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Abstract: The problem addressed concerns the determination of the average number
of successive attempts of guessing a word of a certain length consisting of letters with
given probabilities of occurrence. Both first- and second-order approximations to a natural
language are considered. The guessing strategy used is guessing words in decreasing order
of probability. When word and alphabet sizes are large, approximations are necessary in
order to estimate the number of guesses. Several kinds of approximations are discussed
demonstrating moderate requirements regarding both memory and central processing unit
(CPU) time. When considering realistic sizes of alphabets and words (100), the number
of guesses can be estimated within minutes with reasonable accuracy (a few percent) and
may therefore constitute an alternative to, e.g., various entropy expressions. For many
probability distributions, the density of the logarithm of probability products is close to a
normal distribution. For those cases, it is possible to derive an analytical expression for the
average number of guesses. The proportion of guesses needed on average compared to the
total number decreases almost exponentially with the word length. The leading term in an
asymptotic expansion can be used to estimate the number of guesses for large word lengths.
Comparisons with analytical lower bounds and entropy expressions are also provided.
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1. Introduction

This work has been inspired by problems addressed in the field of computer security, where the
attacking of, e.g., password systems is an important issue (see, e.g., [1] and [2]). In a brute-force attack,
the password, for instance, can be broken in a worst-case time proportional to the size of the search space
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and, on average, a time half of that. However, if it is assumed that some words are more probable than
others, the words can be ordered in the search space in decreasing order of probability. The number of
guesses can then be drastically reduced. Properties of the average number of successive guesses have
been discussed in detail by Pliam [3], who, to the best knowledge of the author, introduces the word
guesswork to denote this quantity. Further, Lundin et al. [4] discuss confidentiality measures related to
guesswork.

As will be demonstrated below, the calculation of the guesswork may require a substantial amount
of computational effort, especially if the search space is large. Therefore lower bounds, which are easy
to calculate, have been provided by several authors, e.g., Arikan [5] and Massey [6]. Lower and upper
bounds are provided by Pliam [3], but they involve similar calculations as those needed for the guesswork
itself and may therefore be of less practical use.

In this paper, numerical approaches are suggested for evaluating the average number of successive
guesses (guesswork) required for correctly guessing a word from a given language. The guessing strategy
used is guessing words in decreasing order of probability. This is a continuation of investigations
presented elsewhere [7]. In Section 2, the languages used in this paper are presented together with
the corresponding expressions for the guesswork and entropy. The reason for considering entropy
here depends on the prevalent use of entropy instead of guesswork in applications due to its simpler
determination. In Section 3, approximate numerical estimations of guesswork are discussed, and in
Section 4, the results for some probability distributions are given. Finally, in Section 5, the conclusions
of the investigations presented in the paper are summarized.

2. Languages

A language is a set of strings, and a string is a finite sequence of symbols from a given alphabet.
Consider a stochastic variable X belonging to a state space X = {x1, x2, . . . , xn}, where the probability
distribution is given by pX(x) = Pr(X = x). Introduce the short-hand notation pi = pX(xi),
where

∑n
i=1 pi = 1. In the following, the state space X and its size n are considered as an alphabet

with a certain number of symbols. Words are formed by combining symbols into strings. From n

symbols, it is possible to form nm different words of length m. Shannon introduced various orders of
approximations to a natural language, where the zero-order approximation is obtained by choosing all
letters independently and with the same probability. In the first-order approximation, the complexity is
increased by choosing the letters according to their probability of occurrence in the natural language. In
zero- and first-order approximation, the strings thus consist of independent and identically-distributed
(i.i.d.) random variables. For higher-order approximations, the variables are no longer independent [8].

2.1. Zero-Order Approximation

In a zero-order approximation, all symbols in the alphabet (of size n) have the same probability of
occurrence (pi = 1/n,∀i = 1, . . . , n). The average number of guesses G0 required to correctly guess a
word of length m is given by:

G0(X1, . . . , Xm) =
nm∑
i=1

(
1

n

)m
i = (nm + 1)/2, (1)
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where X1, . . . , Xm ∈ X . The entropy H0 of a word of length m is given by [8]:

H0(X1, . . . , Xm) =
nm∑
i=1

(
1

n

)m
logb n

m = mH0(X1), (2)

where H0(X1) = logb n and b is the base of the logarithm used. The average number of guesses grows
exponentially with the size of the word, while the entropy grows linearly with the size of the word. This
is in accordance with the definition of entropy, since it should be an extensive property growing linearly
with the size of the system.

In a zero-order approximation, the relation between guesswork and entropy is G0(X1, . . . , Xm) =

(bH0(X1,...,Xm) + 1)/2. This relationship between guesswork and entropy is true in zero-order
approximation, but not necessarily so using higher-order approximations, which has been demonstrated
by several authors (see, e.g., [3] and [9]). These authors strongly argue against the use of entropy in the
estimation of the number of required guesses.

2.2. First-Order Approximation

In a first-order approximation, the symbols in the alphabet (of size n) do not necessarily have the
same probability of occurrence. Assume the symbols are ordered in decreasing order of probability
(p1 ≥ p2 ≥ . . . ≥ pn). In first order, the symbols in a word are considered as stochastically independent,
and then, the most probable word (of a given length) would consist of only x1. The most improbable
word, on the other hand, would consist of only xn. The average number of guesses G1 required for
making the correct guess of a word of length m is given by the summation:

G1(X1, . . . , Xm) =
n∑

i1=1,...,im=1

pi1 · · · pimg(i1, . . . , im), (3)

where the function g(i1, . . . , im) represents the number of guesses, one guess for the most probable word,
two guesses for the second most probable word and nm guesses for the most improbable word, etc. The
entropy H1 of a word of length m is given by [8]:

H1(X1, . . . , Xm) =
n∑

i1=1,...,im=1

pi1 · · · pim logb

(
1

pi1 · · · pim

)

= m

n∑
i=1

pi logb

(
1

pi

)
= mH1(X1), (4)

where b is the base of the logarithm used. The calculation of Equation (3) is more complicated than
Equation (4), since it requires that the products of probabilities (pi1 · · · pim) are sorted in decreasing
order. Such a procedure can be realized only for a moderate size of nm, due to both storage and CPU
time requirements. For larger values of nm, approximate methods have to be used in order to get an
estimate of the summation. Lower bounds of the guesswork, which are easy to calculate, have been
provided by Massey [6] and Arikan [5]. Massey demonstrates that:

G1(X1, . . . , Xm) ≥ 1

4
bH1(X1,...,Xm) + 1, (5)
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where b is the base of the logarithm used in H1, and Arikan that:

G1(X1, . . . , Xm) ≥ 1

1 +m lnn

[
n∑
i=1

√
pi

]2m

. (6)

In Figure 1, the exact value of the guesswork for correctly guessing a word of size m < 6

using an alphabet of size 10 (with the randomly chosen probability distribution given in the figure)
is displayed. The lower bounds provided by Equations (5) and (6) are given for word sizes m ≤ 20.
For comparison, the exponential entropy expression, with the same functional form as guesswork in zero
order (Equation (1)),

1

2

[
bH1(X1,...,Xm) + 1

]
, (7)

where b is the base of the logarithm used in H1, is given for word sizes m ≤ 20. For word sizes
m < 6, Equation (7) clearly overestimates the exact value of the guesswork. In fact, Pliam has shown
that it is possible to construct probability distributions that make guesswork differ arbitrarily much from
Equation (7) [3]. In Section 3, approximate numerical evaluations of guesswork are discussed.

Figure 1. The quotient of the average and the maximum number of guesses of words of size
m for the randomly chosen probability distribution given to the right (n = 10).
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p7 = 0.051858

p8 = 0.051490
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2.3. Second-Order Approximation

In a second-order approximation, the variables are no longer independent. Consider two jointly
distributed stochastic variables X, Y ∈ X ; then, the conditional probability distribution of Y given X is
given by pY (y|X = x) = Pr(Y = y|X = x). Introduce the short-hand notation Pij = pY (xj|X = xi),
the probability that symbol xj follows symbol xi. P is an n × n matrix, where n is the size of the
alphabet, and the sum of the elements in each row is one. The probability of occurrence of each symbol
in the alphabet, pi, can easily be obtained from matrix P using the two equations (P T − I)p = 0 and
|p| = 1, where p is a vector of length n with elements pi.

The guesswork G2, i.e., the average number of guesses required for making the correct guess of a
word of length m using an alphabet of size n, is given by:
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G2(X1, . . . , Xm) =
n∑

i1=1,...,im=1

pi1Pi1i2 · · ·Pim−1img(i1, . . . , im), (8)

where the function g(i1, . . . , im) is the same as the one in Equation (3). The entropy H2 of a word of
length m is given by [10]:

H2(X1, . . . , Xm) = −
n∑

i1=1,...,im=1

pi1Pi1i2 · · ·Pim−1im logb(pi1Pi1i2 · · ·Pim−1im)

= −
n∑

i1=1

pi1 logb(pi1)−
n∑

i1=1

pi1

n∑
i2=1

Pi1i2 logb(Pi1i2)

−
n∑

i1=1

pi1

n∑
i2=1

Pi1i2

n∑
i3=1

Pi2i3 logb(Pi2i3)− . . .

−
n∑

i1=1

pi1

n∑
i2=1

Pi1i2 · · ·
n∑

im=1

Pim−1im logb(Pim−1im)

=
m∑
i=1

H2(Xi|Xi−1, . . . , X1), (9)

where b is the base of the logarithm used. In Section 4, the value of Equation (8) will be compared to the
value of Equation (7) (with H1 replaced by H2) for a given probability distribution.

3. Numerical Evaluation of Guesswork

In this section, a number of approaches will be given in order to evaluate the guesswork.

3.1. Quantification

One simple procedure for numerically estimating Equation (3) and in addition reducing the storage
requirements is to split the range

[
log( 1

p1
), log( 1

pn
)
]

into N equal pieces of size ∆ = 1
N

log( p1
pn

), where

a larger value of N gives a better estimate. The range
[
log( 1

pm1
), log( 1

pmn
)
]

will consequently be split
into m · N equal pieces of size ∆. Instead of sorting the products pi1pi2 · · · pim , they simply have to be
evaluated and brought into one of the m ·N subranges. When the number of products in each subrange
has been determined, an estimate of Equation (3) can be made, giving:

G1(X1, . . . , Xm) ≈
mN∑
j=1

cj

[
Cj +

1

2
(cj + 1)

]
Pj

= GQ
1 (X1, . . . , Xm;N), (10)

where cj is the number of probability products in subrange j, Cj =
∑j−1

k=1 ck and log(P−1
j ) is the middle

value of subrange j. By instead using the boundary values of the subranges, lower and upper bounds of
the numerically-estimated guesswork can be given as:

G1(X1, . . . , Xm) ∈ [Q−1
1 , Q1] ·GQ

1 (X1, . . . , Xm;N), (11)
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where Q1 = (p1/pn)1/2N . Here, the short-hand notation Q1 is used instead of the more correct notation
Q1(X1, . . . , Xm;N) in order to increase the transparency of Equation (11).

By introducing the density of products ρi = ci/(∆n
m) (normalized to unity), the summations in

Equation (10) can be replaced by integrals for large values of N , giving:

G1(X1, . . . , Xm) ≈ nm(np1)m
∫ mN∆

0

dxb−xρ(x)

∫ x

0

dyρ(y), (12)

where b is the base of the logarithm used in ρ and ∆. Equation (12) will be of importance in Section 3.3,
where a normal distribution approximation of the density of products is discussed.

The method of quantification can be used in both first- and second-order approximation. However,
since it is less obvious in second order, which is the smallest and largest value of the product of
probabilities pi1Pi1i2 · · ·Pim−1im , a lower bound of min(pi) · min(Pij)

m−1 and an upper bound of
max(pi) ·max(Pij)

m−1 can be used instead to determine the range of possible values. When determining
min(Pij), only non-zero values are considered. In second order, a similar expression as the one in
Equation (11) can be used for estimating the guesswork, namely:

G2(X1, . . . , Xm) ∈ [Q−1
2 , Q2] ·GQ

2 (X1, . . . , Xm;N), (13)

where Q2 =
[

max(pi)
min(pi)

]1/2mN

·
[

max(Pij)

min(Pij)

](m−1)/2mN

and GQ
2 is given by Equation (10) using the values

given above as interval limits for probability products. Here, the short-hand notation Q2 is used instead
of the more correct notation Q2(X1, . . . , Xm;N) in order to increase the transparency of Equation (13).

3.2. Random Selection

The storage and CPU time requirements using the strategy in Section 3.1 for calculating the guesswork
are of O(m · N ) and O(m · nm), respectively. One simple modification for decreasing the time
requirements is to reduce the number of probability products formed. Instead of calculating all nm

different products, a smaller number of randomly chosen probability products is used and brought into
the m · N subranges. The smaller number has been determined to be proportional to m, i.e., equal to
m · S, where S is a parameter whose value has to be chosen. After normalization, where the number of
products in each subrange is multiplied by the factor nm/(m · S), the strategy is identical to the one in
Section 3.1.

By not using all nm different probability products, another error is introduced. This error can be
estimated by repeating the random selection calculations a number of times (given by T ). Through these
calculations, an average value (GR

i ) and a standard deviation (sRi ) can be estimated (where i = 1 or 2).
A 99% confidence interval for GQ

i is then given as:

GQ
i ∈ [1−Ri, 1 +Ri] ·GR

i , (14)

where Ri = λ0.01/2 · sRi /(GR
i ·
√
T ) and λ0.01/2 = 2.58 (the quantile function of the normal

distribution) [11]. In Equation (14), all parameters have been excluded in order to increase the
transparency of the equation.
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3.3. Normal Distribution

Another interesting approach is given by the central limit theorem in probability theory, which roughly
states that the mean of a large number of independent stochastic variables is approximately normally
distributed. In Figure 2, the density of the logarithm of products of probabilities for the randomized
probability distribution given in Figure 1 is displayed. The density fits nicely to a normal distribution,
with a better fit for larger values of m (the number of independent stochastic variables). As expected,
the average value is proportional to m and the standard deviation to

√
m. Denote the proportionality

constants as µ1 and σ1, respectively.

Figure 2. The density of the logarithm of products of probabilities for a randomized
probability distribution (given by Figure 1) for n = 10 and N = 10. Random selection
with S = 108 is used for m = 20. Base e is adopted. The average value is µ1m, and the
standard deviation σ1

√
m, where the values µ1 = 0.824535 and σ1 = 0.678331 have been

obtained by a least squares fit of the µ and σ from the normal distribution fitted densities for
m = 6, 8, 10, . . . , 50.
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For large values of m, it can be assumed (according to the central limit theorem) that the logarithm
of products of probabilities will be normally distributed. The parameters of the normal distribution (the
average value and the standard deviation) can be estimated from a sample of a small number of random
products of probabilities (considerably smaller than required in the method described in Section 3.2). The
normal distribution is used to estimate the number of probability products in each subrange; otherwise
the strategy is identical to the one in Section 3.1. When approximating the density of logarithms of
products by a normal distribution:

N(x;µ, σ2) =
1

σ
√

2π
· e−(x−µ)2/2σ2

, (15)

where µ is the average value and σ the standard deviation, Equation (12) can be expressed as:

G1(X1, . . . , Xm)

≈ nm
(
np1e

−(2µ1−σ2
1)/2
)m
·
∫ √mN∆

0

dxN(x; (µ1 − σ2
1)
√
m,σ2

1)

∫ x

0

dyN(y;µ1

√
m,σ2

1), (16)
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where base e has been adopted. The factor e−x (representing a product of probabilities) in Equation (12)
causes a left shift of the normal distribution. This requires that also the tails of the normal distribution
are accurate in order for this approximation to be valid. Making an error estimate for this kind of
approximation is hard. However, if the density of the logarithm of probability products resembles
a normal distribution also at its tails, then an error estimate similar to Equation (14) can be made.
Further, the distance between the peaks of the two normal distributions in Equation (16) is increasing
for increasing values of m, resulting in decreasing values of the integral. In fact, it can be shown that
Equation (16) can be further approximated as:

G1(X1, . . . , Xm) ≈ nm
(
np1e

−(2µ1−σ2
1)/2
)m
· 1

4

[
2 · erf

(
µ1

√
m

σ1

√
2

)
− 1− erf

(
σ1

√
m

2

)2
]

(17)

for large values of m [12]. In Figure 3, a comparison of Equations (10) (with both the true and a normal
distribution), (16) and (17) is given. The three expressions with a normal distribution give similar values,
except for small values of m, and they resemble the expression with the true distribution. The apparent
deviation from the true distribution from m = 25 onwards can partly be explained by the logarithmic
scale. The absolute deviation decreases, but the relative deviation does not.

Figure 3. The guesswork for the randomized probability distribution given in Figure 1
(n = 10). For one summation, the true density of the logarithm of probabilities is used
(N = 10, S = 10, 000 and T = 20), and otherwise, a normal distribution is used (with the
data given in Figure 2 and N = 10 for Equation (10)).
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By using an asymptotic expansion of the error function [13], it can be shown that the leading term of
Equation (17) is:

nm · 1

σ1

√
π
·
(
np1e

−(µ1−σ2
1/4)
)m
· 1√

m
(18)

if µ1/(σ1

√
2) > σ1/2. Thus, the leading term is of the form nm · A · Bm ·m−1/2, where A and B are

constants for the given probability distribution. The result of fitting the data from Equation (10) (using a
normal distribution) to such an expression is displayed in Figure 3. The results will be further discussed
in the following section.
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4. Results

In this section, two probability distributions will be discussed. First, the distribution given in
Figure 1 is investigated in more detail in Section 4.1, and second, the English language is considered
in Section 4.2.

4.1. Random Probability Distribution

In Figure 1, the average number of guesses required for correctly guessing a word of size m

using an alphabet of size 10 is given using various techniques. First, the exact solution is given (for
m < 6). Second, three approximate solutions (as discussed in Section 3) are given (quantification using
all probability products could be performed within reasonable time limits only for m < 11). Third,
an estimate based on entropy (Equation (7)) is provided. Fourth, lower bounds derived by Massey
(Equation (5)) and Arikan (Equation (6)) are included.

As is illustrated in Figure 1, the approximate techniques of quantification (N = 103) and random
selection (N = 103, S = 104 and T = 20) may provide accurate estimates of guesswork (with
a reasonable amount of storage and CPU time). The third approximate technique (using a normal
distribution) (N = 103, S = 104 and T = 20) demonstrates accurate estimates for large values of
m (>6) in accordance with the central limit theorem. By using a fitting procedure for values in the range
9 ≤ m ≤ 40, an approximate expression is given by G1/n

m ≈ 0.592 · 0.920m ·m−1/2 (see Figure 3).
By evaluating the leading term of Equation (17) (see Equation (18)), the expression 0.832·0.912m ·m−1/2

is obtained.
The exponential entropy expression overestimates guesswork for small values of m (<11) and

underestimates it for large values. The lower bound of Massey is closer to the exact value than the
lower bound of Arikan. However, both of the lower bounds underestimate the number of guesses by an
order of magnitude for m = 20.

Error Estimates

Using the data in Figure 1 and Equation (11), the exact value can be determined to be in the interval
[0.999, 1.001] · GQ

1 , i.e., the error using quantification (N = 103) is about 0.1%. The additional error of
using random selection (N = 103, S = 104 and T = 20) (see Equation (14)) is determined to be between
0.26% and 0.56% (depending on the m value) to a certainty of 99%. The error due to random selection
in the normal distribution approximation (N = 103, S = 104 and T = 20) is determined to be between
0.30% and 0.63% (depending on the m value) to a certainty of 99%. Observe that this error does not
include the fitness of a normal distribution to the density of the logarithm of probability products.

4.2. English Language

While the probability distribution discussed in the previous section was randomly chosen, the
probability distribution considered here originates from the English language [14]. In Appendix, the
English bigram frequencies from [14] are repeated. In order to calculate the conditional probability
distribution discussed in Section 2.3, each row in the table in Appendix has to be normalized. The
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probability distribution for each letter in the English alphabet can be obtained by the procedures
discussed in Section 2.3. In Figure 4, the average number of guesses required for correctly guessing
a word of size m using the English alphabet of size 26 (with the data given in Appendix) is displayed.
Guesswork has been numerically evaluated in zero, first and second order. For comparison, estimates
based on entropy (Equation (7)) are given in first and second order. In first order, the lower bounds
provided by Massey (Equation (5)) and Arikan (Equation (6)) are included.

Figure 4. The quotient of the average and the maximum number of guesses of words of size
m in the English language (n = 26).
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Table 1. The average number of guesses of words of length m in English divided by the
maximum number.

Order Expression

0 1/2

1 0.481 · 0.801m ·m−1/2

2 0.632 · 0.554m ·m−1/2

As is illustrated in Figure 4, all approaches display an exponential behavior (in first and second order)
in accordance with Equations (5)–(7) and (17). A normal distribution was not applied, since it is not
in agreement with the true distribution. It overestimates guesswork by about an order of magnitude for
m = 30. However, it is possible to make a fairly accurate fit of the guesswork data in first and second
order to an expression of the form nm ·A ·Bm ·m−1/2, as was discussed in Section 3.3. By using a fitting
procedure for the guesswork graphs in Figure 4 for 9 ≤ m ≤ 30, the average number of guesses of words
in the English language can be expressed according to the functions in Table 1. The deviation between
the true and estimated values (according to Table 1) is less than 10% (except for the smallest m values).
For both first and second order, the entropy ansatz underestimates the number of guesses required, for
first order by a factor of around 10 and for second order by a factor of around 100 for word lengths
of 30. Further, using the extra information provided by a second-order approximation as compared to
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a first-order approximation reduces the number of guesses by a factor of around 105 for word lengths
of 30. The lower bounds of Massey (Equation (5)) and Arikan (Equation (6)) are underestimating the
number of guesses by approximately the same amount as the entropy expression for word lengths of 30.

Error Estimates

In first order, the errors introduced by using quantification can be calculated using Equation (11).
Using the data in Figure 4, the exact value can be determined to be in the interval [0.9998, 1.0002] ·GQ

1 ,
where GQ

1 is the approximate guess work using quantification for first-order English. In second order,
Equation (13) and the data in Figure 4 make it possible to determine that the exact value is in the interval
[0.9996, 1.0004] ·GQ

2 .
Using the same procedure as in Section 4.1, the error introduced when randomly selecting probability

products can be estimated. In first order, a 99% confidence interval for the guesswork is given by
Equation (14), and by using the data in Figure 4, the error (R1) is determined to be between 0.006%
and 0.05% (depending on the m value). This should be added to the error of 0.02% introduced by
quantification. In second order, exactly the same procedure can be used, and then, the error is estimated
to be in the range 0.006% and 6% (depending on the m value). Again, this error should be added to the
error of 0.04% introduced by quantification. The large error introduced by random selection in second
order for largem values is due to the fact that the fraction of probability products that are zero is larger for
larger m values. By randomly selecting S ·m probability products, the number of non-zero probability
products is decreasing with an increasing value ofm. To increase the accuracy of the guesswork estimate
in second order, another m dependence of the number of selected probability products has to be chosen.

5. Conclusions

In the paper, it has been demonstrated that it is possible to estimate the average number of guesses
(guesswork) of a word with a given length numerically with reasonable accuracy (to a couple of percent)
for large alphabet sizes (≈ 100) and word lengths (≈ 100) within minutes. Thus, a numerical estimate
of guesswork constitutes an alternative to, e.g., various entropy expressions.

For many probability distributions, the density of the logarithm of probability products is close to
a normal distribution. For those cases, it is possible to derive an analytical expression for guesswork
showing the functional dependence of the word length. The proportion of guesses needed on average
compared to the total number decreases almost exponentially with the word length. The leading term in
an asymptotic expansion of guesswork has the form nm · A · Bm ·m−1/2, where A and B are constants
(however, different for different probability distributions), n is the size of the alphabet and m is the
word length. Such an expression can be determined for medium-sized values of m, using some fitting
procedure, and used with fairly good accuracy for large values of m.

In the paper, the English language has been investigated. The average number of guesses has been
calculated numerically in both first and second order giving a reduction of the number of guesses by a
factor 105 for word lengths of 30 when the extra information provided by second order is included. A
normal distribution of the logarithm of probability products was not applied, since it is not in agreement
with the true distribution. It overestimates guesswork by about an order of magnitude for word lengths
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of 30. Still, it is possible to find accurate expressions for guesswork (0.481 · 0.801m ·m−1/2 in first order
and 0.632 · 0.554m ·m−1/2 in second order) in agreement with the true values (the deviation is less than
10% for word lengths of 30).

A comparison between guesswork and entropy expressions has been performed showing that the
entropy ansatz underestimates the number of guesses required, for first order by a factor of around
10 and for second order by a factor of around 100 for English words of length 30. Lower bounds of
guesswork by Massey and Arikan have also been investigated. They are underestimating the number of
guesses by approximately the same amount as the entropy expression for word lengths of 30.
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Appendix: English Bigram Frequencies

The information in the matrix below is used for creating matrix P used in Section 2.3 [14]. After
normalization of each row, matrix P is obtained.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A 1 32 39 15 0 10 18 0 16 0 10 77 18 172 2 31 1 101 67 124 12 24 7 0 27 1
B 8 0 0 0 58 0 0 0 6 2 0 21 1 0 11 0 0 6 5 0 25 0 0 0 19 0
C 44 0 12 0 55 1 0 46 15 0 8 16 0 0 59 1 0 7 1 38 16 0 1 0 0 0
D 45 18 4 10 39 12 2 3 57 1 0 7 9 5 37 7 1 10 32 39 8 4 9 0 6 0
E 131 11 64 107 39 23 20 15 40 1 2 46 43 120 46 32 14 154 145 80 7 16 41 17 17 0
F 21 2 9 1 25 14 1 6 21 1 0 10 3 2 38 3 0 4 8 42 11 1 4 0 1 0
G 11 2 1 1 32 3 1 16 10 0 0 4 1 3 23 1 0 21 7 13 8 0 2 0 1 0
H 84 1 2 1 251 2 0 5 72 0 0 3 1 2 46 1 0 8 3 22 2 0 7 0 1 0
I 18 7 55 16 37 27 10 0 0 0 8 39 32 169 63 3 0 21 106 88 0 14 1 1 0 4
J 0 0 0 0 2 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 4 0 0 0 0 0

K 0 0 0 0 28 0 0 0 8 0 0 0 0 3 3 0 0 0 2 1 0 0 3 0 3 0
L 34 7 8 28 72 5 1 0 57 1 3 55 4 1 28 2 2 2 12 19 8 2 5 0 47 0

M 56 9 1 2 48 0 0 1 26 0 0 0 5 3 28 16 0 0 6 6 13 0 2 0 3 0
N 54 7 31 118 64 8 75 9 37 3 3 10 7 9 65 7 0 5 51 110 12 4 15 1 14 0
O 9 18 18 16 3 94 3 3 13 0 5 17 44 145 23 29 0 113 37 53 96 13 36 0 4 2
P 21 1 0 0 40 0 0 7 8 0 0 29 0 0 28 26 0 42 3 14 7 0 1 0 2 0
Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0
R 57 4 14 16 148 6 6 3 77 1 11 12 15 12 54 8 0 18 39 63 6 5 10 0 17 0
S 75 13 21 6 84 13 6 30 42 0 2 6 14 19 71 24 2 6 41 121 30 2 27 0 4 0
T 56 14 6 9 94 5 1 315 128 0 0 12 14 8 111 8 0 30 32 53 22 4 16 0 21 0
U 18 5 17 11 11 1 12 2 5 0 0 28 9 33 2 17 0 49 42 45 0 0 0 1 1 1
V 15 0 0 0 53 0 0 0 19 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0
W 32 0 3 4 30 1 0 48 37 0 0 4 1 10 17 2 0 1 3 6 1 1 2 0 0 0
X 3 0 5 0 1 0 0 0 4 0 0 0 0 0 1 4 0 0 0 1 1 0 0 0 0 0
Y 11 11 10 4 12 3 5 5 18 0 0 6 4 3 28 7 0 5 17 21 1 3 14 0 0 0
Z 0 0 0 0 5 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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