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Abstract: Decision trees are particularly promising in symbolic representation and
reasoning due to their comprehensible nature, which resembles the hierarchical process of
human decision making. However, their drawbacks, caused by the single-tree structure,
cannot be ignored. A rigid decision path may cause the majority class to overwhelm other
class when dealing with imbalanced data sets, and pruning removes not only superfluous
nodes, but also subtrees. The proposed learning algorithm, flexible hybrid decision forest
(FHDF), mines information implicated in each instance to form logical rules on the basis
of a chain rule of local mutual information, then forms different decision tree structures
and decision forests later. The most credible decision path from the decision forest can
be selected to make a prediction. Furthermore, functional dependencies (FDs), which are
extracted from the whole data set based on association rule analysis, perform embedded
attribute selection to remove nodes rather than subtrees, thus helping to achieve different
levels of knowledge representation and improve model comprehension in the framework
of semi-supervised learning. Naive Bayes replaces the leaf nodes at the bottom of the
tree hierarchy, where the conditional independence assumption may hold. This technique
reduces the potential for overfitting and overtraining and improves the prediction quality
and generalization. Experimental results on UCI data sets demonstrate the efficacy of the
proposed approach.
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1. Introduction

The rapid development of information and web technology has made a significant amount of data
readily available for knowledge discovery. Growing interest in symbolic representation and reasoning
highlights knowledge discovery as a clearly identifiable and technically rich subfield in artificial intelli-
gence. The desirable properties of tools used to investigate big data are easy to understand models and
predictive decisions. Decision trees are particularly promising in this regard, due to their comprehensible
nature that resembles the hierarchical process of human decision making. To split nodes while growing
the tree, the vast majority of the oblique and univariate decision-tree induction algorithms employ dif-
ferent impurity-based measures [1,2]. Aside from such advantages, such as the ability to explain the de-
cision process and low computational costs, their drawbacks, caused by the single-tree structure, cannot
be ignored.

Commonly, to classify an instance, we can just follow one path from the unique root to the leaf,
examining every decision made along the way. This approach usually works well. However, in reality,
the classification distribution is frequently used to deal with imbalanced datasets, where there are many
more instances of a certain class than of another. In such cases, a rigid decision path may cause the
majority class overwhelm other classes, thus creating a situation where the minority class is ignored.
The decision tree corresponds to locally optimal solutions to all training data, but from it, we cannot
get globally optimal solutions to the whole data set. Besides, low-quality training data may lead to the
construction of overfitting or fragile classifiers. Thus, eliminating redundant attributes is generally used
as a data preprocessing technique to improve the quality of the data. However, pruning removes not
only superfluous nodes, but also subtrees, with the superfluous nodes as subroots. If some key nodes are
removed by mistake, the negative effect caused by the absent nodes may propagate and aggravate the
situation to some extent. To ensure a credible and robust decision path, according to Occam’s razor rule,
only a limited number of attributes can be used for prediction. Thus just a portion of the information
implicated in the training data will be utilized.

To resemble the hierarchical process of human decision making and to make the final model much
more flexible, the core idea of this paper is to build a decision forest rather than a single tree to model
training data. The theoretical foundation of the traditional decision tree algorithm is the chain rule of joint
mutual information, which applies mutual and conditional mutual information to describe the direct and
indirect relationships between predictive attributes and the class label. Correspondingly, the proposed
learning algorithm, flexible hybrid decision forest (FHDF), applies the chain rule of local mutual
information to form logical rules for each instance. The rules with the same root form different decision
tree structures and then form a decision forest later. Thus, we can choose the most credible path from
the forest to classify. To reduce the potential for overfitting and overtraining, functional dependencies
(FDs) [3,4] will be employed as prior knowledge to remove redundant attributes rather than subtrees.
Additionally, different sets of redundant attributes may be found and removed from different test
instances. Because FDs are unrelated to class label, they can be extracted from the whole data set,
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rather than training data based on association rule analysis [5]; thus, FHDF works in the framework
of semi-supervised learning. Naive Bayes (NB) [6,7], which is an important mining classifier for
data mining and applied in many real-world classification problems, because of its high classification
performance, replaces the leaf nodes at the bottom of the tree hierarchy, where the conditional
independence assumption may hold. This technique ensures that all attributes will be utilized for
prediction, thus improving the prediction quality and generalization.

The rest of this paper is organized as follows. Section 2 first proposes the theoretical basis of
decision forest—the chain rule of local mutual information—then clarifies the rationality of FDs and
introduces related work about NB. Section 3 describes the learning procedure of FHDF. Section 4
compares various approaches on data sets from the UCI repository. Finally, Section 5 presents possible
future work.

2. Related Research Work

2.1. Information Theory

In the 1940s, Claude E. Shannon introduced information theory, the theoretical basis of modern
digital communication. Although Shannon was principally concerned with the problem of electronic
communications, the theory has much broader applicability. Many commonly used measures are based
on the entropy of information theory and used in a variety of classification algorithms.

In the following discussion, Greek letters (α, β, γ) denote sets of attributes. Lower-case letters denote
specific values taken by corresponding attributes (for instance, xi represents the event that Xi = xi).

Definition 1. Entropy is a measure of uncertainty of random variable C:

H(C) = −
∑
c∈C

P (c) logP (c) (1)

where P (c) is the marginal probability distribution function of C.

Definition 2. Mutual information I(C;X) is the reduction of entropy about variable C after observing
all possible values of X

MI(C;X) = H(C)−H(C|X) =
∑
x∈X

∑
c∈C

P (x, c) log
P (x, c)

P (c)P (x)
(2)

where P (x, c) is the joint probability distribution function of X and C.

Definition 3. Local mutual information LMI(C;x) is defined to measure the reduction of entropy about
variable C after observing X = x,

LMI(C;x) =
∑
c∈C

P (x, c) log
P (x, c)

P (c)P (x)
(3)

Definition 4. Conditional mutual information CMI(C;Xi|Xj) is defined to measure the expected value
of the mutual information of two random variables C and Xi given the value of a third variable Xj .

CMI(C;Xi|Xj) =
∑
c∈C

∑
xi∈Xi

∑
xj∈Xj

P (xi, c|xj) log
P (xi, c|xj)

P (c|xj)P (xi|xj)
(4)
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Definition 5. Conditional local mutual informationCLMI(C;xi|xj) is defined to measure the reduction
of entropy about variable C after observing Xi = xi when Xj = xj always holds.

CLMI(C;xi|xj) =
∑
c∈C

P (xi, c|xj) log
P (xi, c|xj)

P (c|xj)P (xi|xj)
(5)

Obviously,  I(C;X) =
∑

X LMI(C;x)

CMI(C;Xi|Xj) =
∑

Xi

∑
Xj
CLMI(C;xi|xj)

(6)

Mutual information and conditional mutual information are commonly applied to roughly describe
the direct or conditional relationships between predictive attribute and class label C. However, in the
real world, the relationships between attributes may differ greatly as the situation changes. Local mutual
information and conditional local mutual information can be used to describe the dynamic changes, thus
making the final model much more flexible. For example, as Figure 1 shows, suppose that the overall
relationship among attributes {X2, · · · , X3} and class label C is just like a rectangle. However, for the
k− th instance, {X2, X3} are independent of C, and the local relationship between X1 and C is just like
an oval.

Figure 1. The overall and local relationships among {X1, X2, X3} and C.
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According to the chain rule of joint mutual information, which is the theoretical basis of the decision
tree learning algorithm, the mutual information between attributes X = {X1,X2,· · · , Xn} and class
label C is:

MI(C;X) =MI(C;X1) + CMI(C;X2|X1) + · · ·
+ CMI(C;Xn|X1, · · · , Xn−1)

(7)

On the other hand, for a sample t = {x1, x2,· · · , xn} in data set S, the chain rule of local mutual
information between t and class label C can be represented as:

LMI(C; t) = LMI(C;x1) + CLMI(C;x2|x1) + · · ·
+ CLMI(C;xn|x1, · · · , xn−1)

(8)

On the basis of the chain rule of local mutual information described above, we can convert each
instance into a single logical rule or decision path. We first choose the most appropriate attribute value
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from t, e.g., x1, which satisfies LMI(C;x1) = maxLMI(C;xi)(1 ≤ i ≤ n). The training set is split
into finer subsets with attribute value x1. Then, we choose the next attribute value, e.g., x2, which satisfies
CLMI(C;x2|x1) = maxCLMI(C;xi|x1)(1 ≤ i ≤ n, i 6= 1). The training subset is further split into
finer subsets with attribute values x1 and x2. This procedure will continue, until the class label of the
subset is the same or the instances in the subset satisfy some criterion. Finally, each training instance
corresponds to a logical rule or decision path. If several rules have the same root, the combination of
these rules with the same root node can build a complete decision tree, and the same part of the structural
information present in the data can be expressed. Thus, the final model is composed of not one tree,
but one forest. This technique reduces the potential for overfitting and overtraining and improves the
prediction quality and generalization. For example, given attributes X = {X1, X2, X3, X4} and three
instances {t1, t2, t3}, according to the comparison results of local mutual information and conditional
local mutual information instances, {t1, t2, t3} can be converted into three logical rules. The conversion
procedure are shown in Figure 2.

Figure 2. The conversion procedure from instances {t1, t2, t3} to logical rules.
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Output:Logical Rule  1
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Because Rule 2 and Rule 3 have the same root, they can be combined into a single tree. Finally, from
instances {t1, t2, t3}, we can build two tree structure, as Figure 3 shows.

Figure 3. The overall decision forest structure corresponding to instances {t1, t2, t3}.

X2

X2= b1

X1

X2= b0

Output:Decision Forest

X3

C0

X1

X2

X3

X1= a1

X2= b0

X3= c0

C1

X1= a0

X3= c0

X3 X4

X3= c1

X4= d0

C1

Decision Tree 1 Decision Tree  2



Entropy 2014, 16 5247

2.2. Functional Dependency Rules of Probability

Given a relation R (in a relational database), attribute Y of R is functionally dependent on attribute
X of R, and X of R functionally determines Y of R (in symbols X → Y ). We demonstrated functional
dependency rules of probability in [8,9] to build a linkage between FD and probability theory, and the
following rules are mainly included:

• Representation equivalence of probability: Suppose data set S consists of two attribute sets {α, β} and
β can be inferred by α, i.e., the FD α→ β holds, then the following joint probability distribution holds:

P (α) = P (α, β) (9)

• Augmentation rule of probability: If FD α → β holds and γ is a set of attributes, then the following
joint probability distribution holds:

P (α, γ) = P (α, β, γ) (10)

• Transitivity rule of probability: If FDs α → β and β → γ hold, then the following joint probability
distribution holds:

P (α) = P (α, γ) (11)

• Pseudo-transitivity rule of probability: If βγ → δ and α → β hold, then the joint probability
distribution holds:

P (α, γ) = P (α, γ, δ) (12)

When two attributes are strongly related, the classifier may overweight the inference from the two
attributes, resulting in prediction bias. FDs will help to avoid this situation, and the high dimensional
representation or even whole classification model is simplified. For example, if FD x1 → x2 exists,
for instance t = {x1, x2,· · · , xn}, by applying the representation equivalence of probability and the
augmentation rule of probability, we will have: P (x) = P (x1, x3, · · · , xn)

P (x, c) = P (x1, x3, · · · , xn, c)
(13)

Then, from the definition of LMI , we will get:

LMI(C|x) =
∑
c∈C

P (x, c) log
P (x, c)

P (c)P (x)

=
∑
c∈C

P (x1, x3, · · · , xn, c) log
P (x1, x3, · · · , xn, c)
P (c)P (x1, x3, · · · , xn)

= LMI(C|x1, x3, · · · , xn)
(14)

Thus, x2 is extraneous to classify t. Obviously, extraneous attributes reduction resulting from FDs
will not change underlying conditional probability, thus, in turn, leading to lower variance. Therefore,
FDs have the potential to be a valuable supplementary of the classifier over a considerable range of
classification tasks. Discovering FDs from existing databases is an important issue, investigated for
many years, and recently addressed with a data mining viewpoint, in a novel and much more efficient
way [10,11].
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2.3. Naive Bayes

Supervised classification is a basic task in artificial intelligence and knowledge discovery. The aim
of supervised learning is to predict from a training set the class of a testing instance x = {x1, · · · , xn},
where xi is the value of the i-th attribute. We estimate the conditional probability of P (c|x) by selecting
argmaxC P (c|x), where c ∈ {c1, · · · , ck} are the k classes. From Bayes theorem, we have:

P (c|x) = P (c, x)/P (x) ∝ P (c, x) ∝ P (x|c)P (c) (15)

The BNclassifier is becoming increasingly popular in many areas, such as decision aid, diagnosis and
complex system control, because of its inference capabilities [12,13]. The structure of BN is a directed
acyclic graph, where the nodes correspond to domain attributes and the arcs between the nodes represent
direct dependencies between the attributes. The absence of an arc between two nodesX1 andX2 denotes
that X2 is independent of X1 given its parents.

However, the accurate estimation of P (x|c) is a complex process. Learning an optimal BN structure
from existing data has been proven to be an NP-hard problem. NB avoids this problem by assuming that
the attributes are independent given the class,

P (x|c) =
n∏
i=1

P (xi|c). (16)

Then, the following equation is often calculated in practice rather than Equation (15).

P (c|x) ∝ P (c)
n∏
i=1

P (xi|c) (17)

NB has a simple structure, whereby an arc exists from the class node to other nodes, but no arcs exist
among the other nodes, as illustrated in Figure 4. One advantage of NB is avoiding model selection,
because selecting between alternative models can be expected to increase variance and allow a learning
system to overfit the training data [14].

Figure 4. The network structure of naive Bayes.
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3. FHDF

The learning procedure of the FHDF algorithm is described as follows:

Input: Training set T1, testing set T2, predictive attribute set X = {X1, · · · , Xn} and class label C.
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Output: Hybrid decision forest model.

Pre-processing phase: Mine association rules from data set T1 + T2, then convert them into FDs; achieve
the closure of FDs. Find extraneous attributes based on FD analysis and remove them from attribute set.

Training phase:

Step 1: For each instance t = {x1, · · · , xn} in T1, generate the root node Xi that satisfies

Xi = argmax LMI(C;xp)(1 ≤ p ≤ n)

Then, verify if the corresponding subset, which satisfies Xi = xi, has the same class label.

(a) If yes, exit and create a leaf node;
(b) Otherwise, node Xi is created and added as one branch node.

Step 2: Calculate for each attribute value, among the attributes that have not been used so far, its
CLMIand select attribute Xj , which satisfies:

Xj = argmax CLMI(C;xq|xi)(1 ≤ q ≤ n, q 6= i)

Then, verify if CLMI satisfies the stopping criterion: (a) If yes, create NB as a leaf node; (b) otherwise,
child node Xj is created and added to the branch. Repeat the same process for each instance t in T1 from
Step 1.

Step 3: Get the order of attribute values in each instance, which will be converted into the
classification rule. Use the rules with the same root to construct a hybrid decision tree.

Testing phase:

Step 4: Use the rules to assign class labels to unlabeled instances in T2.
Step 5: For any instance t that does not match any rule in the decision forest, start from the training

phase, achieve the attribute order and get the sub-optimal rule for classification.
Knowledge implicated in a database can be divided into certain and uncertain parts. The certain

part is commonly described by a set of rules, such as a decision tree. The uncertain part is always
described from the viewpoint of probability, such as BN. The proposed working mechanism of the hybrid
model-FHDF resembles the hierarchical process of human decision making. First, we convert each
instance into a rule form by applying the chain rule of local mutual information. The extracted robust
knowledge structure can solve the most certain problems based on definite knowledge and experience.
Second, if the criterion of information growth cannot be satisfied, that means knowledge is scattered,
and the independence assumption may be satisfied to some extent; then, NB is applied to make full use
of the rest of the attributes.

Before this structured learning process of knowledge accumulation and induction, FDs is utilized to
remove extraneous information to build a simplified and robust knowledge structure. For example, sup-
pose data set S, and the logical rules inferred are shown in Tables 1 and 2, respectively; the corresponding
FHDF structure will be as Figure 5a shows. If FD {X1 = a1} → {X2 = b0} holds, for instance three,
four and five X2 are extraneous for further inference. As Figure 5b shows, X2 will be removed from the
FHDF structure.
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Equation (8) is the theoretical basis of FHDF. For each instance t in the training set, According to
Occam’s razor rule, a shorter assumption may be believable, but a longer one is highly coincidental.
To make the final prediction credible, information growth must be assured when attributes are added in
order. When adding new attribute xi, the stopping prerequisite should be as follows:

LMI(C;x1, · · · , xi) > 1.2× LMI(C;x1, · · · , xi−1)

Figure 5. The corresponding flexible hybrid decision forest (FHDF) structure before and
after applying functional dependency (FD).
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The information growth must be more than 20%. Otherwise, FHDF creates an NB leaf node with all
of the other attributes that have not been processed to perform further inference.

To sum up, FHDF extracts logical rules from the logical viewpoint by calculating LMI and CLMI ,
while NB predicts from the probabilistic viewpoint. Besides, FHDF presents outstanding flexibility
and adaptability when there is a lack of prior knowledge. For example, given a testing instance t =

{a3, b1, c0}, no rule in the decision forest can be used to assign a class label. Suppose that the attribute
order is {c0, a3, b1} by calculating LMI and CLMI; as shown in Table 1, only training Instance 8 meets
the first two conditions and can be used to classify t. The class label of t should be C2.

Table 1. Corresponding classification rules.

No Rules Class Label

1 {a0} → C1

2 {a0} → C1

3 {a1, b0, c0} → C2

4 {a1, b0, c1} → C1

5 {a1, b0, c2} → C2

6 {a2, b1} → C0

7 {a2, b0} → C1

8 {b2} → C2

9 {b2} → C2

...
...

...
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Table 2. Sample data from data set S.

No X1 X2 X3 Class Label

1 a0 b0 c2 C1

2 a0 b1 c1 C1

3 a1 b0 c0 C2

4 a1 b0 c1 C1

5 a1 b0 c2 C2

6 a2 b1 c1 C0

7 a2 b0 c1 C1

8 a3 b2 c0 C2

9 a4 b2 c1 C2

...
...

...
...

...

4. Experiments

4.1. Bias and Variance

Kohavi and Wolpert presented a bias-variance decomposition of expected misclassification rate [15],
which is a powerful tool from sampling theory statistics for analyzing supervised learning scenarios.
Suppose c and ĉ are the true class label and that generated by a learning algorithm, respectively, the
zero-one loss function is defined as:

ξ(c, ĉ) = 1− δ(c, ĉ),

where δ(c, ĉ) = 1 if ĉ = c and zero otherwise. The bias term measures the squared difference between
the average output of the target and the algorithm. This term is defined as follows:

bias =
1

2

∑
ĉ,cεC

[P (ĉ|x)− P (c|x)]2,

where x is the combination of any attribute value. The variance term is a real valued non-negative
quantity and equals zero for an algorithm that always makes the same guess regardless of the training
set. The variance increases as the algorithm becomes more sensitive to changes in the training set. It is
defined as follows:

variance =
1

2
[1−

∑
ĉεC

P (ĉ|x)2].

Moore and McCabe illustrated bias and variance through shooting arrows at a target [16], as described
in Figure 6. The perfect model can be regarded as the bull’s eye on a target and the learned classifier as an
arrow fired at the bull’s eye. Bias and variance describe what happens when an archer fires many arrows
at the target. Bias means that the aim is off and the arrows land consistently off the bull’s eye in the same
direction. Variance means that the arrows are scattered. Large variance means that repeated shots are
widely scattered on the target. They do not give similar results, but differ widely among themselves.
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Figure 6. Bias and variance in shooting arrows at a target.
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4.2. Statistical Results on UCI Data Sets

In order to verify the efficiency and effectiveness of the proposed FHDF, we conduct experiments
on 43 data sets from the UCI machine learning repository. Table 3 summarizes the characteristics of
each data set, including the number of instances, attributes and classes. Large data sets with an instance
number greater than 3000 are annotated with the symbol “*”. Missing values for qualitative attributes
are replaced with modes, and those for quantitative attributes are replaced with means from the training
data. For each benchmark data set, numeric attributes are discretized using MDLdiscretization [17]. The
following techniques are compared:

· NB, standard naive Bayes.
· TAN [18], tree-augmented naive Bayes applying incremental learning.
· C4.5, standard decision tree.
· NBTree [19], decision tree with naive Bayes as the leaf node.
· RTAN [20], tree-augmented naive Bayes ensembles.

All algorithms were coded in MATLAB 7.0 on a Pentium 2.93 GHz/1 G RAM computer.
Base probability estimates P (c), P (c, xi) and P (c, xi, xj) were smoothed using the Laplace estimate,

which can be described as follows:
P̂ (c) =

F (c) + 1

K + k

P̂ (c, xi) =
F (c, xi) + 1

Ki + ki

P̂ (c, xi, xj) =
F (c, xi, xj) + 1

Kij + kij

(18)

where F (·) is the frequency with which a combination of terms appears in the training data, K is the
number of training instances for which the class value is known, Ki is the number of training instances
for which both the class and attribute Xi are known and Kij is the number of training instances for
which all of the class and attributes Xi and Xj are known. k is the number of attribute values of class
C, ki is the number of attribute value combinations of C and Xi and kij is the number of attribute value
combinations of C, Xj and Xi.
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Table 3. Data sets.

No. Data Set # Instance Attribute Class

1 Abalone * 4177 9 3
2 Adult * 48,842 15 2
3 Anneal 898 39 6
4 Audio 226 70 24
5 Balance Scale (Wisconsin) 625 5 3
6 breast-cancer-w 699 10 2
7 Live Disorder (Bupa) 345 7 2
8 Car 1728 8 4
9 Chess 551 40 2
10 Cleveland 303 14 2
11 Connect-4 Opening * 67,557 43 3
12 Contraceptive Method Choice 1473 10 3
13 Credit Screening 690 16 2
14 Cylinder-bands 540 40 2
15 Dermatology 366 35 6
16 Glass Identification 214 10 3
17 German 1000 21 2
18 Haberman’s Survival 306 4 2
19 Heart Disease 303 14 2
20 Hepatitis 155 20 2
21 Hungarian 294 14 2
22 Iris 150 5 3
23 King-rook-vs-King-pawn * 3196 36 2
24 Labor Negotiation 57 17 2
25 LED 1,000 8 10
26 Localization * 164,860 7 3
27 Lung Cancer 32 57 3
28 Lymphography 148 19 4
29 Magic * 19,020 11 2
30 Mushroom * 8124 22 2
31 Nursery * 12,960 8 5
32 Optdigits * 5620 64 10
33 Poker-hand 1,025,010 * 11 10
34 Primary Tumor 339 18 22
35 Satellite * 6435 37 6
36 Segment * 2310 20 7
37 Shuttle * 58,000 9 7
38 Sick * 3772 30 2
39 Spambase * 4601 58 2
40 Teaching Assistant Evaluation 151 6 3
41 Vehicle 846 19 4
42 Wine Recognition 178 14 3
43 Zoo 101 17 7

Semi-supervised learning falls between unsupervised learning (without any labeled training data)
and supervised learning (with completely labeled training data). Semi-supervised learning is a class
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of machine learning techniques that uses both labeled and unlabeled data for training. Typically, a
small amount of labeled data with a large amount of unlabeled data is used. Many machine learning
researchers have found that when unlabeled data are used in conjunction with a small amount of labeled
data, a considerable improvement in learning accuracy can be achieved. The acquisition of labeled data
for a learning problem often requires a skilled human agent (e.g., to transcribe an audio segment) or a
physical experiment (e.g., determining the 3D structure of a protein or determining whether oil is present
at a particular location). Given data set S with attribute set X , suppose FD α → β has been deduced
from whole data set and α, β ⊂ X . From the representation equivalence of probability, we can obtain:

P (α) = P (α, β) (19)

By applying the augmentation rule of probability, we will get:

P (α, c) = P (α, β, c) or P (α|c) = P (α, β|c) (20)

Therefore, FD α → β still holds in the training data regardless of the class label. Thus, we can
use the whole data set to extract FDs with high confidence. Additionally, the framework of FHDF is
semi-supervised learning. In the following discussion, we use FDs that are extracted based on the
association rule analysis as the domain knowledge. These rules can be effective in uncovering unknown
relationships, thereby providing results that can be the basis of forecast and decision. They have proven
to be useful tools for an enterprise, as they strive to improve their competitiveness and profitability.
To ensure the validity of FDs, the minimum number of instances that satisfies FD is 100. With the
increasing number of attributes, more RAM is needed to store joint probability distributions. An
important restriction of our algorithm is that the number of the left side of FD, i.e., the number of
key attributes, should be no more than two.

Table 4 presents for each data set the zero-one loss, which is estimated by 10-fold cross-validation to
give an accurate estimation of the average performance of an algorithm. The bias and variance results are
shown in Tables 5 and 6, respectively, in which only 15 large data sets are selected, because of statistical
significance. The zero-one loss, bias or variance across multiple data sets provides a gross measure
of relative performance. Statistically, a win/draw/loss record (W/D/L) is calculated for each pair of
competitorsA andB with regard to a performance measureM . The record represents the number of data
sets in which A respectively beats, loses to or ties with B on M . Small improvements in leave-one-out
error may be attributable to chance. Consequently, it may be beneficial to use a statistical test to assess
whether an improvement is significant. A standard binomial sign test, assuming that wins and losses are
equiprobable, is applied to these records. A difference is considered significant when the outcome of a
two-tailed binomial sign test is less than 0.05. Tables 7–10 show the W/D/L records corresponding to
zero-one loss, bias and variance, respectively.

To clarify the main reason why the same classifier performs differently when data size changes, in
the following discussion, we propose a new parameter, named clear winning percentage (CWP), which
is defined as follows, to evaluate the extent to which one classifier is relatively superior to another.

CWP =
Win− Loss

Win+Draw + Loss
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Table 4. Experimental results of 0–1 loss. C4.5, standard decision tree; TAN,
tree-augmented naive Bayes applying incremental learning; NBTree, decision tree with naive
Bayes as the leaf node; RTAN, tree-augmented naive Bayes ensembles.

Dataset C4.5 NB TAN NBTree RTAN FHDF

Abalone 0.460 0.472 0.459 0.430 0.450 0.443
Adult 0.139 0.158 0.138 0.143 0.144 0.131
Anneal 0.458 0.375 0.375 0.360 0.173 0.238
Audio 0.314 0.239 0.292 0.195 0.235 0.307
Balance Scale (Wisconsin) 0.306 0.285 0.280 0.286 0.297 0.278
breast-cancer-w 0.056 0.026 0.042 0.034 0.032 0.071
Live Disorder(Bupa) 0.444 0.444 0.444 0.426 0.452 0.421
Car 0.156 0.140 0.057 0.078 0.061 0.036
Chess 0.151 0.113 0.093 0.096 0.109 0.095
Cleveland 0.277 0.162 0.205 0.171 0.178 0.204
Connect-4 Opening 0.206 0.278 0.235 0.232 0.233 0.217
Contraceptive Method Choice 0.493 0.504 0.489 0.474 0.505 0.475
Credit Screening 0.133 0.141 0.151 0.134 0.142 0.139
Cylinder-bands 0.307 0.215 0.283 0.181 0.179 0.215
Dermatology 0.079 0.019 0.033 0.016 0.022 0.062
Glass Identification 0.257 0.262 0.220 0.242 0.210 0.168
German 0.277 0.253 0.273 0.238 0.259 0.275
Haberman’s Survival 0.281 0.281 0.281 0.270 0.287 0.267
Heart Disease 0.237 0.178 0.193 0.164 0.195 0.201
Hepatitis 0.161 0.194 0.168 0.173 0.184 0.178
Hungarian 0.194 0.160 0.170 0.160 0.163 0.171
Iris 0.080 0.087 0.080 0.083 0.088 0.082
King-rook-vs-King-pawn 0.022 0.121 0.078 0.081 0.068 0.040
Labor Negotiation 0.088 0.035 0.053 0.050 0.036 0.033
LED 0.309 0.267 0.266 0.257 0.271 0.249
Localization 0.305 0.496 0.358 0.345 0.277 0.282
Lung Cancer 0.625 0.438 0.594 0.480 0.510 0.534
Lymphography 0.284 0.149 0.176 0.162 0.152 0.225
Magic 0.164 0.224 0.168 0.168 0.166 0.156
Mushroom 0.000 0.020 0.000 0.000 0.000 0.000
Nursery 0.050 0.097 0.065 0.070 0.053 0.027
Optdigits 0.230 0.077 0.041 0.030 0.024 0.035
Poker-hand 0.245 0.499 0.330 0.462 0.121 0.186
Primary Tumor 0.584 0.546 0.543 0.552 0.557 0.544
Satellite 0.154 0.181 0.121 0.110 0.094 0.103
Segment 0.092 0.079 0.039 0.033 0.034 0.045
Shuttle 0.001 0.004 0.002 0.001 0.001 0.001
Sick 0.020 0.031 0.026 0.026 0.025 0.021
Spambase 0.083 0.102 0.067 0.065 0.058 0.060
Teaching Assistant Evaluation 0.596 0.497 0.550 0.470 0.493 0.360
Vehicle 0.331 0.392 0.294 0.278 0.278 0.280
Wine Recognition 0.107 0.017 0.034 0.022 0.023 0.018
Zoo 0.198 0.030 0.010 0.029 0.010 0.047



Entropy 2014, 16 5256

Table 5. Experimental results of bias.

Dataset NB TAN C4.5 NBTree RTAN FHDF

Abalone 0.404 0.320 0.311 0.333 0.314 0.329
Adult 0.140 0.108 0.100 0.113 0.113 0.108
Connect-4 Opening 0.233 0.183 0.200 0.192 0.209 0.179
King-rook-vs-King-pawn 0.111 0.067 0.019 0.070 0.062 0.039
Localization 0.382 0.326 0.309 0.321 0.314 0.314
Magic 0.199 0.136 0.139 0.161 0.154 0.132
Mushroom 0.040 0.000 0.003 0.001 0.000 0.001
Nursery 0.073 0.051 0.083 0.052 0.042 0.042
Optdigits 0.066 0.031 0.109 0.030 0.022 0.029
Poker-hand 0.327 0.227 0.308 0.263 0.270 0.331
Satellite 0.166 0.094 0.101 0.080 0.075 0.081
Segment 0.086 0.045 0.072 0.039 0.039 0.039
Shuttle 0.007 0.002 0.003 0.002 0.002 0.003
Sick 0.023 0.023 0.022 0.024 0.023 0.021
Spambase 0.097 0.066 0.072 0.067 0.063 0.050

Table 6. Experimental results of variance.

Dataset NB TAN C4.5 NBTree RTAN FHDF

Abalone 0.093 0.161 0.168 0.122 0.174 0.137
Adult 0.027 0.066 0.045 0.059 0.045 0.044
Connect-4 Opening 0.095 0.088 0.126 0.084 0.083 0.110
King-rook-vs-King-pawn 0.025 0.019 0.010 0.008 0.022 0.023
Localization 0.191 0.256 0.190 0.217 0.232 0.219
Magic 0.041 0.079 0.085 0.065 0.070 0.061
Mushroom 0.008 0.001 0.004 0.000 0.000 0.000
Nursery 0.027 0.038 0.024 0.036 0.034 0.030
Optdigits 0.025 0.028 0.172 0.026 0.021 0.024
Poker-hand 0.209 0.231 0.212 0.263 0.232 0.214
Satellite 0.021 0.041 0.089 0.042 0.042 0.049
Segment 0.017 0.021 0.052 0.021 0.015 0.018
Shuttle 0.004 0.001 0.002 0.002 0.001 0.002
Sick 0.006 0.007 0.002 0.004 0.004 0.005
Spambase 0.010 0.017 0.043 0.019 0.013 0.014

If CWP > 0, then the classifier performs better. Otherwise, it performs worse. Figure 7 shows the
comparison results of CWP corresponding to Tables 7 and 8.
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Table 7. Win/draw/loss record (W/D/L) comparison results of 0–1 loss on all data sets.

W/D/L C4.5 NB TAN NBTree RTAN

NB 22/5/16
TAN 24/10/9 21/8/14
NBTree 28/7/8 28/9/6 19/19/5
RTAN 27/9/7 20/17/6 24/14/5 16/13/14
FHDF 29/9/5 24/9/10 22/15/6 17/12/14 18/11/14

Table 8. W/D/L comparison results of 0–1 loss on large data sets.

W/D/L C4.5 NB TAN NBTree RTAN

NB 2/1/12
TAN 4/3/8 14/1/0
NBTree 7/2/6 15/0/0 5/8/2
RTAN 7/2/6 11/1/3 8/4/3 6/5/4
FHDF 10/2/3 15/0/0 12/2/1 11/1/3 8/3/4

NB delivers fast and effective classification with a clear theoretical foundation. However, NB is
confronted with the limitations of the conditional independence assumption. From Figure 7a, we can
see that, although the conditional independence assumption rarely holds in the real world, NB exhibits
competitive performance compared to C4.5, CWP = (22 − 16)/43 = 0.14 > 0. When dealing with
small data sets, the instances can be regarded as sparsely distributed, and the conditional independence
assumption is satisfied to some extent. For example, there are as many as 38 attributes and only 894
instances for data set “Anneal”. After calculating and comparing the sum of CMIbetween one attribute
and all of the other attributes, most attributes have weak relationships to other attributes or are even
nearly independent of them. However, when dealing with large data sets, the relationships between
attributes become much more obvious, and the limitation of this assumption cannot be neglected,
CWP = (2−12)/15 = −0.67 < 0. As Figure 7b shows, similar result appears when TAN and C4.5 are
compared. The main reason may be that logical rules, which are extracted based on information theory,
take the main role for classification and can represent credible linear dependency among attributes as data
size increases. Besides, as Figure 7c shows, although TAN is restricted to have at most one parent node
for each predictive attribute, its structure is more reasonable than NB and can exhibit the relationship
between attributes to some extent. From Figure 7d–f, when compared with these three single-structure
models, the hybrid model, i.e., NBTree, shows superior or at least equivalent performance. To decrease
the computational overhead, NB and TAN simplify the network structure given different independence
assumption; whereas the hybrid model can utilize the advantages of both logical rule and probabilistic
estimation. Because the leaf of the tree structure contains only limited number instances, NB can evenly
make use of the rest of the attributes. RTAN investigates the diversity of TAN by the K statistic. From
Figure 7g–j, this bagging mechanism helps RTAN to achieve superior performance to NB and TAN.
However, when compared to decision tree learning algorithms, i.e., C4.5 and NBTree, the advantage
of RTAN is not obvious. FHDF is motivated by the desire to weaken the assumption by removing
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correlated attributes on the basis of FD analysis. It also applies the bagging mechanism to describe the
hyperplane in which each instance exist. From Figure 7k–o, FHDF demonstrates comprehensive and
superior performance.

Figure 7. The 0–1 loss comparison of learning algorithms on all and large data sets.
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Bias can help to evaluate the extent to which the final model learned from training data fits the whole
data set. From Table 9, we can see that the fitness of NB is the poorest, because its structure is definite
regardless of what the true data distribution is. In contrast, TAN performs much better than C4.5 and
NBTree. The main reason may be that each predictive attribute of TAN is affected by its direct parent
node, which is selected by calculating CMI from the global viewpoint. As for C4.5 and NBTree, the
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final prediction greatly relies on the first few attributes corresponding to the main parts of the single-
tree structure, i.e., the root and the branch nodes. Thus, C4.5 and NBTree can easily achieve local
rather than global optimization solution. Additionally, in view of this, the bagging mechanism can help
RTAN and FHDF to make full use of the information that training data supply, since the knowledge
hierarchy implicated in the training data can be described in different submodels, and the negative effect
caused by data distribution change will be mitigated to a certain extent. The complicated relationship
among attributes are measured and depicted from the viewpoint of information theory; thus, performance
robustness can be achieved.

Table 9. W/D/L comparison results of bias on large data sets.

W/D/L NB TAN C4.5 NBTree RTAN

TAN 14/1/0
C4.5 12/1/2 3/3/9
NBTree 14/1/0 2/9/4 8/2/5
RTAN 14/1/0 6/6/3 8/3/4 8/6/1
FHDF 14/1/0 7/5/3 9/2/4 7/5/3 5/5/5

With respect to variance, as Table 10 shows, of these algorithms, NB performs the best, because its
network structure is definite and, thus, not sensitive to changes in the training set. By contrast, C4.5
performs the worst. The main reason may be that the logical rules resemble the hierarchical process of
human decision making. The attributes that locate at the back must correlate with those in the front. If
any attribute changes the location, the following attributes will be affected greatly. Thus, for different
training sets, especially when the branch contains a very small number of instances, the conditional
distribution estimates may differ greatly and different attribute orders may be obtained. For example,
there are 58 attributes and 4601 instances for data set “Spambase”. When 10-fold cross-validation is
applied, only 4601× 0.9 = 4141 instances can be used for training. Suppose each attribute contains two
values and the leaf node must have at least 100 instances to ensure statistical significance: each logical
rule will use at most five attributes for prediction. That means that the order of the rest of the 53 attributes
may be at random. TAN and RTAN need to calculate CMI to build a maximal spanning tree, which may
cause overfitting. On the other hand, FHDF and NBTree both use NB as the leaf node, thus retaining the
simplicity and direct theoretical foundation of the decision tree, while mitigating the negative effect of the
probability distribution of the training set. Besides, when different training and testing sets were given,
FHDF uses the same FDs in the semi-supervised learning framework to eliminate redundant attributes.
These FDs are extracted from the whole data set and entirely unrelated to the training set.

To further describe the working mechanism of FHDF, the information growth and the number of key
attributes are changed while learning from training data. The comparison results of average bias and
average variance are shown in Figure 8. When information growth increased from 10% to 30%, as can
be seen from Figure 8a, the bias increased correspondingly, while the variance decreased. The main
reason may be that if instance t needs to be converted into the classification rule, higher information
growth will cause fewer attribute values to be selected. Thus, the classification rule will be too short to
precisely fit instance t. However, when given different training data, the short rule may roughly hold for
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many instances. When the number of key attributes increased from one to three, as can be seen from
Figure 8b, the bias and variance almost remain the same. With more key attributes used, according to
Occam’s razor rule, the extracted FDs may be coincidental and not credible. Furthermore, the number of
FDs with one key attribute are much more than those with two or three key attributes; the negative effect
on bias and variance can be neglected.

Table 10. W/D/L comparison results of variance on large data sets.

W/D/L NB TAN C4.5 NBTree RTAN

TAN 4/0/11
C4.5 5/2/8 6/1/8
NBTree 5/1/9 10/2/3 9/0/6
RTAN 7/0/8 10/2/3 8/2/5 7/3/5
FHDF 4/3/8 11/0/4 8/2/5 7/2/6 6/2/7

Figure 8. Comparison results of the bias and variance of FHDF given different information
growth and a different number of key attributes.
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5. Conclusions

FHDF has demonstrated a number of advantages over previous decision tree learning algorithms.
With sparsely distributed data, ensemble learning has difficulty in predicting with certainty, thus resulting
in an error rate increase. Because regardless of which part is considered as the testing part, FDs
are extracted from the whole data set and, thus, remain the same. The computational demands for
determining the structure became lower, especially if a large number of attributes are available. The
size of the conditional probability tables increased exponentially with the number of parents. Sufficient
labeled instances are a prerequisite for the precise parameter estimation. However, from the probabilistic
analysis perspective, if the size of the data set is too small, the distributions of different attribute values
become uneven. Some attributes may be closely distributed, whereas others may be sparsely distributed.
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As a result, an unreliable probability estimate might be obtained. To get the precise calculation of CLMI
and estimation of the conditional probability distribution, determining when NB can be used as the
leaf node remains unsolved. A number of techniques have been developed for extending the decision
tree to handle numeric data. Hence, extending the current work to the more general FHDF framework
is necessary.
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