QCLE in Equation (8)
resembles the quantum Liouville equation and forms the starting point of the FBTS.

3.1. Adiabatic Trotter-Based Surface Hopping

In order to discuss the nature of the trajectory description involved in the TBSH algorithm, we briefly
describe how it is implemented and, in particular, present the explicit generalization to an N -level
quantum subsystem, which was only outlined in [26]. We first consider the adiabatic representation
of the QCLE, since the TBSH algorithm is cast in this basis. The adiabatic basis is defined by
ĥW (R) |α;R〉 = Eα(R) |α;R〉, where ĥW (R) = ĤW (R) − P 2/2M is taken to be the adiabatic
Hamiltonian for a static configuration of R in this section. In the adiabatic basis, the QCLE reads:

∂Bαα′
W

∂t
= iLαα′,ββ′Bββ′

W (X, t) (10)

where the matrix elements of the QCL superoperator are given by:

iLαα′,ββ′ = (iωαα′ + iLαα′) δαβδα′β′ − Jαα′,ββ′ = iL0
αα′δαβδα′β′ − Jαα′,ββ′ (11)

with ωαα′ = (Eα − Eα′)/h̄. (The Einstein summation convention will be used throughout the following
sections, although sometimes, sums will be explicitly written if there is the possibility of confusion.) The
Liouville operator, iL, may be separated into two contributions: The classical propagator is defined as:

iLαα′ =
P

M
· ∂
∂P

+
1

2
(Fα + Fα′) ·

∂

∂R
(12)

where Fα = 〈α;R| ∂ĥW (R)
∂R

|α;R〉 is the Hellmann-Feynman force. The superoperator, Jαα′,ββ′ , is
responsible for nonadiabatic transitions and associated momentum changes in the bath. For an N -level
system, there existN(N−1)/2 unique transitions. In the following, we define J as a sum of Jλλ′ , which
introduces transitions only between the specific pair of λ and λ′ adiabatic states:

Jαα′,ββ′ =
∑
λ>λ′

(Jλλ′)αα′,ββ′

=
∑
λ>λ′

{
−dλλ′ ·

P

M
((δλαδλ′β − δλ′αδλβ)δα′β′ + ((δλα′δλ′β′ − δλ′α′δλβ′)δαβ)

−1

2
h̄ωλλ′dλλ′ ·

∂

∂P
((δλαδλ′β + δλ′αδλβ)δα′β′ + (δλα′δλ′β′ + δλ′α′δλβ′) δαβ

}
= − P

M
· dαβ

(
1 +

1

2
Sαβ ·

∂

∂P

)
δα′β′ +

P

M
· dβ′α′

(
1− 1

2
Sβ′α′ ·

∂

∂P

)
δαβ (13)

where dαβ = 〈α;R| ∂/∂R |β;R〉 and Sαβ = h̄ωαβdαβ
(
P
M
· dαβ

)−1. The second equality gives the
adiabatic representation of Jλλ′ . We remark that it is difficult to exactly simulate the term, J , involving
bath momentum derivatives within the context of a trajectory-based algorithm. Using the identity that
1
2
Sαβ · ∂

∂P
= h̄ωαβM · ∂/∂(d̂αβ · P )2, where M is a diagonal matrix of the masses of the bath particles

and d̂αβ is the unit vector along dαβ , allows us to employ the momentum-jump approximation:(
1 +

c

2
Sαβ ·

∂

∂P

)
f(P ) ≈ e

c
2
Sαβ · ∂∂P f(P ) = ech̄ωαβM ·∂/∂(d̂αβ ·P )2

f(P ) = f(P + ∆Pc) (14)
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where c = 1, 2 corresponding to single and double hops, respectively, and

∆Pc = d̂αβsgn
(
d̂ · P

)√
(d̂αβ · P )2 + ch̄ωαβM − d̂

(
d̂ · P

)
. We have a translation operator

with respect to the variable, (d̂αβ · P )2, in the above equation. Decomposing P = P⊥ + P‖ =

P⊥ + d̂αβsgn
(
d̂αβ · P

)√(
d̂αβ · P

)2

, it becomes obvious that the translation operator updates P‖
components by ∆Pc, as presented in Equation (14). This momentum update conserves the energy of
surface-hopping trajectories. Apart from technical issues associated with sampling when the algorithm
is implemented, this is the only approximation made to QCL evolution. In fact, it is this approximation
that gives this algorithm a surface-hopping structure that has some features in common with Tully’s
surface-hopping method; however, coherence and decoherence are automatically incorporated in the
evolution. The QCLE does not have such sudden momentum changes, and its evolution is described
by continuous momentum changes in the course of the evolution. Comparisons of results using
this algorithm with exact quantum solutions indicate that the momentum-jump is rarely the source
of problems.

Equation (10) admits a formal solution:

B̂αα′

W (X, t) =
(
eiLt
)
αα′,ββ′

Bββ′

W (X) (15)

Thus, our following discussion focuses on evaluating:

(
eiL̂t
)
αα′,αKα

′
K

=
∑

(α1α′1)...(αKα′K)

K∏
j=1

(
eiL̂∆tj

)
αj−1α′j−1,αjα

′
j

(16)

In the above equation, we simply factorize the propagator into K pieces with ∆tj = tj − tj−1 = ∆t.
In each small time slice, we perform the symmetric Trotter decomposition:(

eiL̂∆tj
)
αα′,ββ′

≈ Wββ′

(
tj−1, tj−1 +

∆t

2

)
eiLββ′∆t/2Qββ′,αα′Wαα′

(
tj−1 +

∆t

2
, tj

)
eiLαα′∆t/2 (17)

where: Wαα′(t1, t2) = eiωαα′ (t2−t1), and:

Qαα′,ββ′ =
(
eJ∆t

)
αα′,ββ′

=
(
e
∑
λ>λ′ Jλλ′∆t

)
αα′,ββ′

≈

(∏
λ>λ′

eJλλ′∆t

)
αα′,ββ′

(18)

We observe that it is possible to express eJλλ′∆t in the following block-diagonal matrix form:

eJλλ′∆t = Mλλ′ ⊕Kλλ′ξ1
· · · ⊕ Kλλ′ξN−2

⊕N λλ′ (19)

where ξi is one of the N − 2 adiabatic states other than λ and λ′. In the above equation,M is a four by
four matrix, defined with respect to the basis, {(λ, λ), (λ, λ′), (λ′, λ), (λ′, λ′)}:

Mλλ′ =


cos2(a) − cos(a) sin(a)ĵλλ′ − cos(a) sin(a)ĵλλ′ sin2(a)ĵλ→λ′

cos(a) sin(a)ĵλλ′ cos2(a) − sin2(a) − sin(a) cos(a)ĵλλ′

cos(a) sin(a)ĵλλ′ − sin2(a) cos2(a) − sin(a) cos(a)ĵλλ′

sin2(a)ĵλ→λ′ cos(a) sin(a)ĵλλ′ cos(a) sin(a)ĵλλ′ cos2(a)

 (20)



Entropy 2014, 16 207

with a = (P/M) · dλλ′∆t, and ĵλλ′ and ĵλ→λ′ are the momentum-jump operators, e
1
2
Sλλ′

∂
∂P and eSλλ′

∂
∂P ,

defined in Equation (14) with c = 1, 2, respectively. In Equation (19), there exists another set of four by
four matrices, Kλλ′ξi

, with i = 1, . . . , N − 2. Each of these matrices is defined with respect to a basis of
the form, {(λ, ξi), (λ′, ξi)} ⊕ {(ξi, λ), (ξi, λ

′)}:

Kλλ′ξ =

(
cos(a) − sin(a)ĵλλ′

sin(a)ĵλλ′ cos(a)

)
⊕

(
cos(a) − sin(a)ĵλλ′

sin(a)ĵλλ′ cos(a)

)
(21)

Finally, there is a null matrix, N λλ′ , of a size of (N − 2)2, and the associated null space is spanned by
basis vectors, (ξ1, ξ2), where ξi 6= λ(′). We remark that one has to permute the basis vectors in order to
construct these block-diagonal matrices [26].

At this point, we have specified all the necessary details in order to simulate the QCL dynamics in the
adiabatic basis:

Bαα′

W (X, t) =
∑

(α1α′1),...,
(αKα

′
K)

[
K∏
j=1

Wαj−1α′j−1
e
iLαj−1α

′
j−1

∆tQαj−1α′j−1.αjα
′
j
Wαjα′j

e
iLαjα′j

∆t

]
B
αKα

′
K

W (X) (22)

where α(′)
0 = α(′). The explicit summation over all quantum indices, (α1α

′
1) . . . (αKα

′
K), can also be

evaluated stochastically. For instance, given a pair of indices, (αjαj−1), one can determine the next pair
at the time slice, j + 1, by drawing an MC sample from the transition probability:

P (αj+1, α
′
j+1|αj, α′j) =

|Qαjα′j ,αj+1α′j+1
|∑

βj+1,β′j+1
|Qαjα′j ,βj+1β′j+1

|
(23)

If the sampled new pair of indices differs from the starting pair, then the sampledQmatrix element must
contain the proper momentum-jump operators to update the energy of the trajectory after the jump. In
any actual implementation of this algorithm, it is desirable to restrict to nonadiabatic transitions between
one pair of states in every time slice. Under this assumption, one can then approximate:

Qαα′,ββ′ ≈


δαβδα′β′ if no hop happens,(
eJµγ

)
αα′,ββ′

if (α, α′)→ (β, β′) involves transition between (µ, γ) states,

0 if (α, α′)→ (β, β′) involves transitions between two or more pairs of states.

(24)

In this algorithm, we see that the trajectories in the ensemble that are used to simulate the time
evolution are non-Newtonian in character, consisting of Newtonian segments where the system evolves
on adiabatic surfaces, or the mean of two adiabatic surfaces, interspersed with quantum transitions and
momentum changes.

3.2. Forward-Backward Trajectory Solution

This scheme is motivated by another way of writing the formally exact solution [38] of the QCLE
using the last line of Equation (8):

B̂W (X, t) = S
(
ei
→
HΛt/h̄B̂W (X)e−i

←
HΛt/h̄

)
(25)
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The S operator [31,38] specifies the order in which the forward and backward evolution operators act
on B̂W (X). The ordering of evolution operators is critical because of the lack of an underlying Lie
algebraic structure [38] of the QCLE.

One approach to solve Equation (25) is to apply the mapping transformation in which N discrete
quantum states of the subsystem are represented by the continuous position and momenta of N fictitious
harmonic oscillators. The properties of the original subsystem are then obtained via an ensemble average
involving trajectories in the phase space of the fictitious oscillators. More precisely, in the mapping
representation, a subsystem state, |λ〉, is replaced by |mλ〉 = |01, · · · , 1λ, · · · 0N〉, a product state
specifying the occupation numbers (limited to zero or one) of N fictitious harmonic oscillators [33,49].
Creation and annihilation operators, â†λ and âλ, satisfy the commutation relation [âλ, â

†
λ′ ] = δλ,λ′

for harmonic oscillators. The actions of these operators on the single-excitation mapping states are
â†λ |0〉 = |mλ〉 and âλ |mλ〉 = |0〉, where |0〉 = |01 . . . 0N〉 is the ground state of the mapping basis.

Next, we define the mapping version of operators, B̂m(X) = Bλλ′
W (X)â†λâλ′ , such that matrix

elements of B̂W in the subsystem basis are equal to the matrix elements of the corresponding mapping
operator: Bλλ′

W (X) = 〈λ|B̂W (X)|λ′〉 = 〈mλ|B̂m(X)|mλ′〉. In particular, the mapping Hamiltonian is:

Ĥm = Hb(X) + hλλ
′
(R)â†λâλ′ ≡ Hb(X) + ĥm (26)

where we applied the mapping transformation only on the part of the Hamiltonian that involves the
subsystem DOF in Equation (26). The mapping Hamiltonian, ĥm, is always a quadratic Hamiltonian with
respect to the quantum DOF. The pure bath term, Ĥb(X), acts as an identity operator in the subsystem
basis and is mapped onto the identity operator of the mapping space directly. The mapped formal solution
of QCLE now reads:

B̂m(X, t) = S
(
ei
→
HmΛ t/h̄B̂m(X)e−i

←
HmΛ t/h̄

)
(27)

where
→
Hm

Λ is given by
→
Hm

Λ = Ĥm(1 + h̄Λ/2i), with an analogous definition for
←
Hm

Λ .
We now introduce the coherent states, |z〉, in the mapping space, âλ |z〉 = zλ |z〉 and 〈z| â†λ = z∗λ 〈z|,

where |z〉 = |z1, . . . , zN〉, and the eigenvalue is zλ = (qλ+ ipλ)/
√
h̄. The variables q = (q1, . . . , qN) and

p = (p1, . . . , pN) are mean coordinates and momenta of the harmonic oscillators encoded in the coherent
state, |z〉, respectively. The coherent states form an overcomplete basis with the inner product between
any two such states, 〈z| z′〉 = e−(|z−z′|2)−i(z·z′∗−z∗·z′). Finally, we remark that the coherent states provide
the resolution of identity:

I =

∫
d2z

πN
|z〉 〈z| (28)

where d2z = d(<(z))d(=(z)) = dqdp/(2h̄)N .
Similar to the path integral approach for solving the quantum dynamics, we decompose the forward

and backward evolution operators in Equation (27) into a concatenation of M short-time evolutions with
∆ti = τ and Mτ = t. In each short-time interval, ∆ti, we introduce two sets of coherent states, |zi〉 and
|z′i〉, via Equation (28) to expand the forward and backward time evolution operators, respectively. The
time evolution (generated by a quadratic Hamiltonian) of coherent states can be represented by trajectory
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evolution in the phase space of (q, p). After some algebra, the matrix elements of Equation (27) can be
approximated by:

Bλλ′

W (X, t) =
∑
µµ′

∫
dxdx′φ(x)φ(x′)

1

h̄
(qλ + ipλ)(q

′
λ′ − ip′λ′)B

µµ′

W (Xt)

×1

h̄
(qµ(t)− ipµ(t))(q′µ′(t) + ip′µ′(t)) (29)

where x = (q, p) gives the real and imaginary parts of z, dx = dqdp and φ(x) = (h̄)−N e−
∑
ν(q2

ν+p2
ν)/h̄

is the normalized Gaussian distribution function. In deriving Equation (29), we have invoked
an orthogonality approximation on the inner product between subsequent coherent state variables,
〈zi|e

i
h̄
ĥt |zi+1〉 = 〈zi(t)|zi+1〉 ≈ πNδ(zi+1 − zi(ti)), with i being the time step index. This

approximation is necessary to construct a continuous trajectory of z(t). In the extended phase space
of (X(t), z(t), z′(t)), the trajectories follow Hamiltonian dynamics:

dχµ
dt

=
∂He(χ, π)

∂πµ
,

dπµ
dt

= −∂He(χ, π)

∂χµ
(30)

where He(χ, π) = P 2/2M + V0(R) + 1
2h̄
hλλ

′
(R)(qλqλ′ + pλpλ′ + q′λq

′
λ′ + p′λp

′
λ′) with

V0(R) = Vb(R)− Trĥ(R), χ = (R, q, q′) and π = (P, p, p′). We remark that the FBTS trajectories
manifestly conserve energy. Furthermore, simulating the dynamics with a standard velocity Verlet type
of symplectic integrator has a stationary solution proportional to Hpseudo = He(χ, π) + ∆t2δH , as
discussed in [35].

The main approximation introduced in the derivation of the FBTS, Equation (29), is the orthogonality
approximation. The simplest improvement to the algorithm is to refrain from applying this
approximation at every time step. In [36], we outlined a practical approach to evaluate the set of selected
integrals of zi and z′i (which could be evaluated analytically if the orthogonality approximation were
applied). We termed this extension of FBTS as the jump FBTS (JFBTS). Since the computational cost
grows quickly with respect to the number of jumps inserted, one needs to make a trade-off between
numerical efficiency and accuracy.

In the simplest approach, one selects every (M/K) time step from a total of M steps to fully evaluate
the coherent state integrals:

Bλλ′

W (X, t) =
∑
µµ′

∑
s0s′0...

sK−1s
′
K−1

∫ K∏
v=0

dxdx′φ(xv)φ(x′v)

×1

h̄
(q0λ + ip0λ)(q

′
0λ′ − ip′0λ′)B

µµ′

W (Xt)

×1

h̄

{
K∏
v=1

(
q(v−1)sv−1(τv)− ip(v−1)sv−1(τv)

)
(qvsv + ipvsv)

}

×1

h̄

{
K∏
v=1

(
q′(v−1)sv−1

(τv) + ip′(v−1)sv−1
(τv)

) (
q′vsv − ip

′
vsv

)}
×1

h̄
(qKµ(τK+1)− ipKµ(τK+1))(q′Kµ′(τK+1) + ip′Kµ′(τK+1)) (31)
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where the subscripts, v and s, refer to the v-th time step and the s-th component of the q and p vectors,
respectively, and τv = tiv − tiv−1 with ti0 = 0 and tiK+1

= t. According to this prescription, the
continuous FB trajectories experience K discontinuous jumps in the (x, x′) phase space. Between
subsequent jumps, the evolution of the FB trajectory is governed by Equation (30). Simulations show
that with a sufficient number of jumps, numerically exact solutions of the QCLE can be obtained [36].

3.3. Comparisons between Algorithms

The differences between the two QCLE simulation algorithms can be traced to the quantum basis
that is used and the way that feedback between quantum and classical systems is treated. In the case of
the TBSH algorithm, the trajectories are propagated through a Hellmann-Feynman force, or the mean of
two Hellmann-Feynman forces [Equation (12)], with intermittent surface hops that switch the adiabatic
surfaces on which the trajectories propagate. In the case of FBTS, one not only propagates the bath
dynamical variables as trajectories, but also the quantum dynamical variables, which are associated with
fictitious harmonic oscillators. In this extended phase space, we have exact Hamiltonian dynamics. In
particular, the force acting on the bath particles simultaneously involves all N adiabatic surfaces, which
is similar to, but different from, the Ehrenfest mean-field approach. The very different characteristics of
the trajectories in two algorithms manifest the artificial character of the trajectory dynamics. Thus, one
should not attach physical significance to single trajectories in the computation. All physical properties
of the system can only be extracted from a proper ensemble average of a large set of trajectories, as
implied in Equation (2). Nevertheless, insight into the trajectory dynamics of each algorithm will help
to judge the simulation efficiency for various classes of models.

For certain problems, such as proton transfer reactions, where the time scales of the bath and
subsystem are well-separated, even during nonadiabatic transitions, the TBSH algorithm can yield
quantitatively accurate results with a few hops. There are also dynamical problems in which distinct
bath motions can be explicitly correlated with the subsystem’s quantum states. For instance, in the simple
Tully I model [35,50], trajectories populated on the excited state will cross the avoided crossing point,
while the ground state trajectories will eventually be reflected and retrace their paths in the opposite
direction. This kind of behavior is, however, completely missed when one propagates trajectories in
a single effective mean field. Again, the inherent multi-configuration nature of surface-hopping-like
algorithms is a more appropriate choice for this case. However, a recent study [51] has indicated that the
“jump” version of mean-field-like algorithms can improve the simulation results in cases of this type.

Alternatively, there are also many examples where one would expect FBTS to be the preferred
simulation method. In general, the TBSH algorithm has convergence issues, as the MC weights
associated with nonadiabatic hops grows rapidly. Even for the simple spin boson model, one can identify
parameter regimes where this numerical instability is clearly observed. In these cases, the FBTS and
JFBTS are certainly the alternatives that one should adopt for efficient simulations.

4. An Example: Quartic Oscillator in a Harmonic Bath

As a specific example to illustrate the formalism outlined above, we consider a two-level system
coupled to a quartic bistable oscillator with a single pair of phase space coordinates X0 = (R0, P0).



Entropy 2014, 16 211

The quartic oscillator is, in turn, coupled to an Ohmic heat bath of Nb independent harmonic oscillators
with phase space coordinates Xi = (Ri, Pi) and i = 1 . . . Nb. The partially Wigner transformed
Hamiltonian, expressed in the diabatic basis, {|R〉 , |L〉}, reads:

ĤW =

(
h̄γ0R0 −h̄Ω

−h̄Ω −h̄γ0R0

)
+

(
P 2

0

2M0

+ Vn(R0) +

Nb∑
j=1

P 2
j

2Mj

+
Mjω

2
j

2

(
Rj −

γbcj
Mjω2

j

R0

)2
)
I (32)

where Vn(R0) = −M0ω
2
0R

2
0/2 + AR4

0/4 and I is an identity matrix. We take Nb = 40 harmonic
oscillators for the discretization of the Ohmic heat bath. Following the discretization scheme introduced
in [52], we set ωj = ωc ln(1−jωc/δω) and cj = (ξh̄δωMj)

1/2ωj with δω = (1−exp(ωmax/ωc))/Nb. The
parameters, ωc and ωmax, are the characteristic and cut-off frequencies for the Ohmic bath, respectively.
The Kondo parameter is ξ.

The adiabatic states for the subsystem are:

|+;R0〉 =
1

N (R0)
[(1−G) |R〉 − (1 +G) |L〉]

|−;R0〉 =
1

N (R0)
[(1 +G) |R〉+ (1−G) |L〉] (33)

where N (R0) =
√

2(1 +G2(R0)) and G(R0) = (γ0R0)−1
[
−Ω +

√
Ω2 + γ2

0R
2
0

]
. The adiabatic

energies are given by E± = Vn(R0)± h̄
√

Ω2 + γ2
0R

2
0 = Vn(R0)± ε±(R0).

We shall study the autocorrelation functions, CLL, with Â = B̂ = |L〉 〈L|. The entire system is
assumed to be in thermal equilibrium initially. Using the high-temperature approximation presented in
the Appendix, the correlation function of interest can be given in a compact form:

CLL(t) =

∫
dX0dXbW(R0)G

(
P0;

M0

β

) Nb∏
j=1

G
(
Pj;

Mj

β

)
G
(
Rj −

γbcj
Mjω2

j

R0;
1

βMjω2
j

)
×
∑
n=L,R

∑
α,α′

Fαα′(X0)〈n|α;R0〉〈α′;R0|L〉BLn
W (Xt) (34)

where G(x;σ2) = (2πσ2)
−1/2

e−x
2/2σ2 , and:

W(R0) =
e−β(

A
4
R4

0−
1
2
M0ω2

0R
2
0)
(
e−βε+(R0) + eβε−(R0)

)∫
dR0e

−β(A4 R4
0−

1
2
M0ω2

0R
2
0) (e−βε+(R0) + eβε−(R0))

(35)

An MC evaluation of the integrals can be done by sampling P0, Rb, Pb from the Gaussian
distributions and sampling R0 fromW(R0), respectively. The time-evolved matrix element, Bnm

W (Xt),
will be computed using both the TBSH and the FBTS algorithms. Finally, we note that the
path-integral-based sampling scheme introduced in Section 2 should be adopted to sample phase-space
points from (ρ̂eq)W (X) for more generalized situations, including cases of low-temperature, arbitrary
subsystem-bath divisions of a composite system, strong subsystem-bath couplings and an arbitrary
potential energy profile.

In this study, we report numerical results in the energy unit, h̄ωc, and distance unit,
√
h̄/Mjωc, for

each environmental DOF. We consider two sets of parameters. In the first case, we use the following



Entropy 2014, 16 212

parameter values, a = 1.0, ω0 = 1.2, γ0 = 0.05 γb = 1.0, Ω = 0.3, ξ = 0.1, ωmax = 3 and
β = 0.2, in the dimensionless units. Figure 1a presents the potential surface profiles [53], Wα(R0). The
two diabatic surfaces, WL,R(R0), remain close to each other, and the two adiabatic surfaces, W±(R0),
share essentially the same characteristics. In this case, a mean-field-based algorithm, like FBTS, should
be accurate and efficient. This problem can also be handled easily in the adiabatic basis, since the
surface-hopping trajectories will be initialized in both the adiabatic ground and excited states, because
the system is in a thermal equilibrium state at t = 0. Furthermore, the coupling parameter, γb, was
purposely chosen to be small in order to minimize the number of nonadiabatic transitions (or hops)
encountered in the TBSH algorithm. In panel (b), CLL(t) is computed using both algorithms. The
agreement between these results is good.

Figure 1. (a) Potential surface profiles, Wα(R0), for the ground adiabatic state (black,
dotted), excited adiabatic state (black, dotted) and for the diabatic states, L (green) and
R (red). (b) CLL(t) correlation function. These results are associated with the first set
of parameters.

Next, we consider the following parameter set, a = 0.8, ω0 = 0.6, γ0 = 0.3 γb = 1.0, Ω = 0.1,
ξ = 0.1, ωmax = 3, and β = 0.2 in the dimensionless units. Figure 2a shows the potential surface
profiles, Wα(R0), obtained from this set of parameters. In this case, the adiabatic, W±(R0), and
diabatic surfaces, WL,R(R0), only differ markedly near the region of the barrier top, where an avoided
crossing point indicates significant mixing of the two diabatic states. Nonadiabatic effects should be
most prominent near this barrier top. A stronger coupling, γ0, is also chosen in this case. Figure 2b
presents the autocorrelation functions. In the main figure of panel (b), the blue curves (CLL(t) computed
by the FBTS) start with the full correlation at one, then gradually reduce to 1/2, which implies that
the subsystem is in an equal admixture of the two diabatic states in the asymptotic limit. The TBSH
simulation results are only valid for very short times (as shown in the inset of the Figure 2b), due to
instability arising from the accumulation of weights, even with filtering [54]. The thermal equilibrium
distribution, W(R0), has a bimodal distribution profile, as illustrated in Figure 2a; however, for the
(inverse) temperature, β = 0.2, the double-peaked structure is very broad. The W(R0) distribution
profile (blue curve in Figure 2a) suggests that the thermal equilibrium state has a non-trivial contribution
from the excited surface. Sampling from W(R0) yields many R0 values near the barrier top, where
several hops immediately take place for this strong-coupling case, and the instability sets in early in
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the simulation. Lowering β will produce a more pronounced double-peak structure forW(R0), but the
quartic oscillator’s momentum, P0, will fluctuate with a larger variance in the presence of the heat bath
in this case. Since nonadiabatic transitions depend non-trivially on a = P0 · d12(R0)∆t in the TBSH
algorithm, large momentum fluctuations will eventually affect the long-time result. This case shows
some of the practical limitations of the TBSH algorithm for the computation of this correlation function.

Figure 2. (a) Potential surface profiles, Wα(R0), for the ground adiabatic state (black,
dotted), excited adiabatic state (black, dotted) and for the diabatic states, L (green) and
R (red). The blue curve is a plot of the un-normalized distribution function, W(R0),
Equation (35). (b) CLL(t) correlation functions. (Inset) Short-time CLL(t) computed by
the FBTS (blue) and TBSH (red) algorithms. These results are associated with the second
set of parameters.

5. Conclusions

The scheme for computing the quantum correlation function in Equation (2) combines a numerically
exact quantum initial sampling method with dynamics described by the QCLE; thus, the approximations
in the simulation method reside in the dynamics. It is easier to compute the equilibrium properties of
a quantum system, for instance, by using the imaginary-time Feynman path integral method, than to
obtain dynamical properties by using similar real-time Feynman path integrals without adopting further
approximations. Since we approximate the quantum dynamics of the entire system, quantum subsystem
plus bath, by QCL dynamics, it is appropriate to comment on some of its features.

It is known that the quantum-classical bracket, defined in terms of the commutator and Poisson
brackets in Equation (8), does not possess a Lie algebraic structure, since it fails to satisfy the Jacobi
identity [2,38]. This lack of a proper algebraic structure is shared by all known MQC methods and simply
reflects the inconsistency in mixing classical and quantum mechanical dynamics. One consequence of
this inconsistency is that the partial Wigner transform, ρ̂We(R,P ), of the full canonical equilibrium
density function, ρ̂eq = e−βĤ/ZQ, is not stationary under the QCLE; however, ρ̂We(R,P ) can be written
as an expansion in the mass ratio (or h̄), and it has been shown that the full quantum equilibrium density
is conserved under the QCL dynamics up to O(h̄). Therefore, the detailed balance relation is also
satisfied to this order. The violation of a detailed balance is a common problem that affects all major
MQC methods, including the two most popular approaches, Ehrenfest mean-field [55] and Tully’s fewest
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switching surface hopping [56] (FSSH), to various degrees. Of course, as noted earlier, for the class of
models where an arbitrary quantum system is bilinearly coupled to a harmonic bath, the dynamics is
exact, and a detailed balance is exactly satisfied.

The dynamics described by the QCLE can be related to that prescribed by other methods. In [57], it
was shown that one could derive both Ehrenfest mean-field dynamics and a version of surface-hopping
dynamics starting from the QCLE. In the former case, one simply drops all the “correlations” (including
entanglement) between the subsystem and bath densities in the QCLE [58]. In the later case, one projects
out all the off-diagonal matrix elements of the density in the QCLE to obtain a generalized master
equation for the subsystem alone. Then, one considers decoherence to suppress the coherences in order
to recover a simple “surface hopping” dynamics [59] similar to that prescribed in the FSSH algorithm.
Furthermore, it had been proven [60] that the QCLE and the partially linearized path integral (PLPI)
method [61–64] share the same starting mathematical foundation. In particular, the most recent PLPI
algorithm, called PLDM (Partially Linearized Density Matrix) method [64], is very similar to the FBTS
presented in this paper [31]. One can also draw comparisons between methods based on the QCLE
and semiclassical initial value representations. For instance, numerical schemes based on the Poisson
bracket mapping equation (PBME) [30], an approximate equation derived from the mapping-transformed
QCLE, and the linearized semiclassical initial value representations [65] share the same set of equations
of motion for the trajectories.

Mixed quantum-classical methods are often the only feasible approach to explore the dynamics of
large complex systems, such as condensed phase or biochemical systems, where only a few light-mass
DOF need be treated quantum mechanically. In many rate processes of interest, such as electron transfer
or proton transfer, the local polar solvent motions are responsible for important features of the reaction
mechanism. As a result, it is essential that the dynamics of these environmental degrees of freedom be
treated in detail. Open quantum system methods that trace out all bath details cannot capture important
aspects of such dynamics.

Some recent work [48,66] has suggested interesting ways to combine the QCLE and the generalized
master equation [67–69] approach. Simulation tests on spin boson models [48] and a two-level system
coupled to an anharmonic bath [68] indicate that accurate, long-time dynamical properties of such
systems can be efficiently calculated with an improved memory kernel (which takes the short-time QCLE
computation of some bath correlation functions as the input) for the general master equation. This type
of hybrid approach may eventually prove to be useful for studies of more complex systems.

Finally, we provide comments that may help in choosing between the two algorithms for simulations.
The TBSH algorithm, without filtering, provides a very accurate QCL dynamics before the onset of the
sign problem associated with its heavy reliance on Monte Carlo sampling. While filtering can be used
to extend simulations to much longer times, the problems related to Monte Carlo sampling limits its
usefulness in performing long-time simulations, as vividly illustrated in Section 4. However, the TBSH
is found to be the preferred simulation method (in comparison to the FBTS) when one investigates
bath dynamical properties of systems in the vicinity of conical intersections and avoided crossings.
For instance, the TBSH results accurately capture the intricate geometric phases [46] and the bimodal
structure in the momentum distribution [35] in the Tully 1 model (a single avoided crossing model), while
the FBTS fails to reproduce these delicate features, even though it provides fairly accurate population
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dynamics, as reported in [36]. Since the FBTS trajectory dynamics is based on a mean-field description,
one finds that the results are usually very accurate (even in the long-time limit) when the energy gap
between diabatic energy surfaces is small in comparison to the typical subsystem-bath coupling strength.
Another advantage of the FBTS is the availability of the JFBTS [36] algorithm, which implements
systematic correction of FBTS results towards the exact QCL dynamics and provides a simple method
to gauge the sufficiency of the FBTS results.
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Appendix

High Temperature Limit

Many realistic chemical and biological processes take place at room temperature, in which case,
it is often justified to apply a classical approximation to the bath. In this Appendix, we make two
assumptions: As in most condensed phase models, we consider a pure subsystem observable, Â, such
that

(
ρ̂eqÂ

)
W

= (ρ̂eq)W Â. We also assume that the environment is further partitioned into an immediate
part that can couple nonlinearly to the quantum subsystem and shield the subsystem from the larger set of
environmental DOF, often modeled as a heat bath of independent harmonic oscillators. Furthermore, we
write X = {Xb, Xn}, where n refers to the few DOF that couple directly to the quantum subsystem and
b refers to the remainder of the large number of coordinates that only couple to the n-labeled coordinates.
Similarly, we re-label different parts of the Hamiltonian as follows: Ĥ = Ĥs+Ĥn+ V̂sn+Ĥb+ V̂bn with
Ĥi = K̂i+V̂i and i = s, b, n. The quantities, K̂i and V̂i, are the total kinetic energy and isolated potential,
respectively, of the i-th system. Potential energy terms with a subscript of two letters imply a coupling
potential between two components of the composite system. In addition, we introduce ĥW (Rn) =

Ĥs + V̂sn(Rn) + Vn(Rn), Ĥbn(Rn) = Ĥb + V̂bn(Rn) and Ĥsn = ĥW (Rn) + K̂n. In the following, we
express the distance in units of λj =

√
h̄/Mjωc and energy in units of h̄ωc, where ωc is the cut-off

frequency of the heat bath.
Under these assumptions, one needs to evaluate the partial Wigner transform of e−βĤ alone.

In the high temperature limit, we factorize the un-normalized equilibrium density matrix operator,
ρ̂ = e−βĤsne−βĤbn . The partial Wigner transform of this approximate density operator reads:

ρ̂W (X) =

∫
dZe−iPn·Z

〈
Rn +

Z

2

∣∣∣∣ e−βĤsn ∣∣∣∣Rn −
Z

2

〉
ρb(Xb;Rn) (36)

where ρb(Xb;Rn) =
∫
dZbe

−iPb·Zb
〈
Rb + Zb

2

∣∣ e−βĤbn(Rn)
∣∣Rb − Zb

2

〉
is the Wigner transform of the

un-normalized equilibrium density matrix for the heat bath.
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We next apply a symmetric Trotter decomposition to the matrix element of Equation (36):〈
Rn +

Z

2

∣∣∣∣ e−βĤsn ∣∣∣∣Rn −
Z

2

〉
≈
〈
Rn +

Z

2

∣∣∣∣ e−β2 ∆ĤW (Rn+Z
2

)e−βĤhoe−
β
2

∆ĤW (Rn−Z2 )

∣∣∣∣Rn −
Z

2

〉
=

(
ω

2π sinh(ωβ)

)Nn/2
exp

(
− coth

(
ωβ

2

)
ωZ2

4

)
exp

(
− tanh

(
ωβ

2

)
ωR2

n

)
×e−

β
2

∆ĤW (Rn+Z
2

)e−
β
2

∆ĤW (R−Z
2

) (37)

In this equation, the symmetric Trotter decomposition separates the subsystem potential in ĥW (Rn)

into harmonic, V̂ho = 1
2
ω2R2

n, and anharmonic, ∆Ĥ(Rn) = ĥW (Rn) − Vho(Rn), contributions;
furthermore, we define Ĥho = K̂n + V̂ho.

The anharmonic term in Equation (37) can be approximated as follows:

e−β∆ĥW (Rn+Z
2

)e−β∆ĥW (Rn−Z2 )

=
∑
α,α′

e−βẼα(Rn)

[
δαα′ +

Z

2
Oαα′(Rn)dαα′(Rn)

]
|α;Rn〉 〈α′;Rn| (38)

where |n〉 is the subsystem basis and |α;Rn〉 is the real-valued adiabatic state with adiabatic energy
Eα(Rn) with respect to the Hamiltonian, ĥW (Rn). The adjusted energy is Ẽα(Rn) = Eα(Rn)−Vho(Rn).
The O function in Equation (38) reads:

Oαα′(Rn) =
[
1− e−

β
2

(Ẽα′ (Rn)−Ẽα(Rn))
]2

(39)

and dαα′ = 〈α;Rn| ∇Rn |α′;Rn〉. Details of a similar derivation for Equations (37) and (38) may be
found in [70].

Substituting Equation (37) into Equation (36) and integrating out the Z variable, Equation (36)
simplifies to:

ρ̂W (X) =

(
1

2πh̄ cosh(ωβ
2

)

)Nn

ρb(Xb;Rn)e−
P2
n
ω

tanh(ωβ2 )
∑
λ

e−βEλ(Rn)

∑
α,α′

|α;Rn〉 〈α′;Rn|Fαα′(Xn) (40)

where:

Fαα′(Xn) =
e−βEα(Rn)∑
λ e
−βEλ(Rn)

[
δαα′ − i

Pn
ω

tanh(ωβ/2)Oαα′(Rn)dαα′(Rn)

]
(41)

Now, the canonical partition function is determined by:

ZQ =
∑
α

∫
dXndXbρ

αα
W (X)

=

(
1

cosh(ωβ
2

)

)Nn ( Nb∏
j=1

π

sinh(ωjβ/2)

)√
πω

tanh(ωβ/2)

∫
dRn

∑
λ

e−βEλ(Rn)

=

(
1

cosh(ωβ
2

)

)Nn

ZbZsn (42)



Entropy 2014, 16 217

where Zb is defined by the expression in the second bracket on the second line and Zsn is defined by the
expression behind the second bracket on the second line. Zb and Zsn are the bath and subsystem (with
its immediate environment) canonical partition functions, respectively. In summary, the time correlation
function takes the following simple form:

CAB(t) =
1

ZQ

∑
n1,n2,n3

∫
dX 〈n1| ρ̂W (X) |n3〉 〈n3| Â |n2〉 〈n2| B̂W (X, t) |n1〉 (43)

where ρ̂W (X) and ZQ are given by Equations (40) and (42), respectively.
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