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Abstract: An information-theoretic approach for detecting interactions and information

transfer between two systems is extended to interactions between dynamical phenomena

evolving on different time scales of a complex, multiscale process. The approach is

demonstrated in the detection of an information transfer from larger to smaller time scales in

a model multifractal process and applied in a study of cross-scale interactions in atmospheric

dynamics. Applying a form of the conditional mutual information and a statistical test based

on the Fourier transform and multifractal surrogate data to about a century long records

of daily mean surface air temperature from various European locations, an information

transfer from larger to smaller time scales has been observed as the influence of the phase

of slow oscillatory phenomena with the periods around 6–11 years on the amplitudes of the

variability characterized by the smaller temporal scales from a few months to 4–5 years.

These directed cross-scale interactions have a non-negligible effect on interannual air

temperature variability in a large area of Europe.

Keywords: multiscale dynamics; interactions; Granger causality; information transfer;

climate variability

1. Introduction

Emergent phenomena in complex systems consisting of many parts usually cannot be explained by

a simple linear sum or a combination of properties of system components. The complex behavior

is usually the result of mutual interactions of the intertwined subsystems. Knowledge about the

interactions among the system constituents can be the key to understanding complex phenomena.
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Among various types of interactions and dependence, synchronization [1] plays a specific role in the

cooperative behavior of coupled complex systems or their components. Synchronization and related

phenomena have been observed in diverse physical, biological and social systems. Examples include

cardio-respiratory interactions [2,3], synchronization of neural signals on various levels of organization

of brain tissues [4–7], or coherent variability in the Earth atmosphere and climate [8–13]. In such systems

it is not only important to detect interactions and possible synchronized states, but also to distinguish

mutual interactions from a directional coupling, i.e., to identify drive-response relationships between the

systems studied. This problem is a special case of the general question of causality or causal relations

between systems, processes or phenomena. For more comprehensive introduction to this topic, see [14].

The first definition of causality that could be quantified and measured computationally, yet very

general, was given in 1956 by N. Wiener [15]: “For two simultaneously measured signals, if we can

predict the first signal better by using the past information from the second one than by using the

information without it, then we call the second signal causal to the first one.”

The introduction of the concept of causality into the experimental practice, namely into analyses of

data observed in consecutive time instants, time series, is due to Clive W. J. Granger, the 2003 Nobel

prize winner in economy. In his Nobel lecture [16] he recalled the inspiration by Wiener’s work and

identified two components of the statement about causality:

(1) The cause occurs before the effect; and

(2) The cause contains information about the effect that is unique, and is in no other variable.

As Granger puts it, a consequence of these statements is that the causal variable can help to forecast

the effect variable after other data has been first used [16]. This restricted sense of causality, referred

to as Granger causality, GC hereafter, characterizes the extent to which a process Xt is leading

another process Yt, and builds upon the notion of incremental predictability. It is said that the process

Xt Granger causes another process Yt if future values of Yt can be better predicted using the past

values of Xt and Yt rather than only the past values of Yt. The standard test of GC developed by

Granger [17] is based on a linear regression model. A number of approaches have been developed

with the aim to extend the GC concept to nonlinear systems. We will briefly review the one based on

information theory [18]. We will demonstrate that an information theoretic functional, known as mutual

information (MI), is a useful measure of dependence that can be used in the detection of interactions of

two systems (or subsystems of a complex system) using time series that record their dynamical evolution.

Then the conditional mutual information (CMI) will be used in order to detect directional interactions.

Paluš et al. [5] have proposed the conditional mutual information as a tool for the generalization of

the GC concept for nonlinear systems. An equivalent information-theoretic quantity called “transfer

entropy” has been proposed by Schreiber [19]. Barnett et al. analytically proved the equivalence of the

transfer entropy and the conditional mutual information with the GC concept in the case of Gaussian

processes [20]. Therefore the causal influence of a process Xt on another process, Yt, understood in the

framework of the GC concept, is also frequently interpreted as an information transfer from Xt to Yt.

Several authors [21–23] extended the concept of the transfer entropy and conditional mutual

information from the bivariate case of two processes into a multivariate case of many processes. In

this paper, however, we will restrict the consideration to the bivariate case and we will even focus on
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one process evolving on many time scales and will develop an approach for detecting interactions and

information transfer between dynamics evolving on different time scales.

Considering the detection of the direction of coupling between two systems, it is worthy to note

the development tailored specifically for low-dimensional dynamical systems. Arnhold et al. [24] and

Quiroga et al. [25] proposed a directional statistic based on distances of points in systems’ state spaces.

Paluš and Vejmelka [26] critically assessed this method and compared it to the information-theoretic

approach. More recent development of the methods based on the state-space geometry is due to

Chicharro and Andrzejak [27] and Sugihara et al. [28]. Evaluation of these new methodological

advancements in the context of cross-scale coupling can be an inspiration for further research. Here

we will focus on applications of the ideas and tools from information theory [18].

2. Overview of Methods

2.1. Measuring Dependence with Mutual Information

Consider a discrete random variable X with a set of values Ξ. The probability distribution function

(PDF) for X is p(x) = Pr{X = x}, x ∈ Ξ. We denote the PDF by p(x), rather than pX(x), for

convenience. Analogously, in the case of two discrete random variables X and Y with the sets of values

Ξ and Υ, respectively, their probability distribution functions will be denoted as p(x), p(y) and their joint

PDF as p(x, y). The entropy H(X) of a single variable, say X , is defined as

H(X) = −
∑

x∈Ξ

p(x) log p(x), (1)

and the joint entropy H(X, Y ) of X and Y is

H(X, Y ) = −
∑

x∈Ξ

∑

y∈Υ

p(x, y) log p(x, y). (2)

The conditional entropy H(Y |X) of Y given X is

H(Y |X) = −
∑

x∈Ξ

∑

y∈Υ

p(x, y) log p(y|x). (3)

The average amount of common information, contained in the variables X and Y , is quantified by the

mutual information I(X ; Y ), defined as

I(X ; Y ) = H(X) +H(Y )−H(X, Y ). (4)

Considering Equations (1) and (2) we have

I(X ; Y ) =
∑

x∈Ξ

∑

y∈Υ

p(x, y) log
p(x, y)

p(x)p(y)
. (5)

Note that two variables X and Y are independent if and only if p(x, y) = p(x)p(y), i.e.,

log
p(x, y)

p(x)p(y)
= 0.
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The mutual information (5) is in fact an averaged value of log p(x,y)
p(x)p(y)

, i.e., it quantifies the average

digression from independence of the variables X and Y and constitutes a useful measure of general

statistical dependence with the following properties:

• I(X ; Y ) ≥ 0,

• I(X ; Y ) = 0 iff X and Y are independent.

The conditional mutual information I(X ; Y |Z) of the variables X , Y given the variable Z is

I(X ; Y |Z) = H(X|Z) +H(Y |Z)−H(X, Y |Z). (6)

For Z independent of X and Y we have

I(X ; Y |Z) = I(X ; Y ). (7)

By a simple manipulation we obtain

I(X ; Y |Z) = I(X ; Y ;Z)− I(X ;Z)− I(Y ;Z), (8)

where I(X ; Y ;Z) = H(X) +H(Y ) +H(Z) − H(X, Y, Z). Thus the conditional mutual information

I(X ; Y |Z) characterizes the “net” dependence between X and Y without a possible influence of another

variable, Z.

Consider now n discrete random variablesX1, . . . , Xn with values (x1, . . . , xn) ∈ Ξ1×· · ·×Ξn, with

PDF’s p(xi) for individual variables Xi and the joint distribution p(x1, . . . , xn). The mutual information

I(X1;X2; . . . ;Xn), quantifying the common information in the n variablesX1, . . . , Xn can be defined as

I(X1;X2; . . . ;Xn) = H(X1) +H(X2) + · · ·+H(Xn)−H(X1, X2, . . . , Xn). (9)

It is possible, however, to define mutual information functionals quantifying common information of

groups of variables and also various multivariate generalizations of the conditional mutual information,

see [29].

All the information theoretic functionals can be defined for continuous random variables. The sums

are substituted by integrals and the PDF’s by the probability distribution densities [18,30]. Among the

continuous probability distributions a special role is played by the Gaussian distribution. LetX1, . . . , Xn

be an n-dimensional normally distributed random variable with a zero mean and a covariance matrix C.

Then (see [29,30] and references therein)

IG(X1; . . . ;Xn) =
1

2

n
∑

i=1

log(cii) − 1

2

n
∑

i=1

log(σi), (10)

where cii are the diagonal elements (variances) and σi are the eigenvalues of the n × n covariance

matrix C.

The entropy and information are usually measured in bits if the base of the logarithms in their

definitions is 2, here we use the natural logarithm and therefore the units are called nats.
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2.2. Inference of Causality with the Conditional Mutual Information

Let {x(t)} and {y(t)} be time series considered as realizations of stationary and ergodic stochastic

processes {X(t)} and {Y (t)}, respectively, t = 1, 2, 3, . . . . In the following we will mark x(t) as x and

x(t + τ) as xτ , and the same notation holds for the series {y(t)}.

The mutual information I(y; xτ) measures the average amount of information contained in the process

{Y } about the process {X} in its future τ time units ahead (τ -future hereafter). This measure, however,

could also contain information about the τ -future of the process {X} contained in this process itself,

if the processes {X} and {Y } are not independent, i.e., if I(x; y) > 0. In order to obtain the “net”

information about the τ -future of the process {X} contained in the process {Y } we use the conditional

mutual information I(y; xτ |x). The latter was used by Paluš et al. [5] to define the coarse-grained

transinformation rate, able to detect direction of coupling of unidirectionally coupled dynamical systems.

We used the standard statistical language in which we considered the time series {x(t)} and {y(t)}
as realizations of stochastic processes {X(t)} and {Y (t)}, respectively. If the processes {X(t)} and

{Y (t)} are substituted by dynamical systems evolving in measurable spaces of dimensions m and n,

respectively, the variables x and y in I(y; xτ |x) and I(x; yτ |y) should be considered as n-dimensional

and m-dimensional vectors. In experimental practice, however, usually only one observable is recorded

for each system. Therefore, instead of the original components of the vectors ~X(t) and ~Y (t), the time

delay embedding vectors according to Takens [31] are used. Then, back in the time-series representation,

we have

I
(

~Y (t); ~X(t+ τ)| ~X(t)
)

= I
(

(

y(t), y(t− ρ), . . . , y(t− (m− 1)ρ)
)

; x(t + τ)|
(

x(t), x(t− η), . . . , x(t− (n− 1)η)
)

)

, (11)

where η and ρ are time lags used for the embedding of the trajectories ~X(t) and ~Y (t), respectively.

Formally, also ~X(t+ τ) should be expanded as x(t+ τ), x(t− η+ τ), . . . , x(t− (n−1)η+ τ), however,

only information about one component x(t+ τ) in the τ -future of the system {X} is used for simplicity.

The CMI characterizing the influence in the opposite direction I
(

~X(t); ~Y (t+ τ)|~Y (t)
)

is defined in full

analogy. Exactly the same formulation can be used for Markov processes of finite ordersm and n. Based

on the idea of finite-order Markov processes, Schreiber [19] has proposed a “transfer entropy”, which is

an equivalent expression for the conditional mutual information (11)—see [14,26].

Extensive numerical experiences [26] suggest that the conditional mutual information in the form

I
(

y(t); x(t+ τ)|x(t), x(t− η), . . . , x(t− (n− 1)η)
)

(12)

is sufficient to infer coupling direction between the systems ~Y (t) and ~X(t). The dimensionality of the

condition must contain full information about the state of the system ~X(t) (see Section 2.3), while single

components y(t) and x(t+ τ) are able to provide information about the directional coupling between the

systems ~Y (t) and ~X(t).
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2.3. Example: Unidirectionally Coupled Rössler Systems

As an example of the detection of unidirectional coupling using the conditional mutual information,

we consider the unidirectionally coupled Rössler systems, studied in detail by Paluš and Vejmelka [26],

given by the equations

ẋ1 = −ω1x2 − x3

ẋ2 = ω1x1 + a1 x2 (13)

ẋ3 = b1 + x3(x1 − c1)

for the autonomous system {X}, and

ẏ1 = −ω2y2 − y3 + ǫ(x1 − y1)

ẏ2 = ω2y1 + a2 y2 (14)

ẏ3 = b2 + y3(y1 − c2)

for the response system {Y }. We will use the parameters a1 = a2 = 0.15, b1 = b2 = 0.2, c1 = c2 = 10.0,

and frequencies ω1 = 1.015 and ω2 = 0.985, i.e., the two systems are similar, but not identical. The

system {X} is autonomous, and it is the “master” that drives the system {Y } through the diffusive

coupling term ǫ(x1 − y1) in the right hand side of the first component of the driven (“slave”) system

{Y }. The parameter ǫ is referred to as the “coupling strength”. We generate time series as solutions of the

system (13) and (14) for different coupling strengths ǫ and estimate the conditional mutual information

in order to assess the existence of directional coupling or information transfer from the system {X} to

the system {Y } and vice versa.

Figure 1a presents four Lyapunov exponents (LE) of the coupled systems (the two negative LE’s are

not shown) as functions of the coupling strength ǫ. One positive and one zero LE of the driving system

{X} are constant, while the LE’s of the driven system {Y }, which are positive and zero without a

coupling or with a weak coupling, decrease with increasing ǫ. The two systems can enter a synchronized

regime when the originally positive LE of the response system becomes negative [32].

Comparing LE and CMI as functions of the coupling strength ǫ brings a very important observation:

the direction of coupling can be reliably detected when the two systems are coupled but not yet

synchronized (for more details see [26]). Therefore, before inferring the directionality of coupling one

should also assess a possibility of synchronization. In the following we will focus on the results for ǫ

between 0 and approximately 0.12.

With the 1-dimensional condition, both CMI I
(

x(t); y(t + τ)|y(t)
)

and I
(

y(t); x(t + τ)|x(t)
)

(Figure 1b) are increasing with increasing ǫ. Some authors would interpret the inequality

I
(

x(t); y(t+ τ)|y(t)
)

> I
(

y(t); x(t+ τ)|x(t)
)

as an evidence for a causal influence and existence of a positive information flow

I
(

x(t); y(t+ τ)|y(t)
)

− I
(

y(t); x(t+ τ)|x(t)
)

> 0

from {X} to {Y }. Although the direction of the causal influence inferred in such a way is correct in

this case, such an inference is not valid in general. Paluš and Vejmelka [26] demonstrate that estimates
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of CMI are biased, and if the two studied systems are not identical, the bias in the direction X → Y

is different from the bias in the direction Y → X . Typically, the bias is larger in the direction from a

slower to a faster system (considering main frequencies, ω1 and ω2 in our example), or from a system

with simpler dynamics to a system with more complex dynamics (e.g., a periodic system seemingly

drives a chaotic system). Also different noise levels can differently bias the CMI estimates. Therefore,

for the correct inference of a causal influence in the sense of the unidirectional coupling, the causality

measure must (asymptotically) vanish in the uncoupled direction. Using CMI (12), this requirement is

met with the conditioning dimension, which allows a full description of a state of the driven system in its

uncoupled state. For the Rössler system the necessary conditioning dimension is three. It is demonstrated

in Figure 1c where I
(

y(t); x(t+τ)|x(t), x(t−η), x(t−2η)
)

in the uncoupled direction stays at a zero level

and begins to increase only when ǫ approaches the synchronization threshold and the possibility to infer

the direction of coupling is lost. In the direction of coupling, I
(

x(t); y(t+ τ)|y(t), y(t− η), y(t− 2η)
)

is distinctly positive from small values of ǫ up to the synchronization threshold. The behavior of

CMI with the 3-dimensional condition (Figure 1c) is the same [26] irrespective of the way how the

3-dimensional condition is constructed—either we use the original components x1(t), x2(t), x3(t) of the

system (13), or a time-delay trajectory reconstruction x1(t), x1(t − η), x1(t − 2η) according to Takens

embedding theorem [31]. The time delay η is chosen as the first minimum of the auto-mutual information

I
(

x1(t); x1(t + η)
)

following the Fraser–Swinney recipe [33].

Figure 1. (a) Two largest Lyapunov exponents of the drive {X} (the constant lines)

and the response {Y } (the decreasing curves); (b) the conditional mutual information

I
(

x(t); y(t + τ)|y(t)
)

with the 1-dimensional condition, in the direction of coupling (full

red line) and I
(

y(t); x(t + τ)|x(t)
)

in the direction without coupling (dashed blue line);

(c) the conditional mutual information I
(

x(t); y(t + τ)|y(t), y(t − η), y(t − 2η)
)

with

the 3-dimensional condition, in the direction of coupling (full red line) and I
(

y(t); x(t +

τ)|x(t), x(t − η), x(t − 2η)
)

in the direction without coupling (dashed blue line); for

the unidirectionally coupled Rössler systems (13) and (14), as functions of the coupling

strength ǫ.
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2.4. Interactions over Time Scales

In previous sections we have considered inference of interactions and directed coupling in the case of

two different systems (or signals/time series representing two different systems). Let us consider now

just one system {X}, characterized by a time series {x(t)}. The system {X} evolves simultaneously

on many time scales. How can we find whether dynamics on different time scales evolve in a mutually

independent way, or there are some interactions between dynamics on different time scales?

The first step is a scale-wise decomposition of the studied dynamics/time series. Since we focus on

interactions over time scales, a relevant scale-wise decomposition is a decomposition of a signal into a

number of components with limited frequency bandwidths. A number of authors, e.g., Gans et al. [34]

use a set of digital filters. A wavelet transform, decomposing a signal into a set of components

with predefined central frequencies and spectral bandwidths [35], is also a frequently used approach.

Oscillatory components whose parameters are not pre-defined but emerge from particular analyzed data

can be obtained using empirical mode decomposition [36] or singular-system analysis (see [9,37] and

references therein).

A (quasi)oscillatory component {sf(t)} can conveniently be decomposed into its instantaneous phase

and amplitude (Figure 2) using the analytic signal approach [1].

For an arbitrary time series s(t) the analytic signal ψ(t) is a complex function of time defined as

ψ(t) = s(t) + iŝ(t) = A(t)eiφ(t). (15)

The instantaneous phase φ(t) of the signal s(t) is then

φ(t) = arctan
ŝ(t)

s(t)
, (16)

and its instantaneous amplitude is

A(t) =
√

s(t)2 + ŝ(t)2. (17)

The imaginary part ŝ(t) of the analytic signal ψ(t) is usually obtained by using the Hilbert transform of

s(t) [1,34]. Since the Hilbert transform is a unit gain filter at each frequency, broad-band signals from

multiscale processes are usually pre-filtered to the frequency band of interest, as in the abovementioned

approach of Gans et al. [34]. Also in the case when the empirical mode decomposition (EMD) approach

is used for the scale-wise decomposition, the Hilbert transform is applied to each oscillatory mode

obtained by the EMD procedure. On the other hand, singular-system analysis (SSA) provides oscillatory

modes in twins shifted by π/2, which can be directly used in Equations (16) and (17) for the estimation

of the phase φ(t) and the amplitude A(t), respectively [9,38]. Also a continuous complex wavelet

transform (CCWT hereafter) [39] can be directly applied to an experimental time series x(t) reflecting

the dynamics of a multiscale system. CCWT converts the time series x(t) into a set of complex wavelet

coefficients W (t, f):

W (t, f) =

∫

∞

−∞

ψ(t′)x(t− t′)dt′. (18)

In the following we use the complex Morlet wavelet [39]:
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ψ(t) =
1

√

2πσ2
t

exp(− t2

2σ2
t

) exp(2πif0), (19)

where σt is the bandwidth parameter, and f0 is the central frequency of the wavelet. σt determines the

rate of the decay of the Gauss function, and its reciprocal value σf = 1/πσt determines the spectral

bandwidth. At each time scale given by the central wavelet frequency, the complex wavelet coefficients

can be directly used in Equations (16) and (17) for the estimation of the phase φ(t) and the amplitude

A(t), respectively. The CCWT provides both the band-pass filtering of the original multiscale signal and

the estimation of the instantaneous phase and the instantaneous amplitude.

Figure 2. An oscillatory mode with the central wavelet frequency giving the period of 8

years. Real (black) and imaginary (blue) components of the analytic signal, its instantaneous

amplitude (envelope, red) and instantaneous phase (violet) are shown.
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Having a multiscale signal (a time series x(t) reflecting the dynamics of a multiscale system)

decomposed into a number of scale-specific (or frequency-specific) modes described using their

instantaneous phases and amplitudes, it is possible to study cross-scale interactions of the

following types:

• phase–phase

• amplitude–amplitude

• phase–amplitude

Some authors also compute the instantaneous frequency as a time derivative of the instantaneous

phase [34,40] and assess the cross-frequency coupling between different instantaneous frequencies or

combinations of the instantaneous frequency with the instantaneous phase or amplitude [40]. The

instantaneous amplitude is also called an envelope (of fast oscillations) and its square is related to

power, which is also evaluated in cross-frequency analysis of brain signals [40]. We can also study

the cross-scale relations using directly the (filtered) signals s(t) obtained for individual scales, e.g., in
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the case of the CCWT decomposition defined as s(t) = Real{W (t, f)}. The following example shows,

however, that the instantaneous phases φ(t) might have some advantages especially for the inference of

directed interactions.

The chaotic solutions of the Rössler systems (13) and (14) oscillate in a relatively narrow frequency

band (Figure 3a, black line), therefore it is possible to apply the Hilbert transform directly to the

components x1 and y1 in order to obtain the instantaneous phases φ1 and φ2 of the driving system (13)

and the driven system (14), respectively. Then the direction of coupling can be inferred using the

conditional mutual information I
(

φ1(t);φ2(t + τ)|φ2(t)
)

and I
(

φ2(t);φ1(t + τ)|φ1(t)
)

already with

the one-dimensional condition (Figure 3b) since the phase represents a simplified one-dimensional

description of the Rössler system’s oscillations. Applying a higher-dimensional condition does not

change the result (Figure 3c). Note that the one-dimensional condition is sufficient only for the “true”

phase of self-sustained oscillators. A formally obtained phase φ(t) for a quasi-oscillatory component

s(t) extracted from a multiscale system might require a condition of a higher dimensionality than one.

Even in such a case, however, the conditioning dimension necessary for the phase φ(t) is typically lower

than that required for the oscillatory component s(t).

Figure 3. (a) The component x1 (black line) of the Rössler system (13) and its instantaneous

phase φ1 (red line). (b) The conditional mutual information I
(

φ1(t);φ2(t+τ)|φ2(t)
)

with the

1-dimensional condition, in the direction of coupling (red line) and I
(

φ2(t);φ1(t+ τ)|φ1(t)
)

in the direction without coupling (blue line); (c) the conditional mutual information

I
(

φ1(t);φ2(t + τ)|φ2(t), φ2(t − η), φ2(t − 2η)
)

with the 3-dimensional condition, in the

direction of coupling (red line) and I
(

φ2(t);φ1(t + τ)|φ1(t), φ1(t − η), φ1(t − 2η)
)

in the

direction without coupling (blue line); for the unidirectionally coupled Rössler systems (13)

and (14), as functions of the coupling strength ǫ.
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2.5. Statistical Evaluation with Surrogate Data

Estimates of mutual information from finite number of samples are always nonzero. In the case

of inferring directional coupling with the conditional mutual information (12), even with a sufficient

dimension of the condition, the CMI estimates from finite number of samples are not only always

nonzero but also always different in the two directions between the studied two systems. Considering

possibly different biases, the absolute values of CMI estimates are not informative, but it is necessary

to relate the CMI values computed from studied data to ranges of CMI values obtained from uncoupled

processes that share important properties of analyzed data. This is the base of the surrogate data testing

procedure in which we manipulate the original data in a randomization procedure that preserves original

frequency spectra or variance on all relevant time scales; and the autocorrelation function in the cases

of the Fourier transform (FT) surrogate data [41], or both the autocorrelation function and auto-mutual

information function in the case of the multifractal (MF) surrogate data [42]. The surrogate data with

the same sample spectrum as the tested time series can be constructed using the fast Fourier transform

(FFT). The FFT of the series is computed, the magnitudes of the (complex) Fourier coefficients are

kept unchanged, but their phases are randomized. The surrogate series is then obtained by computing

the inverse transform into the time domain. Different realizations of the process are obtained using

different sets of the random Fourier phases [41]. The discrete wavelet transform [43] is used for the

generation of the multifractal surrogate data. The inspiration for this randomization procedure is the

construction of a multifractal process using the wavelet dyadic trees proposed by Benzi et al. [44] and

Arneodo et al. [45]. In particular, 2n wavelet coefficients on the scale S/2 are obtained by multiplying

n coefficients on the scale S by a set of multiplicators, randomly drawn from a given distribution. After

the construction of such a dyadic tree (always two different random multipliers are chosen in order to

obtain two wavelet coefficients on a shorter scale from one wavelet coefficient on the closest larger

scale), the inverse discrete wavelet transform produces a realization of a multifractal process mimicking

information transfer from larger to smaller scales observed in turbulence. For construction of the

multifractal surrogate data, a time series is transformed into a set of discrete wavelet coefficients and

multipliers are computed by dividing each pair of coefficients on the scale S/2 by the related coefficient

on the scale S. Then, fixing one or two largest scales, the surrogate wavelet coefficients are recursively

computed from larger to smaller scales using randomly permutated original multipliers. See [42]

for details.

By construction, in the surrogate data the interactions between different time scales do not exist

(FT surrogates), or only those explained by random cascades on wavelet dyadic trees are allowed

(MF surrogates).

A pair of descriptors (phase–phase, amplitude–amplitude, phase–amplitude) reflecting the dynamics

on two different time scales is chosen and their interactions are assessed by using the mutual

information (5); or the conditional mutual information (12) is used for assessing the presence of

directional, causal cross-scale coupling. The value Id of MI or CMI from the studied data is compared

with the range of values Isi obtained from a set of surrogate data realizations. Having computed the

mean Is of the surrogate values Isi and their variance σ2
s , we can define the z-score
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z =
Id − Is
σs

, (20)

which is a measure how much the MI/CMI from the analyzed data differs from the range of MI/CMI

for the surrogate data. The z-score usually gives a stable estimate from several tens of realizations

(30–60) and its value can be related to the statistical significance, provided the Isi values have a normal

distribution. Unfortunately, the latter is not always the case. Therefore we prefer to compute Isi from a

larger number of realizations (1000 in this study) and construct an empirical surrogate data distribution

as a histogram of Isi values. Using the cumulative histogram we estimate percentiles of the surrogate

distribution and in each particular test we record the largest percentile of Isi distribution that is exceeded

by Id from the analyzed data. We call this percentile “a significance level” since it is directly related

to the significance of the statistical test based on the used surrogate data, irrespective of the surrogate

Isi value distribution. For instance, the significance level 0.95 means that the Id value is significantly

different from zero with the statistical significance p < 0.05.

The specificity of coupling or causality inference methods can be secured by an appropriate choice of

surrogate data that reproduce the bias of an MI/CMI estimator applied to the studied data. The sensitivity

of the method can be guaranteed by a certain bound on the estimator variance [26]. Typically, a lower

variance requires a larger amount of data or, more precisely, a time series representing a longer epoch of

evolution of the studied process [26,46].

3. Results and Discussion

3.1. Coping with Method Errors

Before applying the introduced methods to experimental data, we apply them to artificially generated

data representing our null hypotheses. We demonstrate the systematic errors that the used wavelet

decomposition can introduce and the way how the surrogate data test copes with these systematic errors.

For the first experiment, 65,536 samples of Gaussian white noise (GWN) were generated. CCWT

with the Morlet wavelet was used to decompose the time series into components related to time scales

(in samples) from 181 (≈128
√
2) to 23170 (≈32768/

√
2). Cross-scale phase–phase interactions were

assessed using the mutual information I(φ1;φ2) where the phases φ1 were taken for the larger scales

from 2436 to 23170 and the phases φ2 for the smaller scales from 181 to 1722 samples. The realization

of GWN does not support any cross-scale interaction. Even though we compute I(φ1;φ2) with φ1 and φ2

for disjunct ranges of scales, in Figure 4a we can see areas of elevated values of I(φ1;φ2) in the upper left

corner of the plot where the large and small scales are the closest (e.g., 2436 and 1722 samples). Clearly,

this is a “leakage” of the wavelet transform producing dependent oscillatory modes for relatively close

scales. Since this is an artifact of the CCWT, it is present also in Is(φ1;φ2) from the FT surrogate data

(Figure 4b), which prevents to recognize the elevated values of I(φ1;φ2) in Figure 4a as statistically

significant. Both the z-score (Figure 4c) and the significance levels (Figure 4d) show no significantly

nonzero I(φ1;φ2). However, we need to recognize the multiplicity of the statistical tests—in Figure 4d

we code in color each significant level greater than 0.95. It means that we display each pair of scales

for which I(φ1;φ2) is statistically significant with p < 0.05 in a single test. In a large number of tests
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(combination of scales) we can encounter up to 5% of false positive results, appearing as randomly

located spots in the significance plots.

Figure 4. (a) Cross-scale phase–phase interactions measured by I(φ1;φ2) for the Gaussian

white noise (GWN) decomposed using the CCWT with the Morlet wavelet. (b) The mean

Is(φ1;φ2) for 1000 realizations of the FT surrogate data for the GWN data analyzed in (a).

(c) z-score (color-coded for z > 2) and (d) significance levels (color-coded if they are greater

than 0.95) for I(φ1;φ2) from (a) using 1000 realizations of the FT surrogate data.
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For the second experiment, a dyadic tree of wavelet coefficients is constructed using random

multipliers with a log-normal distribution (see [42] for details). A 65,536-sample realization of a

multifractal process is obtained by applying the inverse discrete wavelet transform. Then the generated

multifractal time series is decomposed using the complex continuous wavelet transform. For the time

scales from 8 to 1024 samples we will consider directly the wavelet components si(t) = Real{W (t, fi)}
and again the phases φi(t), obtained according to Equation (16) with ŝi(t) = Im{W (t, fi)} as in

the previous case. Figure 5a presents cross-scale interactions measured using the mutual information

I(s1; s2). In this case we use the same range of scales (8–1024 samples) for both s1 and s2. Therefore

the maximum I(s1; s2) is located in the diagonal where the two scales are identical. The MI I(s1; s2)

decreases with increasing difference between the two scales; however, this decrease is slower for larger

scales. From I(s1; s2) itself we cannot distinguish the cross-scale interactions in the multifractal data

from the artifacts due to the CCWT. In order to detect cross-scale interactions in the studied multifractal

process, we compare Id(s1; s2) from the multifractal data with its FT surrogate data. (Applying the



Entropy 2014, 16 5276

MF surrogate data we would obtain similar patterns as in Figure 5a and no significant coupling as in

Figure 4d.) The significance levels for Id(s1; s2) in Figure 5b show that the FT surrogates rule out the

trivial dependence in the equal scales 8, 16, 32, ... samples, yet confirm the cross-scale interactions with

the scale ratio 1:2 (i.e., the scales 8 and 16, or 16 and 32, etc., are coupled). In order to answer whether

this coupling is symmetrical or directed, we study directed phase–phase interactions and apply the CMI

I
(

φ1(t);φ2(t + τ)|φ2(t), φ2(t − η), φ2(t − 2η)
)

with the scale for φ1 on abscissa, and the scale for φ2

on ordinate. Again, the CMI itself (Figure 5c) shows an interesting pattern but it is not clear what are

the true cross-scale interactions in the studied multifractal process. The true cross-scale interactions are

uncovered by the significance levels for the CMI obtained using 1000 realizations of the FT surrogate

data—in Figure 5d we can see that the scales close to 16 influence the scales close to 8 samples, and

the scales close to 32 influence the scales close to 16 samples, etc. The CMI with the FT surrogate data

confirmed the information transfer from a scale S to a scale S/2, or from a time scale characterized by

a frequency f to a time scale characterized by a frequency 2f . This information transfer does not reach

over the closest smaller scale, i.e., it is restricted to the transfer of information from a certain scale to the

next smaller scale approximately equal to one half of the preceding scale, exactly in the way how this

realization of a multifractal process was constructed. This numerical construction based on the discrete

wavelet transform (described above and in detail in [42]) uses scales given by the consecutive powers of

two (2, 4, 8, 16, ... samples), while in the analysis we use the continuous (complex) wavelet transform

that gives the possibility to study scales given by real numbers (limited by the available data). A closer

look at Figure 5d reveals that there is no significant CMI at scales in the exact ratio 2:1. Apparently,

the phases in the exact ratio 2:1 appear as phase-synchronized and the direction of coupling is not

identifiable. However, there is always a range of close scales in which the significant CMI confirms

the information transfer from scales close to S to scales close to S/2, e.g., there is no significant CMI

for the scales 16:8, but for the scales in ratios such as 15.488:8.712 the CMI is statistically significant

(Figure 5d).

We have estimated the CMI with increasing dimension of the condition from one (using

I
(

φ1(t);φ2(t + τ)|φ2(t)
)

) to three (using I
(

φ1(t);φ2(t+ τ)|φ2(t), φ2(t− η), φ2(t− 2η)
)

, with η equal

to 1/4 of the scale of φ2). The CMI with the one- and two-dimensional condition brought a large rate of

“false positives”, i.e., the cases of the significant CMI indicating the information transfer from smaller

to larger scales. The conditioning dimension three appears as sufficient for the correct distinction of the

direction of information transfer in the studied multifractal data.

The CMI in this example was estimated using the equiquantal binning algorithm [14,26,46,47]. In

order to assess the data requirements for a sensitive and specific inference of the information transfer,

we have chosen 7 pairs of scales in the approximate ratio 2:1 and computed the CMI with different

conditioning dimensions using different numbers of data samples (time series lengths) for 100 different

realizations of the same multifractal process as that studied in Figure 5. The number of correctly detected

information transfers from larger to smaller scales (“true positives”, i.e., the significant CMI in the

direction of the existing information transfer from a larger to a smaller scale) gives the sensitivity of the

test. The number of the significant CMI cases in the opposite direction (“false positives”, the significant

CMI cases in the direction from smaller to larger scales) characterizes the specificity of the test. The

results for I
(

φ1(t);φ2(t+ τ)|φ2(t)
)

with the one-dimensional condition (CMI-1D in the following) and
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I
(

φ1(t);φ2(t + τ)|φ2(t), φ2(t − η), φ2(t − 2η)
)

with the three-dimensional condition (CMI-3D) are

presented in Figure 6. Considering the above observation that the information transfer direction cannot

be inferred for the exact scale ratio 2:1, we have chosen the scale ratios 15.488:8.712; 31:17; 64:34;

124:68; 265:164; 432:296; 1039.64:534.64. Similar results, however, were obtained for a number of

close scales representing the areas of the significant CMI in Figure 5d.

Figure 5. (a) Cross-scale interactions measured by I(s1; s2) for a multifractal process

decomposed using the CCWT with the Morlet wavelet. (b) Significance levels (color-coded

if they are greater than 0.95) for I(s1; s2) in (a) using 1000 realizations of the FT surrogate

data. (c) Cross-scale phase–phase directed interactions—information transfer measured by

I
(

φ1(t);φ2(t + τ)|φ2(t), φ2(t− η), φ2(t − 2η)
)

for a multifractal process. The scale for φ1

is on abscissa, the scale for φ2 is on ordinate. (d) Significance levels (color-coded if they are

greater than 0.95) for I
(

φ1(t);φ2(t + τ)|φ2(t), φ2(t − η), φ2(t − 2η)
)

from (c) using 1000

realizations of the FT surrogate data.

Figure 6 demonstrates that we need less data for the estimation of CMI-1D than for CMI-3D in

order to obtain the 100% sensitivity in detecting the information transfer from larger to smaller scales

in the studied multifractal process. Considering, e.g., the approximate scale ratio 16:8 (the black line

in Figure 6), CMI-1D gives the 100% sensitivity using 8192 samples (or 90% sensitivity using 4096

samples). However, the rate of false positives is over 40%. In order to obtain the 100% sensitivity using

the CMI-3D we need 16,384 samples, however, the rate of false positives is under 5%, which is the

nominal significance level of the used test. The CMI-1D gives the test that is sensitive but not specific,
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since it suffers from a large rate of false positives. The results for CMI-2D are similar. Only CMI-3D

provides the test that is specific and is sensitive enough using at least 16,384 samples for the scale ratio

16:8 (the black line), 32,768 samples for the scale ratio 32:16 (the red line in Figure 6), etc. Apparently,

using the equiquantal binning estimator, the CMI-3D I
(

φ1(t);φ2(t + τ)|φ2(t), φ2(t − η), φ2(t − 2η)
)

gives a sensitive and specific indicator of the cross-scale information transfer if the analyzed time series

contains, at least, approximately 1000 cycles of a slower oscillatory component. Unfortunately, such a

requirement cannot be satisfied in many experimental studies and other approaches are necessary.

Figure 6. Sensitivity given by the “true positives” (a,c) and specificity given by the

“false positives” (b,d) of the test for detecting the cross-scale phase–phase directed

interactions—information transfer measured by CMI I
(

φ1(t);φ2(t + τ)|φ2(t)
)

with the

1-dimensional condition (a,b) and CMI I
(

φ1(t);φ2(t+ τ)|φ2(t), φ2(t− η), φ2(t− 2η)
)

with

the 3-dimensional condition (c,d) for different scales in the approximate ratio 2:1, for the

studied multifractal process. The legend assigns an approximate value of the larger scale to

each line color used. The exact scales used are listed in the text. Note the different ordinate

scales in (b,d).
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3.2. Cross-Scale Information Transfer in Atmospheric Dynamics

Uncovering interactions in the many scales of the dynamics of the Earth atmosphere and climate is

one of the principal challenges of contemporary science with a potentially high impact for the society. In

a search for a low-dimensional explanation of some scales of atmospheric dynamics, in the 1980s several

researchers claimed detections of a weather or climate attractor of a low dimension [48–51]. Leading

personalities of chaos theory, however, pointed to a limited reliability of chaos-identification algorithms

and warned that the observed low-dimensional weather/climate attractors can be spurious [52,53]. Paluš

& Novotná [54] even questioned the necessary condition for chaos—the presence of nonlinearity in

the air temperature data when the dependence between a temperature time series {x(t)} and its lagged

twin {x(t + τ)} was considered. Hlinka et al. [55] questioned nonlinearity in the dependence between

the monthly time series of the gridded whole-Earth air temperature reanalysis data. It seems that

linear correlation is a good descriptor for interactions in long-term air temperature recordings. Such

data, however, reflect a very coarse view to a mixture of dynamics on many spatial and temporal

scales. Considering specific spatial scales, a description of climate or weather variability using a

low-dimensional nonlinear dynamical system can be plausible, as proposed by Tsonis and Elsner [56].

Recently, Tsonis [57] has uncovered that climate subsystems can act as pacemakers of decadal climate

variability. The spatial scales for climate subsystems can be inferred from climate data using classical

approaches of rotated principal component analysis combined with more recent surrogate data testing

approach [58], or the very modern approach of complex networks [59]. Evolving climate networks

can track important short-term climate influencing events such as El Niño episodes or large volcanic

eruptions [60] and discern regional from global effects [61]. Besides considering specific spatial scales,

a more detailed look on repetitive patterns on specific temporal scales in the air temperature and other

meteorological data has led to an identification of oscillatory phenomena possibly possessing a nonlinear

origin and exhibiting phase synchronization between oscillatory modes extracted either from different

types of climate-related data or data recorded at different locations on the Earth [9–13,37]. Long-term air

temperature recordings reflect complex atmospheric dynamics on multiple temporal scales. Oscillatory

phenomena with the periods between 6 and 11 years, however, most frequently with the period around

7–8 years, have been observed in the air temperature and other meteorological data from European and

Mediterranean areas by many authors (see [10,12] and references therein). Typically these oscillations

are hidden in a red-noise background and their estimated amplitudes are small, therefore their relevance

for the recent climate change has not been adequately assessed yet. We decided to study possible

cross-scale interactions between oscillatory modes with periods between 6 and 12 years and variability

with typical time scales from a few months to 4 years. The CCWT with the Morlet wavelet was

used in order to obtain the instantaneous amplitudes and phases. We have not found any phase–phase

interactions. Then we concentrated on the phase–amplitude coupling. In particular, we study a possible

influence of the phase φ1 of slow oscillations on the amplitude A2 of higher-frequency variability, using

the CMI functional

I(φ1(t);A2(t+ τ)|A2(t), A2(t− η), . . . , A2(t−mη)), (21)

where τ is the forward time lag, η is the backward time lag in the m+ 1-dimensional condition.
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We use daily mean surface air temperature (SAT) time series recorded in various European

locations. The data from Bamberg, Basel, De Bilt, Potsdam, Vienna and Zurich from the period

1901–1999 are a part of the data compiled for the European Climate Assessment [62]; the record from

Prague-Klementinum is extended till 2008, and the SAT data from a number of German stations extended

till 2011 are available due to the German Climate Data Center [63]. The inclusion criterion for this study

is the availability of at least 90 years of uninterrupted daily mean SAT recording, since the computations

of the CMI (21) have been performed using the time series length 32,768 daily samples. The relatively

large amount of data was required in order to obtain reliable estimates and sensitive statistical tests,

even though we used an estimator of the mutual information derived for Gaussian processes according

to Equation (10). The functional (21) is evaluated and averaged for the forward lags τ from 1 to 750

days. (The CMI time-lag dependence is studied and discussed in the Supplemental Material of [64].)

The backward lag η is set to 1/4 of the period of the slower oscillations characterized by the phase φ1,

following the embedding construction recipe based on the first minimum of the mutual information [33].

The temporal evolution of the raw daily mean SAT data from mid-latitude locations is dominated by

the annual cycle. In many climate-related studies deseasonalized SAT “anomalies” are used. In this

study, however, we are interested in discovering interactions of all relevant temporal scales, therefore

the raw SAT data are used for the computation of the CMI (21). The used surrogate data algorithms,

however, might not accurately reproduce such a strong cyclic component. The latter is not consistent

with the used multifractal model [42] and even the FT surrogate data procedure fails to reproduce a

strong cyclicity and/or long coherence times [47]. Therefore, before the randomization, the seasonality

in both mean and variance is removed from each SAT time series. This is done by computing the

means and the variances for each calendar day. These seasonal means are subtracted from the raw SAT

data of the corresponding days and the resultant SAT anomalies (SATA hereafter) are divided by the

corresponding seasonal variances. Such deseasonalized data enter either the FT or MF randomization

procedure. Then, the original seasonality in variance and mean is added back to each surrogate data

realization. Each “seasonalized” surrogate realization undergoes the same processing procedure as the

original SAT data—the CCWT is used to obtain the phase φ1 of slow oscillations and the amplitudeA2 of

higher-frequency variability, both used in the CMI (21) estimation. For each pair of the studied temporal

scales, one thousand surrogate realizations are used for an empirical estimation of the percentiles of the

CMI (21) surrogate distribution. As a result, we record the “significance level,” i.e., the highest percentile

exceeded by the value of the CMI (21) computed from the original SAT data.

The significance levels for the CMI I(φ1(t);A2(t+τ)|A2(t), A2(t−η), . . . , A2(t−mη)) obtained from

the Prague-Klementinum daily SAT data are presented in Figure 7. The results for the CMI with 2, 3 and

4 conditioning variables are depicted in Figure 7a–c, respectively. Since the increase of the conditioning

dimension over three does not substantially change the patterns of φ1 → A2 interactions, the results for

other European locations were obtained by evaluating I(φ1(t);A2(t + τ)|A2(t), A2(t− η), A2(t− 2η))

with the 3-dimensional condition. The tests with the two types of the surrogate data bring consistent

results (cf. Figure 7b,d).

The choice of the three-dimensional condition does not mean that we consider the dimensionality of

the amplitude dynamics equal to three, as in the case of the Rössler system, but that this dimension is

sufficient for distinguishing a bidirectional from a unidirectional coupling in this case. Let us compare
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the results for I(φ1(t);A2(t+ τ)|A2(t), A2(t− η), . . . , A2(t−mη)) measuring the directional coupling,

or the information transfer in the direction φ1 → A2 with the CMI I(A2(t);φ1(t + τ)|φ1(t), φ1(t −
η), . . . , φ1(t −mη)) in the opposite direction A2 → φ1 in Figure 8. Considering the significance level

p < 0.05 for a single test, we obtain more than 10% of significant tests in the direction φ1 → A2 for

all conditioning dimensions (Figure 8a–c), while in the direction A2 → φ1 there are more than 5% of

significant results only in the case of the one-dimensional condition. From the conditioning dimension

two, there is always less than 5% of significant results, which is the possible rate of false positives.

Moreover, there is no consistent pattern of the (false) positives in the directionA2 → φ1 considering SAT

data from different locations, while the pattern of the φ1 → A2 directional interactions is consistent in

SAT recording from many locations in (mainly Central) Europe: The pattern of the φ1 → A2 directional

interactions in SAT from Prague-Klementinum (longitude 14◦25'E, latitude 50◦05'N, Figure 7b) is almost

the same as that from Potsdam (13◦04'E, 52◦23'N, Figure 9a) and very similar to the pattern from

Hamburg (10◦0'E, 53◦33'N, Figure 9b).

Figure 7. Causal influence of the phase of slower oscillations on the amplitude of

faster fluctuations in the daily surface air temperature from Prague-Klementinum. The

significance levels (color-coded if they are greater than 0.95) for the conditional mutual

information I(φ1(t);A2(t + τ)|A2(t), A2(t − η), . . . , A2(t − mη)) with (a) 2-dimensional,

(b,d) 3-dimensional, and (c) 4-dimensional condition, obtained using the (a–c)

Fourier-transform, and (d) multifractal surrogate data.
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Some changes can be seen in the pattern from Bamberg (10◦53'E, 49◦53'N, Figure 9c), while

even more changes can be seen when approaching the Netherlands coast—De Bilt (05◦11'E, 52◦06'N,

Figure 9d).

This observation supports the conclusion that in the dynamics (time evolution) of the air temperature

there are unidirectional cross-scale interactions, or an information transfer from larger to smaller scales in

the sense that the phase of slower oscillations causally influences the variability on shorter scales. These
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results provide a quantitative evidence for existence of previously unknown phenomenon in atmospheric

physics. Understanding of its physical mechanisms is a challenge for further research.

The outputs of the statistical tests, however, are hard to understand in the sense of the effect of this

phenomenon and its significance for weather and climate variability. We have already noted the existence

of climate oscillations with the period around 7–8 years. References [10,12] give a brief review of

observations of this cycle in instrumental as well as model meteorological data. Recently, the 7–8

years cycle has also been observed in soil and ground temperatures from a Prague area [65]. Figures 7

and 9 show that the phase of this cycle influences the air temperature variability in the scale between 2

and 3 years (quasicyclic variability also known as quasibiennial oscillations), at and around the annual

cycle, and in short seasonal scales. The structure of the variability on these scales is an interesting topic

for further research; here we will take a simplified look at the total temperature variability.

Figure 8. The significance levels (color-coded if they are greater than 0.95) for the

conditional mutual information I(φ1(t);A2(t + τ)|A2(t), A2(t − η), . . . , A2(t − mη)) for

the information transfer φ1 → A2 (a–c); and for CMI I(A2(t);φ1(t + τ)|φ1(t), φ1(t −
η), . . . , φ1(t − mη)) in the opposite direction A2 → φ1 (d–f) with (a,d) 1-dimensional,

(b,e) 2-dimensional, and (c,f) 3-dimensional condition for the daily surface air temperature

from Prague-Klementinum. The numbers following the labels (a), (b), ..., are the ratios of

numbers of statistically significant results to the total number of statistical tests in a figure.
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Let us consider the surface air temperature anomalies (SATA) from Prague-Klementinum and the

instantaneous phase extracted from this SATA series using the CCWT with the central frequency giving

the period 8 years. We can see a tendency of the temperature to have local maxima around the middle

and minima near the beginning and the end of each 8-year cycle (Figure 10).
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Figure 9. Causal influence of the phase of slower oscillations on the amplitude of faster

fluctuations in the daily surface air temperature from (a) Potsdam, (b) Hamburg, (c)

Bamberg, and (d) De Bilt. The significance levels for the conditional mutual information (21)

with the 3-dimensional condition, obtained using the Fourier transform surrogate data, are

color-coded if they are greater than 0.95.
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Figure 10. Smoothed (moving average with one-year moving window) daily SAT anomalies

from Prague-Klementinum (red) and the instantaneous phase (blue) obtained from SATA

series by using the CCWT with the central wavelet period 8 years.
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In order to assess a statistical association of the SATA variability and the 8-year cycle, we divide the

phase in each 8-year cycle into 8 equidistant bins and compute the mean and variance of the SATA values

for each of the eight bins. We obtain in this way the conditional SATA means and variances, conditioned

by the phase of the 8-year cycle. If there is no statistical association between the SATA variability

and the 8-year cycle, the conditional means and variances should be asymptotically the same. In the

finite sample estimate, the conditional means and variances would fluctuate independently of the phase.
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However, this is not the case. In Figure 11 we can see that the years in the middle of the 8-year cycle

are warmer and less variable, while the cycle edges are colder and the temperature is more variable.

The MF surrogate data preserve the variance for particular scales, i.e., the presence of the cycle, but

not the cross-scale interactions. From the surrogate results we can see that the cycle itself can explain

the difference in yearly temperature means about 0.6 ◦C; however, in the data, the change of the mean

temperature within the cycle reaches about 1.7 ◦C. In this way we can quantify the effect of the observed

cross-scale interactions on the interannual temperature variability. This quantification, however, is not

robust. It is nonstationary, changing in space and time, however, in the studied European locations,

reaching values between 1 and 2 ◦C, which is a non-negligible variability.

Figure 11. Conditional means (left panel, in ◦C) and conditional variances (right panel,

in ◦C2) for the daily SAT anomalies from Prague-Klementinum (blue) and related MF

surrogate data (red, with whiskers giving surrogate standard deviations) conditioned on the

instantaneous phase obtained by using the CCWT with the central wavelet period 8 years,

divided into eight equidistant bins.
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4. Conclusions

Information theory provides useful tools for the detection of interactions in complex systems using

experimental time series. A coupling (dependence) can be detected by using the mutual information

(MI), while the conditional mutual information (CMI) can be used in the detection of directional

coupling or causal interactions in the sense of Granger causality, generalized for nonlinear systems.

CMI, also known as the transfer entropy, effectively measures a transfer of information from a system

that influences the future of another system. Therefore the causal influence (in the Granger sense) is

also interpreted as the information transfer. We have extended the methodology, originally developed

to detect interactions and information transfer in the bivariate case of two systems, into the study of

interactions between dynamical phenomena evolving on different time scales, however, forming together

one complex, multiscale system. MI and CMI are applied to oscillatory components, extracted from a

multiscale time series by using the complex continuous wavelet transform (CCWT). The oscillatory
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components are described using their instantaneous phases and amplitudes, so that various types of

cross-scale interactions can be studied. Estimators of MI/CMI can be biased and CCWT can bring some

systematic errors into the study of cross-scale interactions. Statistical testing based on surrogate data,

however, can cope with these methodological errors. The specificity of surrogate data inference methods

can be secured by an appropriate choice of surrogate data that reproduce the bias of a MI/CMI estimator

applied to the studied data. The sensitivity of the method can be guaranteed by a certain bound on the

estimator variance [26]. Typically, a lower variance requires a larger amount of data or, more precisely,

a time series representing a longer epoch of evolution of the studied process [26,46]. The required time

series length depends on the used MI/CMI estimator. A review of various estimators is given in [14],

and the properties of several estimators in statistical tests are studied in [26,46].

The introduced method is demonstrated using simulated data. We identify cross-scale interactions

in a model of a multifractal process that mimics information transfer from larger to smaller scales

observed in turbulence. Then we apply the method to time series of long-term records of near-surface air

temperature from a number of European locations. We report no cross-scale phase–phase interactions;

however, we have reliably detected cross-scale phase–amplitude directed interactions. Here we need

to make a remark about estimation algorithms and related data requirements for the sensitive tests for

directed interactions. Considering cross-scale phase–phase interactions, we try to identify interactions

of oscillations with different frequencies that are linearly independent. Therefore it is necessary to use

a nonlinear MI/CMI estimator, which requires large amounts of data for multi-dimensional estimators

used. Thus the phase–phase interactions in the studied atmospheric data either do not exist, or the

available amount of data is not sufficient for a successful detection.

In the case of cross-scale phase–amplitude interactions, the situation is different. Even though the

considered amplitude characterizes faster oscillations, the amplitude itself varies slowly, possibly within

the same frequency range as the considered slow oscillations, characterized by the used phase. Therefore

it is possible to use the MI/CMI estimator for Gaussian processes and to successfully detect, from the

available data, the information transfer from larger to smaller time scales as the influence of the phase of

slow oscillations on the amplitude of faster variability.

It is important that by increasing the conditioning dimension in the CMI we were able to prove the

existence of an information transfer from larger to smaller scales but not vice versa. We have obtained

quantitative support for the first condition of the Granger causality that the (phases of the) slow climate

oscillations influence the future character of the fast temperature variability. We did not study, however,

the second condition that the cause contains information about the effect that is unique, and is in no other

variable. The mechanism of emergence of the 7–8 years oscillations in the air temperature dynamics in

a large part of Europe is unknown yet and it is possible that its roots have a more global character. Then

the observed directional coupling can be secondary, i.e., induced by another process. The answer to this

question is a challenge for further research.
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