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Abstract: Darwinian fitness describes the capacity of an organism to appropriate resources

from the environment and to convert these resources into net-offspring production. Studies

of competition between related types indicate that fitness is analytically described by

evolutionary entropy, a statistical measure which is positively correlated with population

stability, and describes the number of accessible pathways of energy flow between the

individuals in the population. Directionality theory is a mathematical model of the

evolutionary process based on the concept evolutionary entropy as the measure of fitness.

The theory predicts that the changes which occur as a population evolves from one

non-equilibrium steady state to another are described by the following directionality

principle–the fundamental theorem of evolution: (a) an increase in evolutionary entropy

when resource composition is diverse, and resource abundance constant; (b) a decrease

in evolutionary entropy when resource composition is singular, and resource abundance

variable. Evolutionary entropy characterizes the dynamics of energy flow between the

individual elements in various classes of biological networks: (a) demographic, where the

units are individuals parameterized by age, and their age-specific fecundity and mortality;

(b) metabolic, where the units are metabolites, and the transitions are the biochemical

reactions that convert substrates to products; (c) social, where the units are social groups, and

the forces are the cooperative and competitive interactions between the individual groups.
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This article reviews the analytical basis of the evolutionary entropic principle, and describes

applications of directionality theory to the study of evolutionary dynamics in two biological

systems; (i) social networks–the evolution of cooperation; (ii) metabolic networks–the

evolution of body size. Statistical thermodynamics is a mathematical model of macroscopic

behavior in inanimate matter based on thermodynamic entropy, a statistical measure which

describes the number of ways the molecules that compose the a material aggregate can be

arranged to attain the same total energy. This theory predicts an increase in thermodynamic

entropy as the system evolves towards its equilibrium state. We will delineate the relation

between directionality theory and statistical thermodynamics, and review the claim that the

entropic principle for thermodynamic systems is the limit, as the resource production rate

tends to zero, and population size tends to infinity, of the entropic principle for evolutionary

systems.

Keywords: Malthusian parameter; evolutionary entropy; Gibbs-Boltzmann entropy;

metabolic rate; origin of life

1. Introduction

One of the remarkable features of the organic world is the large diversity of plants and animals

that exist and the high degree of adaptation of these organisms to their natural environment. The

morphological, physiological and behavioral features that characterize this adaptation are not immutable

states. These features evolve: They undergo directional and adaptive change as one population type

replaces another over evolutionary time. The question which emerges from this observation is: Can

this directional change in the morphology and physiology of organisms be explained in terms of a

dynamic model which takes into account the fact that biopopulations are composed of genetically unique

individuals?

Darwin’s answer to this problem was articulated in the Origin of Species [1]. The model of adaptation

and evolution he proposed is based on three tenets, [2]:

1. (Variation) Individuals in a population differ in terms of their morphology, behavior

and physiology.

2. (Heredity) There exists a positive correlation between the physiology and behavior of ancestors

and their descendants.

3. (Selection) The resources necessary for life vary in terms of their abundance and diversity.

Individuals with different characteristics vary in their ability to acquire and convert these resources

into net-offspring production.

These tenets entail that changes in the composition of populations are a consequence of variation

in heritable differences, and selection acting on this variation. Evolutionary change is however limited

by the existing modification. Continued evolution over the long term requires mutation, the constant

generation of new heritable alternative forms. The concatenation of these two processes–mutation and
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natural selection will result, as Darwin argued, in changes within populations (microevolution), and

concomitantly, in changes between populations (macroevolution). Microevolution and macroevolution

thus involve different mechanisms, and unfold over different time scales.

Microevolution pertains to changes in the composition of populations due to mutation and natural

selection. This process occurs on a time scale of generations, and is the mechanism which underpins the

diversity of populations, adaptive changes and geographic variation. Macroevolution refers to changes

in the composition of lineages due to speciation and extinction. This process unfolds on a geological

time scale and is the mechanism which underlies directional trends in morphological and morphometric

properties of species over large episodes of geological time.

A central element in Darwin’s argument is that all macroevolutionary processes have their origin in

evolutionary change within populations, and hence are the result of natural selection acting on genotypic

and phenotypic variation. This proposition, which has now been supported by comparative molecular

studies of genotypic variation within and between species, indicates that evolutionary processes on both a

ecological and geological time scales can be analyzed in terms of processes which occur at the individual

level, Mayr [3,4].

The relation between the dynamics which drive microevolution and the patterns observed at the

macroevolutionary level was clearly recognized by the pioneers in theoretical genetics, Fisher, Haldane

and Wright. These authors recognized that the Darwinian dynamic involves two complementary events:

1. a cooperative process–the interaction within the organism of related alleles and the transmission

of these allelic types to the offspring,

2. a competitive process–the interaction within the population of related phenotypes and the selection

of a phenotypic trait according to its capacity to appropriate resources and invest these resources

into offspring production.

The efforts of these pioneers to develop a mathematical model of Darwin’s theory focused initially

on forging a synthesis of Mendel’s laws of particulate inheritance–the basic premise of the cooperative

event–with various hypotheses regarding the dynamics of the competitive process.

The problem which the analysis of competition generated can be formulated in the following terms:

what class of demographic parameters characterize Darwinian fitness, that is the capacity of a type to

appropriate resources and invest these resources into offspring production?

The appropriation of resources and its reinvestment into offspring production can be factored into two

actions, [5].

(a) A resource-metabolic process: The acquisition of resources from the external environment and

its conversion into reproduction and survivorship.

(b) A metabolic-demographic process: The transformation of the metabolic energy of the organism

into demographic currency.

When the metabolic-demographic process is the dominant event, then the outcome of competition

will be determined by the rate at which the organism transforms the abundant resources into net-offspring

production. However, when the resource-metabolic process is the limiting factor, then the outcome of

competition will be determined by the rate at which the organism acquires the exiguous resources and

converts these resources into demographic currency.
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Classical studies of the evolutionary process, Fisher [6], implicitly assumed that the resource

abundance is large, effectively infinite. This entails that the metabolic-demographic process was

the determining agent of natural selection. This perspective was the basis for the proposition that

Darwinian fitness is characterized by the rate at which the population transforms the metabolic energy

into net-offspring production, a quantity now called the Malthusian parameter, in honor of Thomas

Malthus’ contribution to population dynamics [7].

Malthusian selection, the term we will use to describe the process of selection which involves the

population growth rate, or one its surrogates, the net-reproductive rate, as the measure of Darwinian

fitness, rapidly emerged as the dominant paradigm in evolutionary studies. The Malthusian selection

principle, which asserts that the outcome of selection is predicted by the population growth rate, became

the cornerstone in evolutionary studies of life-history [8–10], the evolution of senescence [11], and the

dynamics of infectious diseases [12–14]. Malthusian selection also played a central role in studies of

the evolution of social behavior: The inclusive fitness concept of Hamilton (see [15,16]) is a weighted

measure of an individual’s fitness and those of its relatives. It is essentially an extension of the classical

fitness concept of Fisher to include the offspring production of the individual’s relatives.

Malthusian selection derives from the hypothesis that resource abundance is effectively unlimited.

In this case the dynamics of selection will be regulated primarily by the capacity to transform this

unlimited resource into the production of new descendants. The models of selection described in [5]

implicitly assumed that resource abundance is limited. In view of this constraint, the resource-metabolic

process now becomes a critical factor in determining the outcome of selection. This new class of

models showed that the outcome of competition between related types is now determined by the rate

at which the population appropriates the exiguous resources. This rate can be analytically described

by the statistical parameter, evolutionary entropy. This quantity, which has its origins in the ergodic

theory of dynamical systems, describes the number of accessible pathways of energy flow between the

individuals in the population. The discovery and characterization of the evolutionary entropy parameter

was the basis for the claim that Darwinian fitness can be described in terms of an evolutionary analogue

of the Gibbs-Boltzmann entropy.

The evolutionary entropy concept was originally introduced in the context of demographic

models, [17]. These are processes in which the individuals are parametrized in terms of their age, and

the demographic variables, survivorship and fecundity.

The demographic model is described as a directed graph where the nodes correspond to age-classes,

and the links between the nodes describe the aging process–the transition from one age class to the next,

and the reproductive process–the transition from a reproductive class to the class of newborns. If age is

considered a measure of metabolic energy, then the transitions between the age-classes can be considered

as a flow of energy from one age class to another. Evolutionary entropy, in the context of this model,

describes the diversity of pathways of energy flow within the network. Annual plants (low entropy)

are defined in terms of a unique reproductive event, and consequently a single pathway of energy flow.

Perennials (high entropy) are populations with several reproductive events describing their life cycle.

These systems define a network with several distinct pathways of energy flow.

Arnold, Demetrius and Gundlach [18], Demetrius and Gundlach [19], Demetrius, Gundlach and

Ochs [20] showed that the evolutionary entropy concept originally introduced in demographic systems



Entropy 2014, 16 5432

can also be adduced to characterize the diversity of pathways of energy flow in other biological networks.

Generically, one can associate to any network of interacting elements a macroscopic parameter, which

describes the number of accessible pathways of energy flow within the system. This measure of network

complexity represents the rate at which the individual elements in the network appropriate and convert

energy from the external environment into metabolic energy and reproductive capacity. Evolutionary

entropy, which has its origin in the study of energy transformation in a population of living organisms,

is thus distinct from thermodynamic entropy, a notion which has its origin in the study of energy

transformation in aggregates of inanimate matter.

Thermodynamic entropy is a measure of the number of ways that the molecules in an aggregate of

inanimate matter can be arranged to achieve the same total energy. This macroscopic index of the degree

of disorder of a material aggregate characterizes the extent to which the total energy is spread throughout

the aggregate and shared among the microscopic storage modes.

This review, which complements the earlier report described in Demetrius [21], is a comparative

study of three modes of selection–Malthusian, evolutionary entropic, and thermodynamic. Malthusian

and evolutionary entropic selection refer to competition between living organisms for resources provided

by the external environment. Thermodynamic selection refers to competition between molecules in an

inanimate aggregate which is closed to the input of energy and matter.

In Malthusian selection, the resource provided by the environment is assumed to be unlimited in

abundance. The outcome of competition under this resource constraint is determined by the rate at which

the organisms convert resources into reproductive work. This rate is precisely the Malthusian parameter.

Evolutionary entropic selection is concerned with the dynamics of competition under conditions where

the resource abundance is limited. Competitive outcome, when limited resource constraint prevails, is

decided by the rate at which an individual acquires energy from the environment and converts this energy

into demographic currency. This rate is precisely the macroscopic parameter, evolutionary entropy.

Thermodynamic selection, in contrast to Malthusian and evolutionary entropic selection, occurs in

a closed system. Each molecule in the system embodies a quantity of energy which is stored in the

different microscopic storage modes–translational, rotational and vibrational. The interaction between

the molecules results in an exchange of energy. Molecules are engaged in competition for the total

energy in the system. The outcome of competition is described in terms of change in thermodynamic

entropy, a measure of the extent to which the energy is spread among the different storage modes.

Malthusian selection provides the conceptual framework for studies of the evolutionary process as

enunciated in the works of Fisher [6]. Evolutionary entropic selection is the cornerstone of directionality

theory, the analysis of the evolutionary models reviewed in [21]. Thermodynamic selection is the process

which underlies the statistical thermodynamics of Boltzmann and Gibbs.

These three modes of selection and the relations between them will be described in Sections 1.1

to 1.4. These sections provide a conceptual overview of the main tenets of directionality theory: We

also furnish a historical account of earlier efforts, due to Lotka and Fisher, to develop an analytic model

of evolutionary dynamics within the framework of the statistical thermodynamics of Boltzmann. This

account is given in Sections 1.5 to 1.6.
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1.1. Evolutionary Selection–Malthusian and Entropic

The analytical characterization of Darwinian fitness is central to any effort to develop a general

theory of evolution by natural selection. Darwin had originally addressed the notion of fitness

from the perspective of a naturalist. Selective advantage in Darwin’s terms includes a variety of

behavioral features–attributes which are conditional on the environmental constraints which the organism

experiences. In situations where competition involved the search for resources, fitness can be described

by foraging capacity; when evasion of predators is the critical factor, fitness now involves vigilance and

perceptual acuity. These behavioral features are highly qualitative proxies for the capacity to survive and

reproduce–the demographic components of fitness. The approach adopted by the pioneers of population

genetics abandoned Darwin’s naturalistic standpoint and considered individual birth and death rates as

the fitness components which should be invoked in developing an analytic theory.

1.1.1. Malthusian Systems

Fisher’s demographic depiction of Darwinian fitness essentially ignored the environmental

constraints which modulate competition, and proposed the Malthusian parameter as a measure of

selective advantage.

According to Fisher [6], selective advantage, that is the capacity of a variant type to displace an

incumbent in competition for resources, is given by

s = ∆r . (1)

Here ∆r = r∗ − r, where r and r∗ denote the population growth rate of the incumbent and variant

type, respectively.

This index of selective advantage is the basis for the following proposition:

I (a) The Malthusian Selection Principle: Evolutionarily stable states of replicating populations

maximize the population growth rate.

A population defined by individuals with a prescribed demographic condition, and concomitantly a

certain genotypic composition, is said to be evolutionarily stable if it is invulnerable to invasion by a

mutant type, that is a variant with a related demographic and genotypic composition. Evolutionarily

stable populations will be characterized by a constancy in the growth rate, generation time, and

physiological variables, such as metabolic rate. The growth rate will be a maximum, consistent with

the nature and composition of the available resources.

The Malthusian selection tenet is an extremal principle. It is related to the Malthusian evolutionary

principle, which describes evolutionary changes in population growth rate as one population type

replaces another in processes driven by mutation and natural selection.

I (b) The Malthusian Evolutionary Principle: The population growth rate increases under mutation

and selection, when resource abundance is unlimited.

The increase in growth rate which the Malthusian evolutionary principle describes, pertains to changes

in demographic properties as new variants are introduced in the population and selection drives the

population from one steady state to the next.
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The Malthusian principles and related tenets based on various surrogates of the population growth

rate, have emerged as crucial in efforts to develop a microevolutionary theory, and to apply the theory

to the analysis of evolution on ecological and geological time scales. The Malthusian selection principle

is now a mainstay in studies of processes such as the evolution of life-history, [8–10], and the evolution

of cooperation, [15,16]. Certain demographic proxies of the Malthusian parameter, such as the net-

reproduction rate, have also come to play an important role in epidemiological studies such as the spread

of pathogens in animal and plant populations [12–14].

Although the Malthusian tenets have provided qualitative insights into these processes, it is now

recognized that several of its predictions are inconsistent with empirical observations. The inconsistency

is particularly acute in studies of the evolution of life span. For example, models based on the Malthusian

principle predict that mortality rate will increase exponentially with age. However, in human populations,

although a simple exponential curve–the Gompertzian distribution–provides a good fit for the mortality

rate for most populations between ages 35 to 90, mortality rates after age 90 decelerates with age,

defining what is called a mortality plateau [22,23].

The explanatory weakness and predictive limitations of the Malthusian models resides partly on

assumptions which essentially ignore certain critical features of the dynamics of selection, namely:

1. resource abundance and its diversity,

2. finiteness of population size,

3. the variability in age and size at which individuals survive and reproduce.

Although these factors were a critical aspect of Darwin’s qualitative depiction of fitness, they were

not completely integrated in analytic studies of the dynamics of selection as described in certain standard

texts, see for example [9,10].

1.1.2. Evolutionary Entropic Systems

A fundamental aspect of evolutionary processes is the organism–environment dichotomy and

the reciprocal nature of the interaction between organism and the environment. The environment

impinges on the organism through its disposition of resources, whereas the organism responds to these

environmental constraints through the variability in age and size at which individuals reproduce, [24].

The reciprocity of the organism–environment interaction entails that a population will rarely be at

demographic equilibrium. Accordingly, the mathematical formalism which has been developed to study

phenomena close to equilibrium will not be applicable to analyze the class of dynamical systems which

characterize evolutionary processes.

Studies of dynamical systems beginning in the 1970’s, and due mainly to the efforts of Bowen [25],

Ruelle [26] and Sinai [27], have provided new perspectives in the analysis of far from equilibrium

systems by the discovery of certain connections between non-equilibrium statistical mechanics and

the ergodic theory of dynamical systems. The concept which has played a seminal role in these

developments is the Kolmogorov-Sinai or K-S entropy. This notion is a far reaching generalization of

the Shannon entropy in information theory. The K-S entropy is an entropy rate. It depicts the maximal

information per unit time associated with certain probabilistic dynamical systems. These dynamical

systems are mathematical objects, called measure preserving transformations. They are defined in terms
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of a configuration space, a probability measure on the space, and a transformation on the configuration

space which preserves the measure.

The non-equilibrium steady state of certain population processes in which individual birth and death

rates are parametrized by age or size can be described as a probability measure on a configuration space,

the space of genealogies, that is a recording of successive ancestors indexed by age, [17,28].

The entropy of the measure preserving transformation associated with the population process at

steady state has emerged as a fundamental property of population dynamics. Three factors underlie

this property: First, the entropy is an invariant of the dynamical system. This property means that

statistically equivalent parametrizations of the population process in terms of age, size or metabolic state

will yield the same value for entropy. Second, the entropy characterizes robustness, that is the rate at

which population numbers return to the steady state condition after a random endogenous or exogenous

perturbation. Thirdly, the entropy predicts the outcome of competition between related populations.

Since the entropy of the population process determines the outcome of selection, we have appended the

term evolutionary to distinguish the population concept from its thermodynamic analogue.

The evolutionary entropy concept can be illustrated by considering a model of a plant population

in which individual birth and death rates are parametrized by age. In annuals–organisms in which

reproduction occurs at a single stage in the life cycle, the flow of energy between the different age

classes is described by a unique genealogy. This is a single reproductive cycle involving two stages, an

initial stage which describes the seed of the plant, and a final stage which describes the mature plant. In

perennials, organisms in which reproduction occurs at several distinct stages in the life cycle, the energy

flow between the different age-classes is described by a multiplicity of genealogies, and consequently

several distinct reproductive cycles. Evolutionary entropy is a measure of the multiplicity of reproductive

cycles. In annuals, there is a unique reproductive cycle, hence a single pathway of energy flow and the

entropy is zero. In perennials, the diversity of reproductive stages entails that the entropy will be positive.

The significance of the entropy concept in evolutionary theory derives from the fact that entropy

predicts the outcome of competition between an incumbent population and a variant. This outcome is

a stochastic event which is contingent on environmental constraints such as resource abundance and

resource diversity: Selective advantage is now given by [5,29].

s = − (Φ− γ/N)∆S. (2)

Here the parameters Φ and γ are demographic variables which define certain measures of resource

constraints–its abundance and diversity, respectively. N denotes the population size and ∆S denotes the

difference in entropy of the variant and ancestral type.

The measure of selective advantage given by Equation (2) is the basis for the characterization of the

outcome of natural selection in terms of the following rule [5,29]:

II (a) The Evolutionary Entropic Selection Principle: The evolutionarily stable states of a

population are extremal states of entropy: maximum entropy, corresponding to resources which are

constant in abundance and diverse in composition; minimum entropy, corresponding to resources which

are singular and have variable abundance.
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The evolutionary selection principle indicates that the resource constraints impose a critical effect

on the outcome of selection, and hence on the class of demographic states which render the population

invulnerable to invasion by variant types.

The entropic selection principle is the mainstay for long term studies of changes in popu-

lation properties under mutation and selection. These long term changes are regulated by the

resource constraints experienced during the history of the population, and can be qualitatively

described by:

II (b) The Entropic Principle of Microevolution: (i) a unidirectional increase in entropy when

resource is diverse and has constant abundance; (ii) a uni-directional decrease in entropy when resource

is singular and undergoes large variation in abundance.

This principle pertains to global changes in the demographic properties of the population as the

system evolves from one non-equilibrium steady state to another. These changes are driven by mutation,

which continuously generates new variants in the population, and selection, which opts for types whose

demographic properties are consistent with the resource constraints imposed by the environment.

1.1.3. Malthusian and Evolutionary Entropic Systems

The Malthusian principle is expressed in terms of a single parameter, the population growth rate. The

principle is based on the assumption that the resource abundance is unlimited and population size is large,

effectively infinite. When resource abundance is unlimited, then the outcome of selection is determined

completely by the relative ability of the competing types to convert resources into net-offspring

production. This capacity depends uniquely on the population growth rate. When population size is

large, effectively infinite, then fluctuations in numbers are negligible and the outcome of selection is a

deterministic process.

The evolutionary entropic principle, by contrast, is expressed in terms of four parameters: the entropy,

the population size, and the resource abundance and resource diversity, respectively. This selection

principle is derived on the assumption that resource abundance is limited and population size is finite.

Now, when resource abundance is limited, the outcome of selection will be constrained by the relative

ability of the competing types to acquire the exiguous resource from the external environment. This

capacity to annex resources will depend on the robustness or stability of the population as measured by

evolutionary entropy. When population size is finite, the fluctuations in population numbers induced by

endogenous perturbations entail that the process of selection will now be a stochastic event.

These observations suggest that the Malthusian tenet, which assumes unlimited resources and infinite

population size will be a limiting case of the entropic selection rule, which assumes limited resources

and finite size. The relation is concisely expressed by the following proposition:

(A): The Malthusian principle is the limit, as the population size and resource abundance tends to

infinity, of the entropic selection principle.

The entropic selection principle is not restricted to biological systems whose structure derives from

demographic variability, that is differences in the age or developmental state at which individuals

reproduce and die. The ergodic theory of dynamical systems has been exploited to analyze structures
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which derive from (a) molecular heterogeneity, that is differences in the chemical composition of

the substrates that define metabolic systems, and the differences in the rates at which substrates are

transformed into products; (b) ecological variability, that is the differences in the mode and intensity of

interaction between the species in an ecosystem. The statistical parameter evolutionary entropy can also

be defined for the metabolic and ecological networks associated with these systems, [18–20].

The various components–molecules, organisms, and populations–that constitute the metabolic,

demographic and ecological systems, respectively, can also be considered in bioenergetic terms, namely,

as isothermal chemical machines that transform resources from the environment into chemical energy.

In this context, evolutionary entropy depicts a generic property of biological networks: it is a statistical

parameter which describes the diversity of the pathways of energy flow between the individual elements

that define the network.

1.2. Thermodynamic Selection

Thermodynamic entropy pertains to material aggregates–solids, liquids, gases. The molecules in the

aggregate store translational, rotational, vibrational, and intermolecular energies which depend on the

distance separating the molecules. Thermodynamic entropy is a measure of the extent to which the total

energy is shared by the different storage modes [30].

A crystalline solid has low entropy. The intermolecular forces are strong thus restricting the spread

of energy to the neighborhood of certain fixed positions in the solid. A liquid has high entropy since the

weakness of the forces between the molecules permits a larger spreading or sharing of the energy among

the various storage modes.

The crowning achievement of Boltzmann’s statistical thermodynamics was his exploitation of the

entropy concept to give a mechanistic rationale of the time asymmetric behavior of the flow of heat in

material bodies.

Boltzmann’s thermodynamic entropy is a measure of the number of ways that the molecules in the

system can be arranged to attain the same total energy. Boltzmann’s entropy agrees with the macroscopic

thermodynamic entropy of Clausius when the system is at equilibrium. Macroscopic evolution in

aggregates of inanimate matter is described by the directional change in the Boltzmann entropy, a

quantity which increases and tends to a maximum. The time asymmetric behavior of the transduction of

energy in macroscopic systems can thus be expressed by the following extremal principle.

(III) The Thermodynamic Selection Principle: The thermodynamically stable states of material

aggregates are the states which maximize entropy.

Thermodynamic stability refers to the invariance in time of mechanical, chemical and thermal

properties of the system. Maximum thermodynamic entropy denotes an energy distribution in which the

degree of spreading and sharing of the energy among the microscopic states of the system is maximal.

The equilibrium state in thermodynamic systems is the outcome of a dynamic process involving

collision between the particles that constitute the aggregate. This process is essentially driven by

differences in the extent to which the total energy of a molecule is shared among the various microscopic

storage modes. Accordingly, it can be considered, by analogy with evolutionary systems, a process

of selection.
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The thermodynamic selection process will be parametrized by what we will call, by formal analogy

with Equation (1), the selective coefficient, denoted s, and we write

s = ∆S̃

where ∆S̃ = S̃∗ − S̃, and S̃ and S̃∗ denote the thermodynamic entropy at time t and t+ 1, respectively.

The condition s > 0 describes the direction of spontaneous change in entropy in an isolated system.

1.3. Thermodynamic and Evolutionary Processes

Evolutionary selection and thermodynamic selection pertain to open and isolated systems, respectively.

The selection principle for evolutionary systems refers to biological networks: metabolic, demographic

and ecological. These networks are open systems: they require resources from the external environment

in order to drive their organization and maintain their integrity.

The microscopic variables that describe the properties of the individual elements that comprise these

networks are quantities such as the age specific fecundity and mortality rates (demographic networks),

enzymatic reaction rates (metabolic networks), speciation and extinction rates (ecological networks).

The ergodic theory of dynamical systems provides a methodology for generating a class of macroscopic

variables from the individual level parameters. The principal macroscopic variables can be described

as follows.

(a) The growth rate r.

This macroscopic parameter describes energy yield per unit time. In the case of demographic

networks, this quantity is the population growth rate.

(b) The cycle time T .

This macroscopic variable describes the mean recurrence time of the Markov chain associated with

the network. In the case of demographic models, the mean recurrence time is the generation time,

the mean age of mothers at the birth of their offspring.

(c) Evolutionary entropy S.

This quantity describes the number of pathways of energy flow within the network.

(d) The reproductive potential Φ.

This parameter describes the rate at which the organism appropriates energy from the external

environment and converts this energy into metabolic activity.

Each of these macroscopic variables are functions of the microscopic parameters that describe the

kinetic properties of the elements that compose the network. These four parameters are related by the

identity

r = Φ+
S

T
(3)

The quantity H = S/T describes the rate at which the organism appropriates energy from the external

environment and transforms this energy into reproductive activity. The quantityH describes energy yield

per unit resource.

The expression (3) can be exploited to determine a relation between the change in evolutionary

entropy, dS, and the change in the metabolic rate dP . If we consider perturbations which ensure that the
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cycle time T remains constant, then the change dS in entropy, induced by a change dP in the metabolic

rate, becomes, [31]

dS = −T dP (4)

The thermodynamic selection principle refers to competition within aggregates of inanimate matter.

The elements that constitute these macroscopic aggregates are molecules. Each molecule stores energy

in translational, vibrational and rotational modes. Statistical mechanics furnishes a methodology for

characterizing the macroscopic variables that describe the material aggregate. These quantities are

(a) The free energy F̃ .

Free energy is that component of the total energy of a system which is capable of doing work under

isothermal conditions. Accordingly, the free energy can be considered as the potential energy of a

system held at constant temperature.

(b) The temperature T̃ .

This macroscopic variable describes the mean kinetic energy of the molecules that compose

the system.

(c) Thermodynamic entropy S̃.

The entropy is a measure of the extent to which the total energy in the system is spread and shared

among the different microscopic storage modes.

(d) Internal energy Ũ .

This quantity describes the total amount of energy in the molecules that compose the system.

The four thermodynamic variables are related by the identity:

F̃ = Ũ − S̃T̃ (5)

Thermodynamic entropy also admits a macroscopic representation, analogous to Equation (4). The

relation, which was discovered by Clausius, identifies the change in entropy dS̃, with the quantity of heat

added dQ̃, and the temperature T̃

dS̃ =
dQ̃

T̃
(6)

A comparison of the identities (3) and (5), and the macroscopic characterizations of entropy given by

Equations (4) and (6) indicates a formal correspondence between the thermodynamic and evolutionary

parameters. This correspondence is given by Table 1.

Table 1. Formal relations between thermodynamic and evolutionary parameters.

Thermodynamic Variable Evolutionary Variable

free energy growth rate

inverse temperature generation time

Gibbs-Boltzmann entropy evolutionary entropy

heat energy metabolic rate

Thermodynamic theory and evolutionary theory are concerned with energy transformations in

aggregates of inanimate matter and populations of living organisms, respectively. The two most
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fundamental parameters associated with the two theories are thermodynamic entropy and evolutionary

entropy. In Table 2, we contrast the statistical and macroscopic depictions of the two measures of entropy.

Table 2. Thermodynamic and evolutionary entropy: a comparison.

Properties Thermodynamic Entropy Evolutionary Entropy

Objects material bodies: biological networks:

of reference solids, liquids, gases metabolic, demographic, ecological

S̃ = −∑j p̃j log p̃j S = −∑j pj log pj

Statistical p̃j: probability that a pj: probability that the

parameter randomly chosen particle ancestor of a randomly chosen descendant

is in energy state j is in energy state j

Macroscopic
dS̃ =

dQ̃

T̃
dS = −T dP

measure
Q̃: heat energy P : metabolic rate

T̃ : temperature T : generation time

Now, the metabolic processes that regulate energy transformation in cells can be considered as a

thermodynamic process, with temperature as the organizing variable, and as an evolutionary process,

with generation time as the integrating parameter. In these processes, the inverse temperature is

analytically related to the mean cycle time [21]. We will appeal to this relation between temperature

and generation time to establish the following proposition.

(B): The thermodynamic selection principle is the limit, as M → ∞, R̃ → 0, of the evolutionary

selection principle.

The parameter M denote population size and R̃ denote the resource production rate. The condition

R̃ → 0 means that the system, which was originally open to the input of energy and matter, now becomes

a closed system.

1.4. The Selection Principles

We will distinguish between three modes of selection. The first two, evolutionary entropic selection

and Malthusian selection, pertain to populations of metabolic entities: metabolic networks, cells and

higher organisms. Evolutionary entropic selection is defined for populations subject to limited resource

conditions and finite population size. Malthusian selection is defined for populations subject to unlimited

resource conditions and large, effectively infinite size. The third mode of selection pertains to aggregates

of inanimate matter, solids, liquids and gases. The systems in this case are isolated, and selection is said

to be thermodynamic.

Now, according to the evolutionary entropic principle, the evolutionarily stable states are extremal

states of entropy–maximum entropy, corresponding to constant resources, minimum entropy correspond-

ing to resources with large variation in abundance.

The Malthusian selection principle and the thermodynamic selection principle, as indicated by the

propositions (A) and (B), are both limiting cases of the evolutionary entropic tenet. Selection in the

Malthusian model occurs when resource abundance is unlimited and population size is effectively

infinite. The evolutionary stable states are states which maximize the population growth rate.
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Selection in the thermodynamic model refers to systems which are closed to the input of energy

and matter. The system is assumed to be large, consisting of an infinite number of particles. The

thermodynamically stable condition is now described by states which maximize thermodynamic entropy.

The analytic relationship between the evolutionary entropic principle and the two tenets–the

Malthusian principle and the thermodynamic principle–is described in Figure 1.

Figure 1. Relation between the various selection principles in thermodynamics and evolution.

Entropic principle of evolution

Entropic principle
of thermodynamics

Malthusian principle
of evolution

M → ∞, R → ∞ M → ∞, R̃ → 0

In Figure 1, the parameter R denotes the resource abundance, that is the energy contained

in the nutrients the system utilizes. R → ∞ corresponds to unlimited resources. R̃

denotes resource production rate. R̃ → 0 corresponds to the case where resource

production rate is zero, and the system becomes closed to the input of energy from the

external environment. The parameter M denotes the population size.

1.5. Historical Digression: Mendel and Malthus

The Darwinian evolutionary process can be considered as involving two complementary events. The

first is natural selection–competition between phenotypically related types for the available resources.

The second is the transmission of inheritance–cooperation between related types in the transfer of the

genetic endowment.

The selection event occurs during the period when the variant types generated by mutation are

introduced in the population–the invasion process. The outcome of competition which defines the

invasion process is determined by the relative capacity of the resident and variant types to acquire

resources and to convert these resources into offspring production.

Darwin, whose understanding of the competition process was largely influenced by Malthus, assumed

that the outcome of selection is determined by the rate of increase of population numbers–a property now

called the Malthusian parameter.

The transmission of inheritance is described by the recombination of variant and incumbent types

to generate a new array of types–the establishment process. Cooperation of parental alleles defines the

recombination event. It is determined by the rules of inheritance which dictates the transmission of

phenotypic traits from parent to offspring.

Darwin invoked the prevailing model of blending inheritance as the rule which describes the

transmission of characters. According to this model, which seemed consistent with Darwin’s

investigation of domesticated organisms, the characters of parents were blended in the offspring. Hence,

the genotype of the offspring of a cross will be intermediate between those of the two parents.
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It is of some historical interest that Malthusian selection and the blending of parental heredities, two

basic premises of Darwin’s theory, are both fundamentally flawed, although both seem highly consistent

with empirical observations. The plausibility of both principles derives from the fact that they are both

valid under certain idealized situations. The Malthusian principle is indeed valid when resources are

unlimited in abundance and population size is effectively infinite. The theory of blending inheritance is a

viable effective explanatory model when the number of genes specifying a character is large, effectively

infinite.

Mendel’s model was proposed in 1840. The model, however, was largely ignored until its rediscovery

by de Vries and Correns in 1900. However, the significance of Mendel’s theory was only fully

appreciated when it was recognized that the theory of blending inheritance can be considered a limiting

case of Mendel’s atomic model. This can be formally depicted in terms of the following proposition.

(I) The principle of blending inheritance is the limit, as n → ∞, where n is the number of genes

controlling a character, of the principle of particulate inheritance.

This proposition accounted for the observation that quantitative traits such as height and weight appear

to be the result of the fusion of different types. Consequently, the theory of blending inheritance can be

understood as an approximation to Mendel’s model of particular inheritance.

The Malthusian principle of selection was proposed in 1930, [6]. It has for several decades dominated

studies in evolutionary demography. This dominance derives in large part from its apparent rapport

with studies of competition under laboratory conditions. However, several anomalies in other empirical

contexts were documented. For example, studies of selection in bacterial populations indicate that certain

bacterial strains with lower growth rate can replace ancestral strains.

The analytical foundation for the entropic principle of selection was described in 1974, [17]. The

principle resolved several anomalies in evolutionary genetics, [29], and explained various observations

regarding the spread of pathogenic strains of microorganisms under various classes of ecological

constraints, [32]. The principle also explained certain phenomena such as the existence of a mortality

plateau in human population–a condition which is inconsistent with the Malthusian framework, [29].

The resistance to the acceptance of the entropic principle, [33,34], hinges on the fact that the

Malthusian proposition is a valid tenet under certain idealized conditions. A critical factor in the gradual

erosion of this resistance is the recognition, which this review delineates, of the formal relation between

the Malthusian proposition and the entropic principle.

(II) The Malthusian principle of selection is the limit, as N → ∞, R → ∞, where N denotes

population size, and R denotes resource abundance, of the entropic principle of selection.

This proposition implies that the Malthusian tenet is an approximation to the entropic selection

principle, an approximation whose validity increases as the resource abundance and population size

increase.

The entropic selection principle and Mendel’s theory of particulate inheritance formalize the

competitive and cooperative processes that comprise Darwin’s theory. Directionality theory is the

integration of these two tenets in a mathematical model. The theory aims to explain the biological

diversity and the adaptation and stability of biological systems at levels of organization–molecular,
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cellular and multicellular, of increasing complexity, and operating over time scales–generational,

ecological and geological, of increasing amplitude.

1.6. Historical Digression: Lotka, Fisher

Irreversibility of natural processes in aggregates of inanimate matter is a common phenomenon. The

canonical example of an irreversible process is the tendency of energy to migrate as heat from hotter

to colder bodies. The mechanism driving such directional change has been completely elucidated, due

primarily to the work of Clausius and Boltzmann. Clausius showed that the irreversibility of natural

processes implied the existence of a macroscopic parameter which he called entropy. Boltzmann gave a

statistical characterization of the Clausius entropy and established that the entropy increases in isolated

systems.

Directional change in macroscopic population variables in living systems is also a ubiquitous

phenomenon. The parameter that has played a critical role in studies of directionality in processes

involving living organisms is size, typically the body size of an adult organism. Cope [35] seems to

have been the first to systematically analyze changes in body size over evolutionary time. Using fossil

data, Cope observed that there is a tendency towards size increase within certain lineages. More recent

studies of the fossil data has shown that the increase in body size is not a universal property. There exist

several lineages where size decreases. One of the more striking examples of this variation in directional

changes in body size is given by the equid lineage. The studies, as documented by Alberdi et al. [36],

indicate an increase in size in North America, and a decrease in size in Europe during the Paleocene era.

The ecological conditions in America and Europe were significantly different during that period. This

suggests that directional changes in body size are conditional on ecological constraints.

Recent experimental investigations of mutation and natural selection based on populations of

polynucleotides, Domingo et al. [37] have shown that directional changes in size at the molecular level

are also highly contingent on environmental conditions. Domingo et al. [37] reviewing experimental

studies in Spiegelman [38] and Eigen [39] showed that when resources are limited and constant, size,

as measured by sequence length of polynucleotide, increases. However, when resources are abundant,

size decreases.

The problem of irreversibility in populations of living organisms, as documented in organismic

and molecular evolution, can be formulated as follows: Does there exist a biological analogue of

thermodynamic entropy whose change under mutation and selection will explain the directionality

observed in living systems?

Analogues of the entropic principle in thermodynamics which have been proposed to address this

question have been developed from two complementary perspectives–the first bioenergetic, proposed by

Lotka [40], the second demographic, advanced by Fisher [6]. Both viewpoints are now recognized to

have serious limitations.

1.6.1. Bioenergetic Considerations—Lotka and the Thermodynamic Paradigm

Lotka’s analysis of the problem of directionality was based on a characterization of Darwinian fitness

in terms of the efficiency with which organisms transform the free energy of the resources into metabolic
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energy. The organisms that prevail are those that capture and use energy at a rate and with an efficiency

which exceeds the rate and efficiency of competing types. Lotka exploited this measure of fitness to

show that changes in the distribution of energy and matter, as one population type replaces another, can

be described by the following precept:

(I) The rate of circulation of matter throughout the system increases under natural selection.

Lotka’s principle was embraced by several theoretical biologists as a fundamental rule with

implications for the understanding of adaptation and evolutionary trends at various levels of biological

organization, molecular, cellular and ecological, (Wicken [41], Ulanowicz [42], Schneider and Kay [43]).

The analytical basis for Lotka’s principle derives from a postulate, called the thermodynamic

paradigm for living systems, Schneider and Kay [43]). According to this postulate, the patterns of

biological evolution are phenomenological manifestations of the Second Law of Thermodynamics (for an

appraisal of this perspective, see Schneider and Sagan [44]). The thermodynamic paradigm underscores

the distinction between isolated systems, which are closed to the input of energy and matter, and open

systems which exist in a world of energy and material fluxes.

Energy transformation in isolated systems is governed by the laws of equilibrium thermodynamics.

Entropy in classical thermodynamics can be expressed by the Clausius relation

dS̃ =
dQ̃

T̃
(7)

Here dS̃ denotes the change in entropy, dQ̃ the heat added to the system and T̃ the

absolute temperature.

Thermodynamic selection refers to competition between the individual molecules for the total energy

contained in the material aggregate. Hence the selective advantage s, is given by

s = ∆S̃

Here ∆S̃ is the difference, at successive times, in the extent of energy spreading within the

microscopic storage modes associated with each molecule.

Energy transformations in open systems are contingent on the action of energy and material fluxes

on the steady state configurations of the system. In systems where the steady states are close

to the equilibrium configuration—this includes physical systems such as the Benard cell—energy

transformation can by analyzed in terms of the formalism of dissipative structures, Nicolis and

Prigogine [45].

Wicken [41], Schneider and Kay [43] have argued that the formalism of dissipative structures is also

applicable to far from equilibrium systems, that is systems, like living organisms, that are dependent on

fluxes of matter and energy from the external environment in order to maintain their organization.

The application of the formalism of dissipative structures to evolutionary theory is based on the

assumption that the thermodynamic concept, entropy production, defined for physico–chemical systems,

see Nicolis and Prigogine [45], can be considered a measure of the efficiency with which biosystems

appropriate energy from the environment and distribute this energy throughout the various units that

compose the system. Systems endowed with a greater efficiency will have a selective advantage, hence

the entropy production of the system will increase as more efficient types replace their less efficient
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competitors. Consequently, the rate of circulation of matter and energy in the system, a measure of the

entropy production rate, will also increase.

This thermodynamic model of the evolutionary process has been adduced in studies of ecosystem

dynamics to propose various correlations between temperature and ecosystem parameters such as

species diversity, and ecosystem productivity. However, empirical studies of the relations between these

thermodynamic and ecosystem parameters are not consistent with the various claims advanced by the

proponents of the model. For example, contrary to the predictions of the thermodynamic paradigm, there

is no correlation between the temperature of ecosystems and their productivity.

Although heat is the most familiar mode of energy transfer in aggregates of inanimate matter, it is an

inefficient means of transferring energy in living organisms. This inefficiency issues from the fact that

the maximum work which may be obtained from a heat engine is given by the equation

w = q
T2 − T1
T2

.

Here q is the heat absorbed, and T2 and T1 are the absolute temperatures of the aggregates of matter

between which the heat passes. Since there are no significant differences between the different parts of a

cell or between the different tissues in an organism, cells cannot function as heat engines, Lehninger [46].

The isothermal nature of living organisms imposes certain fundamental limitations on the

thermodynamic paradigm invoked by Lotka as a model for understanding the dynamics of selection

in biotic systems.

1.6.2. Demographic Systems—Fisher and the Malthusian Paradigm

The demographic approach to formalizing Darwinian fitness has its origin in Malthus’ study of

population dynamics. The main thrust of Malthus’ theory was the distinction between the exponential

growth of a population and the linear growth of resources. Malthus argued that, in view of these

qualitative differences in growth rate, populations will eventually be subject to resource limitations—a

condition which would lead to intense competition. This observation entailed a struggle for resources as

a mechanism for evolutionary change—an implication Darwin explicitly acknowledged in The Origin

of Species.

Inspired partly by Darwin’s acknowledgment, Fisher [6] proposed the population growth rate, which

he canonized as the Malthusian parameter, as a measure of Darwinian fitness. The main contribution of

Fisher to the formalization of Darwin’s argument is the fusion of the Malthusian demographic models

with the Mendelian laws of inheritance to study changes in mean fitness, that is the mean population

growth rate, under natural selection. This contribution is expressed in the following proposition,

Fisher [6].

(II) The mean fitness of a population increases under natural selection.

The above statement ascribes a direction to the process of natural selection—a property which Fisher

considered to be analogous to the increase in entropy which characterizes the thermodynamic selection

principle in inanimate matter.

The measure of selective advantage in the Fisherian model is given by

s = ∆r
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Here ∆r is the difference in growth rate between the incumbent and the variant type.

This measure of selective advantage is the rationale for the Malthusian selection principle: The

outcome of competition between related populations is a deterministic process which is predicted by

the population growth rate.

The Malthusian tenet which formed the cornerstone of Fisher’s model, has been cited as the cardinal

rule for elucidating the dynamics of evolutionary processes in several contexts: molecular and viral

evolution, Domingo et al. [37]; the evolution of life history, Charlesworth [47], Roff [9], Houston and

McNamara [48]; the evolution of aging, Hamilton [11]. However, the implications of the Malthusian

principle are often inconsistent with empirical observations. For example, the Malthusian models predict

that mortality rates in natural populations should increase exponentially with age—the Gompertzian

distribution. However, large scale studies of senescence in several animal and in modern human

populations have revealed mortality rates that level off at advanced ages—the so called mortality plateau,

Carey et al. [49].

This fundamental limitation of the Malthusian parameter as a measure of fitness was only recently

elucidated, [5,29]. These studies show that the Malthusian parameter predicts the outcome of selection

only under idealized conditions, namely, when resources are unlimited and population size is large,

effectively infinite. When resources are limited, and vary in abundance and composition, and when

population size is finite, the outcome of selection is now determined by the rate at which organisms

appropriate resources from the external environment, a property which is analytically described by

evolutionary entropy, [5].

2. Organization of Paper

Directionality theory is a mathematical model of the Darwinian theory of evolution by variation and

natural selection. The key concept in directionality theory is evolutionary entropy, a statistical parameter

which describes the rate at which organisms appropriate resources from the external environment and

the efficiency with which these resources are reinvested into net-offspring production. The mathematical

basis of the evolutionary entropy concept and the relation of the concept to thermodynamic entropy is

described in Section 3.

Classical models of the evolutionary process characterize the population dynamics in terms of

two macroscopic parameters, population growth rate and generation time. Experimental studies of

competition between populations indicate that these two parameters predict the outcome of selection

only under certain restricted class of ecological constraints. In Section 4 we exploit the ergodic theory

of dynamical systems to show that the prediction of the outcome of selection under general ecological

constraints requires a new class of macroscopic variables, in particular, the quantity evolutionary entropy.

Section 5 exploits this evolutionary entropy concept to study the dynamics of competition for

resources between related populations–an incumbent population and a variant. The outcome of

competition is described in terms of the following tenet:

The entropic selection principle: When resources are constant in abundance and diverse in

composition, variants with increased entropy will have a selective advantage and increase in frequency.
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When resources vary in abundance and resource composition is singular, variants with decreased entropy

will have a selective advantage and increase in frequency.

Section 6 reviews the relation between complexity and stability in the context of biological

networks—metabolic, demographic and ecological. Complexity is characterized in terms of evolutonary

entropy, and stability by the rate at which the population returns to the steady state after a random

endogenous or exogenous perturbation. The relation between these two macroscopic properties is

expressed by

The complexity-stability theorem: Changes in evolutionary entropy and changes in stability are

positively correlated.

Evolutionary entropy is a statistical measure of the number of accessible pathways of energy flow

within the population. The complexity–stability theorem, Demetrius, Gundlach and Ochs [50], thus

reflects the intuitive notion that as the number of pathways of energy flow increases, the resilience of the

population to endogenous and exogenous perturbations also increases.

The entropic selection principle and the complexity-stability theorem are the main precepts that

describe the evolutionary dynamics of metabolic, demographic and ecological networks. These

include populations of replicating molecules, age and size-structured populations, communities of

interacting species.

The entropic selection principle and the complexity–stability theorem also apply to the analysis

of social networks, that is populations of organisms whose resource allocation among themselves is

determined by certain rules of cooperation. The analytic study of the evolutionary dynamics of social

behavior, which we call the Entropic theory of sociality, can be developed from both genetic and

phenotypic perspectives.

The genotypic viewpoint was introduced by Hamilton, [51], and has its origin in models of classical

population genetics. Hamilton’s model, called Inclusive fitness theory, considers the individual as the uni

of selection. The evolution of social behavior is analyzed in terms of the genes that determine the social

interaction between pairs of individuals–the performer of the behavior and its recipient. The fundamental

parameter in this study is the coefficient of kinship–the genetic relatedness between actor and recipient.

Fitness in this model is described in terms of net-offspring production. The fitness associated with the

social network is the sum of the fitness of the actor and the fitness of the recipient–a quantity which is

weighted by the coefficient of kinship.

The cornerstone of Inclusive fitness theory is Hamilton’s rule. This asserts that the evolution of

altruism and selfishness, two cardinal measures of sociality, can be qualitatively described as follows.

I(a) When genetic relatedness is high, altruism will have a selective advantage.

I(b) When genetic relatedness is low, selfishness will have a selective advantage.

The phenotypic perspective regarding social behavior described in this review considers a population

of individuals as the unit of selection. A social network is described in terms of a directed graph where

the nodes correspond to individuals and the links between nodes represent the nature and intensity of

the interaction. The analysis of the evolution of social behavior in this model is based on what we have

called:
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The Entropy–Sociality Rule: Evolutionary entropy parametrizes the position of a population along a

sociality–continuum: low entropy depicting a network consisting of individuals with selfish dispositions,

high entropy characterizing a network consisting of individuals with cooperative dispositions.

Our analysis of the evolution of social behavior distinguishes between the ecological constraints

(limited and unlimited resources), and the demographic conditions (finite and infinite population size)

which determine the selective process.

This study is developed in Section 7. The rules which we derive are classified according to the

resource constraints which operate. These rules and can be qualitatively annotated as follows:

(a) Limited resources

When resource abundance is limited and population size is finite, the outcome of selection will be

decided by the capacity of individuals to appropriate resources from the environment. The selective

process will be regulated by the level of resource abundance and its degree of heterogeneity. The

predicted correlation between resource patterns and behavioral dispositions can be described as

follows.

II(a) When resource abundance is constant, and resource composition diverse, cooperative traits

will have a selective advantage.

II(b) When resource is subject to large variation in abundance, and resource composition is

singular, selfish traits will have a selective advantage.

(b) Unlimited resources

When resource abundance is unlimited and population size is large, effectively infinite, the level

of resource abundance is no longer a decisive factor in the selective process. Darwinian fitness,

the capacity of a type to contribute to the ancestry of the next generation, will now depend on the

rate at which the organisms convert the available resources into offspring production. Phenotypic

relatedness now emerges as a critical factor in deciding the outcome of selection. The evolutionary

rules describing social behavior can now be depicted as follows.

III(a) When phenotypic relatedness is high, cooperation will have a selective advantage.

III(b) When phenotypic relatedness is low, selfishness will have a selective advantage.

Now Hamilton’s rule, as expressed by (I), derives from models of classical population genetics. These

models implicitly assume that resources are unlimited and that population size is large, effectively

infinite. In Section 8, we will extend the domain of application of Inclusive fitness theory by

incorporating the effects of resource constraints and population size on Hamilton’s model. We will

show, in the framework of this gene-centric model, that the evolution of altruism and selfishness can be

described in terms of propositions which are analogous to (II) and (III). The propositions are as follows:

(IV)(a) When resources are of limited abundance, and population size is finite, the evolution of social

behavior is conditional on the resource constraints, namely the degree of variation in abundance

and the heterogeneity in composition

(IV)(b) When resources are of unlimited abundance, and population size is large, effectively infinite, then

the evolution of social behavior is contingent on the genetic relatedness.
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These results indicate that Hamilton’s rule, which is derived from the assumption that the genetic

evolution of social behavior is determined exclusively by the degree of genetic relatedness, refers

uniquely to conditions where resource abundance is unlimited, and population size is large, effectively

infinite. Our analysis indicates that when resource abundance is limited and population size is finite,

genetic relatedness is no longer the deciding factor. This observation, which makes explicit the domain

of application of Inclusive fitness theory, can be summarized in terms of the following dictum.

Hamilton’s Rule and the Entropic Principle of sociality: Hamilton’s rule is the limit, as

resource abundance and population size tend to infinity, of the entropic principle of sociality.

The above proposition entails that Hamilton’s rule, and its various elaborations proposed by recent

investigators, see, for example, Bourke [15], is an approximation to the entropic principle of sociality–an

approximation whose validity increases, as resource abundance and population size increase.

Section 9 appeals to a new theory of bioenergetics–quantum metabolism–to derive analytic relations

between evolutionary entropy and a suite of organism and population level parameters. An analytical

relation between entropy and body size, which emerges from these studies, will be a central element in

the analysis of microevolutionary and macroevolutionary trends in body size.

Section 9–11 are concerned with evolutionary dynamics on ecological and geological time scales.

The evolutionary process on these time scales involves the integration of an invasion dynamics, which is

described by the entropic selection principle, and an establishment process, which involves the laws of

Mendelian inheritance. Section 9 appeals to the entropic selection principle and the laws of Mendelian

inheritance to derive the fundamental theorem of evolution, and a class of directionality principles for

evolutionary change under speciation and extinction, [21].

The fundamental theorem of evolution.

A(i) When resources are constant in abundance and diverse in competition, evolutionary entropy

increases.

A(ii) When resources undergo large variation in abundance and is singular, evolutionary entropy

decreases.

These principles pertain to long term changes in entropy as one population type replaces another due

to the continual action of mutation and selection.

Certain aspects of this microevolutionary principle have been evaluated using demographic data of

Swedish and French populations during the last 200 years [52,53]. These studies have been shown to be

consistent with the fundamental theorem of evolution.

The study of evolutionary dynamics as concisely described in terms of the rules A(i) and A(ii), is

based on the analysis of changes in the genotypic and phenotypic composition of a population as new

types are introduced by mutation and the population composition reordered by selection. The model

imposes certain critical ecological and demographic constraints: resource abundance is limited, and

population size is finite. The changes in entropy described by the two tenets refer to global shifts

in population composition as the system evolves from one non-equilibrium state to another under the

mutation–selection regime.
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The Fisherian model of the evolutionary process, as articulated by the fundamental theorem of natural

selection, entails that mean fitness increases. The theorem is concerned with changes in genotypic and

phenotypic composition under a single force, namely selection. The changes in genotypic composition

due to mutation–a central factor in the process described by the entropic principle of evolution–is ignored

in Fisher’s model. The Fisherian analysis implicitly assumes certain critical ecological and demographic

constraints, namely, resource abundance is unlimited and population size is large, effectively infinite.

The changes in genotypic and phenotypic composition are characterized in terms of changes in the mean

Malthusian parameter, the measure of fitness adduced in the model.

Now, as we have established in [29], the Malthusian selection principle, the tenet which underlies the

Fisherian analysis, is the limit, as resource abundance and population size tend to infinity, of the entropic

selection principle. We can therefore appeal to this correspondence between Malthusian selection and

entropic selection to relate Fisher’s theorem with the fundamental theorem of evolution:

Fisher’s selection theorem and the fundamental theorem of evolution: The increase in

mean fitness is the limit, as resource abundance and population size tend to infinity, and the

mutation rate tends to zero, of the fundamental theorem of evolution.

Higher level or macroevolutionary processes such as speciation, and extinction–background and mass

extinction, are analyzed in Section 10 and 11 as emergent properties of the microevolutionary events of

mutation and natural selection. Background extinction pertains to the gradual demise of species due

primarily to biotic factors. Mass-extinction–a relatively rare event–pertains to the demise of complete

clades and phyletic lineages–a process driven primarily by abiotic forces.

These macroevolutionary changes are expressed in terms of the following proposition.

Directionality Principles: Speciation and Background Extinction

The rate of change of mean entropy is equal to the covariance in entropy and the net-diversification

rate.

Two distinct dynamical changes in mean entropy can be inferred from the above Proposition.

B(i) When the net-diversification rate and the entropy are positively correlated, the mean

entropy increases.

B(ii) When the net-diversification rate and the entropy are negatively correlated, the mean

entropy decreases.

The macroevolutionary change which also implicates mass extinction events can be described by a

related principle:

Directionality Principle: Speciation, Background and Mass Extinction

The maximum entropy of species in a clade increases as one clade replaces another over geological

time.

The three classes of directionality principles can be adduced to predict evolutionary changes in

morphometric variables, namely, adult body size, on ecological time scales; mean body size, and

maximum body size on geological time scales. The changes in body size can be inferred from the

directional trends in entropy and can be annotated as follows:
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(I) Directional trends in adult body size under mutation and selection.

(i) Body size increases when resources are constant in abundance and diverse in composition.

(ii) Body size decreases when resources vary in abundance and is singular in composition.

(II) Directional trends in mean body size under speciation and background extinction.

(i) Mean body size increases when the net-diversification rate and body size are

positively correlated.

(ii) Mean body size decreases when the net-diversification rate and body size are

negatively correlated.

(III) Directional trends in maximum body size under speciation, background extinction, and

mass extinction: The maximum body size increases as one clade replaces another at successive

epochs of geological time.

Directionality theory is an analytic study of energy transformation in living organisms. The organizing

parameters are evolutionary entropy, a measure of the diversity of the pathways of energy flow within the

population, and generation time, the mean turn-over time of the metabolic processes in the population.

Thermodynamic theory is the analytic study of energy transformation in inanimate matter. The

organizing parameters are thermodynamic entropy, a measure of the diversity of energy states in a

material aggregate, and temperature, the mean kinetic energy of the particles in the aggregate.

In Section 12 we will establish an analytic relation between evolutionary entropy and thermodynamic

entropy. We will appeal to this relation to establish a correspondence between the thermodynamic

selection principle and the fundamental theorem of evolution.

We will show that, when the rate of change in resource abundance tends to zero, and population size

tends to infinity, the fundamental theorem of evolution reduces to the thermodynamic selection principle.

This correspondence establishes a link between the thermodynamic processes that regulate energy

transformation in inanimate matter, and the evolutionary processes that determine energy transformation

in living organisms. The link, which we call the Continuation Rule, is the mainstay of a new class of

models of the emergence of life from inanimate matter.

3. Entropy: Origin and Properties

Heterogeneity in the developmental state at which individuals in a population pass through the various

stages of their life-cycle is an intrinsic property of all organisms. This variability, which is encoded in the

genome, has its origin in the processes that underlie the ontogeny of the individual. In cellular systems,

it results from the random inequalities between cells, such as the unequal distribution of metabolic

components which occur at cell division. In multicellular and higher organisms, this variability is a

consequence of the small random variations in the sequence of developmental events that transform

the zygote into an adult. Accordingly, any genetically homogeneous population of organisms will be

characterized by a heterogeneity in individual birth and death rates.

The ergodic theory of dynamical systems was exploited to provide a quantitative measure of this

heterogeneity. This measure of energy flow in living organisms was called evolutionary entropy, on

account of its formal relation with the statistical measure thermodynamic entropy.
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3.1. Thermodynamic Entropy

Heat flows from hotter bodies to colder bodies and not the other way round. This empirical

observation and the efforts to explain it in mechanistic terms was the driving force behind the

development of thermodynamic theory. Clausius showed that this directionality in the flow of heat

energy implied the existence of a property which he called entropy, and denoted S̃. By appealing to

mathematical arguments and physical principles, Clausius established a fundamental relation between

the entropy change dS̃ and the change in heat energy dQ̃ which occurs in a material aggregate at a

given temperature, T̃ .

dS̃ =
dQ̃

T̃
. (8)

The entropy concept, as introduced by Clausius, is a phenomenological observable whose change

at given absolute temperature is determined by the amount of heat energy supplied to the system. In

order to obtain a mechanistic explanation of the directional change in the flow of heat, one needs a

mathematical model which will relate the microscopic behavior of the particles that compose the material

aggregate with macroscopic properties such as temperature. The model introduced by Boltzmann and

Gibbs considered the material aggregate–solid, liquid or gas–as composed of individual particles whose

state is described by their position and velocity.

The statistical thermodynamics of Gibbs and Boltzmann is based on two mathematically equivalent

descriptions of the diversity in energy states of the individual particles. These measures of diversity,

which coincide with the Clausius entropy when certain equilibrium conditions are satisfied, are called

the Gibbs entropy S̃G, and the Boltzmann entropy S̃B .

The Gibbs entropy S̃G

S̃G = −
∑

j

p̃j log p̃j. (9)

Here p̃j denotes the probability that a randomly chosen particle is in energy state j.

A solid has low entropy since the constituent particles occupy fixed positions in the aggregate. A

gas has high entropy since the particles are free to move around. Figure 2 (a) and (b) describe the

distributions of particles in a solid and a gas, respectively.

Figure 2. Distributions of particles in different phase. (a) solid; (b) gas.

(a) (b)
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The entropy S̃G describes the extent to which the energy is spread out among the accessible

microstates. In Figure 2 (a) energy is spread out among few microstates and S̃G is small, in Figure 2 (b)

energy is spread out among a large number of microstates and S̃G is large.

The Boltzmann entropy, denoted S̃B, is given by

S̃B = k logW. (10)

Here k is Boltzmann’s constant, and W denotes the number of microstates consistent with a given

macrostate. In a solid, W is small, hence so is S̃B . In gases, W is large, hence S̃B is also large.

Boltzmann’s singular contribution to thermodynamic theory rests on establishing two analytical facts.

(a) The entropy S̃B increases as the material aggregate evolves from one non-equilibrium state

to an equilibrium condition. This mathematical result embodies the thermodynamic principle: The

equilibrium states of material aggregates are the states which maximize thermodynamic entropy.

(b) At equilibrium, the Boltzmann entropy and the Clausius entropy coincide. The Clausius entropy

is expressed in terms of the property heat, and the macroscopic variable temperature. The relationship

between the Boltzmann entropy and the Clausius entropy, when integrated with Boltzmann’s theorem,

provides a mechanistic explanation of the Second Law of Thermodynamics.

3.2. Evolutionary Entropy

Heat is the most common agency by which energy is transformed in inanimate systems. It is not,

however, an effective mode of energy transfer in living organisms–which are essentially isothermal.

Living organisms do not operate as thermal machines since there are no significant differences in

temperature either at the cellular level or at the tissue level.

The energy-transforming activities in a cell, for example, can be described in terms of a flow

of chemical energy from organic substrates to those energy-requiring processes necessary for the

functioning of the cell. These energy-transforming processes are isothermal, nevertheless, they are

characterized by a certain directionality. This property can be illustrated by considering a population of

replicating cells transforming the energy of foodstuff into chemical work. A population which is initially

synchronous, that is all cells in the population pass through the cell cycle at the same rate, will gradually

become asynchronous, a condition described by the cells passing through the cycle at different rates.

The transition from synchrony to asynchrony is a characteristic feature of all populations of replicating

cells. The phenomenon corresponds to a change in the distribution of the flow of chemical energy

within the population. The shift from a synchronous to an asynchronous system entails the existence

of a mathematical property which we call evolutionary entropy, denoted S. By appealing to certain

allometric rules which relate cell size to metabolic rate and cycle time, we established a fundamental

relation between changes in evolutionary entropy dS, and the change in metabolic rate dP which occurs

in a population with a given generation time T [31],

dS = −T dP. (11)

A mechanistic explanation of the directionality described by the transition from synchrony to

asynchrony requires a mathematical model which incorporates the kinetic behavior of the individual cells
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in the population. The model invoked in [17,20] addressed this problem by considering the population

as consisting of individual cells whose kinetics is parametrized in terms of the rates at which the cells

pass through the different stages of the cell cycle. The objective of this model was the derivation of

statistical descriptors of asynchrony and the use of these descriptors to explain the spontaneous change

from synchrony to asynchrony.

3.2.1. Statistical Measures: Cell Cycle Model

The ergodic theory of dynamical systems presents a mathematical framework for generating

macroscopic level properties from the array of interacting lower level entities: The application of this

formalism to populations of replicating cells whose position in the cell dycle is parametrized by age, has

given rise to two mathematically equivalent statistical measures which coincide with the bioenergetic

variable described by Equation (11).

The first statistical measure, an analogue of the Gibbs entropy, is given by

S = −
d∑

j=1

pj log pj . (12)

Here d denotes the number of age classes. The quantity pj denotes the probability that the mother

of a randomly chosen daughter cell is in the state j. The entropy S thus describes the uncertainty in

the age of the mother of a randomly chosen newborn cell. A synchronous population has zero entropy;

an asynchronous population has positive entropy. Figure 3 describes synchronous and asynchronous

populations, respectively.

The nodes in both graphs correspond to age or cell cycle stage. In Figure 3 (a), cell division occurs at

a single stage in the cell cycle. Here, the cells in the population pass through the different stages of the

cell cycle at the same rate. We have p1 = p2 = . . . = pd−1 = 0, pd = 1. Thus the entropy is S = 0.

In Figure 3 (b) cell division may occur at several distinct stages in the cell cycle. Here we have pj ≥ 0

for 1 ≤ j ≤ d− 1 and pd ≤ 1, thus the entropy S is positive.

Figure 3. (a) Synchronous population: S = 0; (b) Asynchronous population: S > 0.

(a) (b)

The second statistical measure, an analogue of the Boltzmann entropy, is given by

S = logW ∗. (13)

Here W ∗ denotes the number of typical lineages or genealogies generated by a cell in the population.

The term genealogy corresponds to a recording of the successive ancestors of a cell in the population.
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In Figure 3 (a), each cell generates a unique genealogy, which can be expressed by the sequence

1 2 3 . . . d 1 2 . . .

Here W ∗ = 1 and S = 0.

In Figure 3 (b), the genealogies which are generated by a cell in state 1 are

1 2 1 2 . . . . . .

1 2 3 1 . . . . . .

1 2 3 4 . . . . . .

There is an uncountable number of genealogies generated by state 1. The number of typical

genealogies, W ∗, will satisfy the condition W ∗ > 1. Hence we have S > 0.

The expressions given by Equations (12) and (13) also pertain to populations of cells or organisms

whose state is parametrized by a physiological condition, which leads to graphical representations of the

form given by Figure 2 (a), (b).

3.2.2. Statistical Measures: General Model

An important generalization of the cell cycle model–which includes metabolic networks or ecological

systems–can be described in terms of a strongly connected graph, G, see Figure 4.

Figure 4. A general network of interacting elements.

Let Ω denote the set of all paths of the graph G. Such paths are denoted by

x = (...x1x0x1x2...)

where each xi represents the state of an element in the population. Each path is called, as in the cell cycle

model, a genealogy as it represents a recording of successive ancestral states of particular individuals.

At steady state, the dynamical behavior of the system will be described by a probability measure µ on

Ω, which is invariant under the transformation τ : Ω → Ω, defined by (τx)i = xi+1 for i ∈ Z.

Evolutionary entropy for this class of models is the Kolmogorov-Sinai entropy Hµ(τ), see

Billingsley [54]. There exists a large class of models, where the interaction between the elements which

define the graph is of a form which entails that the measure µ is Markov and given by a stochastic matrix
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P = (pij) together with the corresponding stationary distribution π = (πi). In this case evolutionary

entropy, denoted H , becomes

H = Hµ(τ) = −
∑

i,j

πipij log pij . (14)

The entropyH describes the diversity of pathways of energy flow between the elements that compose

the network.

The entropy H can also be described as the asymptotic rate of increase of the number of typical

genealogies, an expression analogous to Equation (13).

Let Ω(t) denote the set of genealogies generated by a single individual during the interval (0, t) and

let E denote a subset of Ω(t). We associate with the set E a probability measure as follows. Consider an

element z ∈ E, where

z = (z0, z1, . . . , zt−1)

and write [z] = {x ∈ Ω : xi = zi for 0 ≤ i ≤ t − 1}. Let µt define a measure on Ω(t) via

µt(E) =
∑

z∈E µ([z]). Then the effective population size N∗(t) is defined by

N∗(t) = min{card(E) : E ⊂ Ω(t), µt(E) > 1− ε}

for small ε > 0. The effective size describes the minimal number of genealogies whose total probability

exceeds 1− ε. The Shannon-McMillan-Breiman Theorem can be applied to show that

H = lim
t→∞

1

t
logN∗(t) = log lim

t→∞
[N∗(t)]1/t.

It follows from W ∗ = limt→∞[N∗(t)]1/t that

H = logW ∗. (15)

The expressions (14) and (15) thus represent two equivalent statistical characterizations of entropy.

The equivalence of Equations (14) and (15) can be illustrated by considering a model defined by three

states, see Figure 5 (a), (b).

Figure 5. Networks and evolutionary entropy. (a) H = 0; (b) H = log 3

(a) (b)

In Figure 5 (a) the probability measure µ on the space of genealogies Ω can be described in terms of

the stochastic matrix P , which is

P =




0 0 1

1 0 0

0 1 0
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and W̃ ∗ = 1. Hence the entropy measures given by Equations (14) and (15) are both zero.

In Figure 5 (b) the probability measure µ is described by the stochastic matrix P given by

P =




1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3




and W̃ ∗ = 3. Hence both entropy measures yield the value log 3.

Figure 5 (a), (b) also illustrate the depiction of entropy as a measure of the diversity of pathways of

energy flow. In Figure 5 (a), there is a unique path as described by the cycle 1 2 3. Figure 5 (b) indicates

a multiplicity of paths.

3.3. Thermodynamic Entropy and Evolutionary Entropy

Thermodynamic theory in its largest sense is concerned with the rules which govern the flow and

distribution of energy within and between various material aggregates: solids, liquids and gases

The theory has its origin in empirical observations concerning the conversion of the chemical energy

of fuels into the kinetic energy of steam engines. Accordingly, a critical distinction is made between

the classical or phenomenological thermodynamics, which is concerned with macroscopic depictions of

energy transformations, and statistical thermodynamics, which analyzes energy transformation in terms

of quantities which describe the molecular dynamics and organization of the macrocopic properties.

The central concepts in classical thermodynamics are the temperature, T̃ , the heat energy Q̃, and

the phenomenological entropy S̃, discovered by Clausius in the studies of the Carnot models of

energy conversion.

Clausius integrated physical observations and mathematical analysis to show that changes in entropy

dS̃ are related to the temperature T̃ and the change dQ̃ in heat energy. The relation between these

quantities is given by Equation (8).

Statistical thermodynamics is an analytical theory based on algorithmic rules for expressing the

phenomenological variables in classical thermodynamics in terms of the dynamical properties of the

molecules that constitute the material aggregate. The Clausius entropy, for example, admits a statistical

representation. This statistical descriptor is given in terms of the number of microstates consistent with a

given macroscopic state, a property which defines the statistical measure of entropy introduced by Gibbs

and Boltzmann. An important observable in statistical thermodynamics is the free energy, denoted F̃ .

This quantity satisfies a variational principle which entails an analytic relation between the free energy,

the mean energy, Ũ , the Gibbs-Boltzmann entropy S̃ and the temperature, T̃ . We have the identity

F̃ = Ũ − S̃T̃ . (16)

Evolutionary theory in its largest sense is concerned with the rules which govern the flow and

distribution of chemical or metabolic energy within and between populations of replicating organisms.

Directionality theory is a mathematical model of the evolutionary process. The central concepts in the

theory are the generation time T , the mean turn-over time of the chemical reactions within the organism

and the mass-specific metabolic rate P .
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The integration of bioenergetic observations and mathematical analysis entailed the existence of a

property, evolutionary entropy, whose change is related to the generation time and the metabolic rate

according to Equation (11).

The ergodic theory of dynamical systems was exploited to derive statistical characterizations of the

macroscopic variable evolutionary entropy. An important parameter in this study is the population

growth rate denoted r. This quantity is known to satisfy a variational principle which is formally

analogous to the minimization of the free energy in statistical mechanics. This variational principle

entails that the population growth rate can be expressed as the sum of an energy function, called the

reproductive potential and denoted Φ, and an entropy rate S/T . We have

r = Φ+
S

T
(17)

The function Φ is called the reproductive potential.

The relations (8), (11) and the relations (16), (17) suggest a formal correspondence between the

thermodynamic variables, the free energy, the mean energy, the thermodynamic entropy, and the

temperature, and the population parameters–growth rate, reproductive potential, evolutionary entropy

and the generation time.

The relations described in Table 1 indicate that the thermodynamic and the evolutionary selection

principles are formally analogous. We will show in Section 10 that in the case of networks which can be

analyzed from both thermodynamic and evolutionary perspectives, we have, when resource production,

R → 0, and population size, M → ∞ the condition

∆S.∆S̃ > 0 .

This relation indicates that the thermodynamic principle can be seen as a limiting case of the

evolutionary principle. This observation has important implications for understanding in energetic terms

the transition from an aggregate of inanimate matter to a system consisting of metabolic and replicating

entities.

4. Macroscopic Variables in Biological Networks

Statistical mechanics is a mathematical framework for describing how higher level patterns may

emerge from the activity and the interaction between the lower-level elements. The microscopic world

of a gas are the individual molecules whose dynamics can be parametrized by their position and velocity.

The macroscopic variables are quantities such as the mean energy, the temperature, and the entropy.

The formalism developed by Gibbs and Boltzmann, which relates the macroscopic variables with

the cooperative interaction of the atoms and molecules in the microscopic world of physical systems

can be generalized to analyze the relation between macroscopic variables and the kinetic variables of

biopopulations [18,20].

4.1. The Dynamics of Biological Networks

Biological networks with non-linear dynamics can be described by the difference equation [20]

u(t+ 1) = A(t)u(t). (18)
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Here A(t) = (aij(t) is a matrix whose entries aij(t) are functions of the distribution u(t). A particular

example is the total population size N(t) =
∑

i ui(t). The relation (18) can be illustrated with two well

known examples.

(1) Demographic models:

The elements ui(t) denote the number of individuals in age-class (i) at time t. The matrix assumes

the form

A(t) =




m1(t) m2(t) . . . . . . md(t)

b1(t) 0 . . . . . . 0

0 b2(t)
. . .

...
...

. . .
. . .

. . .
...

0 . . . 0 bd−1(t) 0




. (19)

Here mi(t) denotes the mean number of offspring produced by individuals in the i-th age class; bi(t)

represent the proportion of individuals that survive from age class (i) to age class (i+ 1).

(2) Cell cycle models:

The elements ui(t) now denote the number of individuals in stage (i) of the cell cycle. Assuming that

mitosis only occurs at states (d−1) and (d) in the cell cycle, and that the transition between states of the

cell cycle are of the form j → j + 1, or j → j + 2, we have

A(t) =




a11(t) a12(t) . . . . . . a1,d−1 a1d(t)

a21(t) a22(t) 0 . . . 0 0

0 a32(t) a33(t) 0
. . .

...
...

. . .
. . .

...

0 . . . 0 ad−1,d−2(t) ad−1,d−1(t) 0

0 0 . . . 0 ad,d−1(t) add(t)




.

4.2. The Steady State

We will assume that the system evolves to a steady state. At steady state the process is now represented

by the constant matrix A = (aij) with aij > 0.

Let S = {1, 2, . . . , d} and

X =
∞∏

i=−∞

Si, where Si = S.

We now introduce the space of configurations

Ω = {x ∈ X : axi+1xi
> 0}.

The configuration space Ω is called the space of genealogies. It denotes the set of all infinite backward

paths of the graph associated with the matrix.

Now let τ : Ω → Ω, (xk) 7→ (x̃k), where x̃k = xk+1 be the shift map, and let M denote the set of

probability measures which are invariant under the shift τ . Let µ denote the natural probability measure
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on Ω when the steady state of Equation (18) is attained. This measure µ is known to satisfy a variational

principle, see [18]: It is the probability measure that maximizes

Hµ(τ) +

∫
ϕdµ. (20)

Here Hµ(τ) is the Kolmogorov-Sinai entropy for the system (Ω, µ, τ) and the function ϕ : Ω → R is

given by

ϕ(x) = log ax1x0
. (21)

The probability measure µ is known to be a Markov measure. Analytically, it is described in terms of

the Markov-matrix P = (pij), where

pij =
ajivj
λvi

, pij ≥ 0. (22)

Here v = (vi) is the left eigenvector corresponding to the largest eigenvalue (in absolute terms) λ of

the matrix A.

4.3. The Macroscopic Variables

The variational principle given by Equation (20) indicates that the process at steady state can be

described in terms of the dynamical system (Ω, µ, ϕ) where the function ϕ is given by Equation (21),

and the measure µ is determined by the Markov chain induced by the matrix P given by Equation (22).

The statistical mechanics formalism furnished algorithms for generating a family of macroscopic

variables using the function ϕ and the measure µ.

(i) The growth rate

Consider the function

Snϕ(x) =
n−1∑

k=0

ϕ(τkx) =
n−1∑

k=0

log axk+1xk

and write

Zn(ϕ) =
∑

(x0,x1,...,xn)

expSnϕ(x
∗) =

∑

(x0,x1,...,xn)

ax1x0
ax2x1

. . . axnxn−1

where for given (x0, x1, . . . , xn) we denote by x∗ any point in Ω with x∗i = xi for i = 0, 1, . . . , n.

In correspondence with the famous Perron-Frobenius Theorem the limit

lim
n→∞

1

n
logZn(ϕ) = log λ = r (23)

exists under rather general conditions for the potential ϕ. Here λ is the dominant eigenvalue of the

transition matrix A. In view of the variational principle given by Equation (20), we have, see [18], that

r = Φ+H (24)

where H = Hµ(τ) and Φ =
∫
ϕdµ.

The statistical parameterH denotes the Kolmogorov–Sinai entropy of the dynamical system (Ω, µ, ϕ).
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(ii) Evolutionary entropy

The term evolutionary entropy describes the entropy H when the measure µ is Markov. In this

instance, the measure can be represented in terms of a probability matrix P = (pij) with a stationary

distribution. The entropy H is now given by

H = −
∑

i,j

πipij log pij (25)

We now evaluate Equation (25) in the case of a demographic network and then for a general

biological network.

Demographic networks

We consider the network given by Equation (19) and assume that the age-specific fecundity and

survivorship variables are constant, that is mi(t) = mi, bi(t) = bi. Write

lj =




1 , j = 1

b1 · . . . · bj−1 , j > 1

The number lj represents the proportion of individuals surviving to age j.

Let λ denote the dominant eigenvalue of the matrix A: This quantity is the unique positive real root

of the equation

1−
d∑

j=1

ljmj

λj
= 0 (26)

We can infer from Equation (26) that

pj =
ljmj

λj

defines a probability distribution for the age of parents.

With the help of the probability distribution given by the pj , we can express the elements of the

Markov matrix P = (pij) in terms of (pj). This enables a computation of H as given by Equation (25),

and we have

H =
−
∑d

j=1 pj log pj∑d
j=1 jpj

≡ S

T
(27)

The quantity S is a measure of the number of reproductive cycles in the demographic network and

describes the degree of iteroparity. The quantity T is the generation time, the mean age of mothers at the

birth of their offspring.

General networks

An analogue of Equation (27) holds in the case of general biological networks [54].

We consider the directed graph G associated with the Markov matrix P = (pij). We now fix once and

for all a vertex a ∈ X , where X = (1, 2, . . . , d). We now consider the set of all states, denoted X̃ , and

defined by

X̃ =

{
[a, β1, β2, . . . , βn−1, a] : a→ β1 → β2 → . . .→ βn−1 → a

where βi 6= a for all i, and n ≥ 1

}
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A state ã ∈ X̃ is a path on the graph G, which starts at a and ends at a, and does not visit a in the

middle.

Write

pã = paβ1
pβ1β2

. . . pβn−1βn

The quantity pã is the probability of a given cycle which starts at a.

We can appeal to Abramov’s theorem in ergodic theory to show, see [55], that

H =
−
∑

ã∈X̃ pã log pã∑
ã∈X̃ |ã| pã

≡ S

T

Here |ã| = n for the n such that

ã = [a, β1, β2, . . . , βn−1, a] .

This depiction of H , which is of the same form as Equation (27), elucidates the distinction between

the two entropy measures H and S. The quantity S is a measure of the number of replicative cycles in

the network. The quantity T is the cycle times mean return time of the Markov process.

(iii) The reproductive potential and other indices

The relation given by Equation (23) can be used to generate a new class of macroscopic variables.

Let λ(δ) denote the dominant eigenvalue of the matrixA(δ), where aij(δ) = a1+δ
ij and r(δ) = log λ(δ).

As shown in [20], we have

r(δ) = r(0) + δr′(0) +
δ2

2!
r′′(0) +

δ3

3!
r′′′(0) + . . . (28)

where

r′(0) = lim
n→∞

1

n
En(Snϕ) =

∫
ϕdµ = Φ,

r′′(0) = lim
n→∞

1

n
Varn(Snϕ) = σ2(ϕ),

r′′′(0) = lim
n→∞

1

n
En[Snϕ− EnSnϕ]

3 = κ(ϕ).

Here En and Varn denote the expectation and the variance with respect to the measure µn on finite

symbol sequences of length n of the form (x0, x1, . . . , xn), which is given by

µn(x0, x1, . . . , xn) =
Snϕ(x

∗)∑
(y0,y1,...,yn)

Snϕ(y∗)

The quantities H , Φ, σ2 and κ represent a suite of macroscopic variables. The quantity Φ is called the

reproductive potential, σ2 the demographic variance, and κ the correlation index.
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5. The Entropic Selection Principle

The entropic selection principle constitutes a set of rules which describe the outcome of competition

between an incumbent population and a variant type. The rules assert that the outcome is conditional

on certain constraints on the resources and predicted by evolutionary entropy. Qualitatively, the rules

contend that (a) when resources are constant and limited, variants with increased entropy will prevail

and increase in frequency; (b) when resources undergo large variations in abundance, variants with

decreased entropy will be dominant.

5.1. Incumbent and Variant Populations

Our analysis of competition will be described in terms of a dynamic interaction between two classes

of populations–an incumbent, whose dynamics at steady state is given by (Ω, µ, ϕ) and a variant, whose

dynamics at steady state is given by (Ω, µ∗, ϕ∗). In order to express the notion that the variant is derived

from the incumbent by a mutation, we will impose the following condition, assuming δ having small

absolute value:

ϕ∗ = ϕ(δ) = ϕ+ δψ

where ∫
ϕdµ =

∫
ψdµ, and

d

dδ

∫
ϕdµ|δ=0 =

d

dδ

∫
ψdµ|δ=0.

The biological rationale for the above constraints are discussed in [32].

Let r, H , σ2 denote the macroscopic parameters that describe the incumbent and r(δ), H(δ), σ2(δ)

the corresponding parameters for the variant. Write

∆r = r(δ)− r(0),

∆H = H(δ)−H(0),

∆σ2 = σ2(δ)− σ2(0).

The relations given in Equation (28) entails assuming Φ 6= 0, γ 6= 0 that

∆r ≈ Φδ,

∆H ≈ −σ2δ,

∆σ2 ≈ γδ,

where γ = 2σ2 + κ. In particular, we can conclude for small δ the following relations:

Φ < 0 ⇒ ∆r∆H > 0, (29)

Φ > 0 ⇒ ∆r∆H < 0, (30)

γ < 0 ⇒ ∆H∆σ2 > 0, (31)

γ > 0 ⇒ ∆H∆σ2 < 0. (32)

These implications will play a crucial role in the next section where we determine criteria for invasion

of a variant type.
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5.2. Invasion-Extinction Dynamics

The condition for the increase in frequency and ultimate fixation of the invading population is

evaluated by considering the stochastic dynamics of the frequency of the invader. For this purpose a

continuous time diffusion approximation is used in order to consider

p(t) =
N∗(t)

N∗(t) +N(t)
. (33)

Here N(t) denotes the population size of the resident population and N∗(t) the population size of the

invader, where N∗(t) ≪ N(t) and t ∈ R+.

For analyzing the dynamics of p(t) techniques of diffusion approximation, see Feller [56], are

integrated with the techniques of ergodic theory (cf. Arnold, Demetrius and Gundlach [18]). This

approach rests on a central limit theorem asserting that for the natural measure µ and for any a ∈ R

lim
n→∞

µ

{
x ∈ Ω :

Snϕ(x)− n
∫
ϕdµ√

n
≤ a

}
=

1

σ
√
2π

∫ a

−∞

exp

(
− t2

2σ2

)
dt.

Thus asymptotically the deviations of the sample path Snϕ for one genealogy from the mean for

n → ∞ can be approximated by Brownian motion with variance σ2t for a continuous time evolution.

Thus we assume that the sample path Snϕ corresponding to a randomly chosen individual can be

described by Brownian motion and hence by a diffusion equation. In fact, we assume that the whole

population can be described this way and that large deviations from the mean lose significance when the

size of the population increases. This corresponds to observations of statistical entities and in particular

of real population behavior.

Consequently we consider p(t) as a stochastic process by treating the dynamics of the population

sizes N(t) and N∗(t) as diffusion processes with infinitesimal moments obtained as

lim
∆t→0

1

∆t
E{N(t +∆t)−N(t)|N(t) = N} = r(0)N, (34)

lim
∆t→0

1

∆t
E{(N(t +∆t)−N(t))2|N(t) = N} = N2 lim

∆t→0

1

∆t

σ2∆t

N
= σ2N, (35)

where we denote by E the expectation. In the determination of the second infinitesimal moment we

invoke the observation that if N becomes large the influence of fluctuations becomes small and hence

the process becomes deterministic. Thus we have made the assumption that the change in logN(t)

in the time interval ∆t due to fluctuations is caused by Brownian motion with variance
σ2(ϕ)∆t
N(t)

. We

can therefore describe the evolution of the density f(N, t) of the process N(t) by the solution of the

Fokker-Planck equation
∂f

∂t
= −r(0)∂(fN)

∂N
+
σ2(0)

2

∂2(fN)

∂N2
.

Equivalently, we could also characterize N(t) as a solution of the stochastic differential equation

dN = rN dt+ σ
√
N dWt.

We get respective representations for the process N∗(t) and its density f ∗(N∗, t), namely

∂f ∗

∂t
= −r(δ)∂(f

∗N∗)

∂N∗
+
σ2(δ)

2

∂2(f ∗N∗)

∂N∗2
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We assume that the processes N(t) and N∗(t) evolve simultaneously and stochastically indepen-

dently. Then we obtain for

M(t) = N(t) +N∗(t), p(t) =
N∗(t)

M(t)
(36)

that the stochastic differential equations for N and N∗ are equivalent to

dM = (r + p∆r)Mdt + σ
√

(1− p)MdWt + σ(δ)
√
pMdW ∗

t ,

dp = p(1− p)

(
∆r − ∆σ2

M

)
dt− σp

√
p

M
dW ∗

t .

If we assume that M is constant, then p is given by a diffusion process with drift

α(p) = p(1− p)

[
∆r − ∆σ2

M

]
,

and variance

β(p) =
p(1− p

M
[σ2p+ σ∗2(1− p)].

The diffusion process has a density ψ which solves the Fokker-Planck equation

∂ψ

∂t
= −∂[α(p)ψ]

∂p
+

1

2

∂2[β(p)ψ]

∂p2

and has natural boundary conditions

ψ(0, t) = 0, ψ(1, t) = 1

corresponding to the cases that p = 0 (extinction of the mutant population) and p = 1 (extinction of the

incumbent population). For any initial value ψ(p, 0) there exists a unique solution (Feller [56]).

We denote by P (y) the probability that the diffusion process leads to an absorption in the state 1

(extinction of the incumbent population). By appealing to the backward Kolmogorov equation of the

diffusion process and integration it follows that

P (y) =
1−

(
1− ∆σ2

σ∗
2 y
) 2Ms

∆σ2+1

1−
(
1− ∆σ2

σ∗
2

) 2Ms

∆σ2 +1
(37)

where

s = ∆r − 1

M
∆σ2. (38)

Except in the degenerate–and for large M unusual–case of 2Ms
∆σ2 = −1, P ′(y) cannot vanish and

the convexity of P can be determined in terms of s only, and it is easy to show that s > 0 implies

the convexity of P , s < 0 implies the concavity of P . The degree of curvature of P depends on

the magnitude of s, i.e., on the values of ∆r, ∆σ2 and M , as can be seen from the following graphs,

obtained by numerical calculation for some suitable choices of ∆σ2/σ∗2 and Ms/∆σ2 and showing the

dependence of P (y), the ultimate invasion probability, on y, the initial frequency of the mutant:
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Figure 6. (a) ∆r > 0, ∆σ2 < 0, (b) ∆r < 0, ∆σ2 > 0
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Figure 7. ∆r > 0, ∆σ2 > 0, (a) M > ∆σ2/∆r (b) M < ∆σ2/∆r
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Figure 8. ∆r < 0, ∆σ2 < 0, (a) M > ∆σ2/∆r (b) M < ∆σ2/∆r.
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These observations on the relationship between the signs of ∆r and ∆σ2, and the curvature of P

entail that for almost all initial values of p very close to 0 the solution p is absorbed in 0 for any possible

perturbation, if

∆r < 0, ∆σ2 ≥ 0 or ∆r ≤ 0, ∆σ2 > 0.

5.3. Evolutionary Stability

Evolutionary stability refers to the condition that no mutant population can invade into an incumbent

population, i.e., all mutant populations will eventually become extinct. In the previous section we have

seen that this situation can only occur under two conditions on the change of macroscopic parameters

∆r and ∆σ2. The selective advantage s̃ can be expressed in terms of changes in a single macroscopic

variable, namely ∆H when Φ 6= 0, γ 6= 0. This new index is obtained by appealing to the perturbation

relations given by Equations (29)–(32). We obtain

s̃ = −
(
Φ− γ

M

)
∆H. (39)

The criteria for invasion of a mutant will now be given by Table 3.

Thus the main result on invasion dynamics and evolutionary stability of populations can be

summarized by the following entropic selection principle.

Theorem 5.1. A population is evolutionarily stable, if its entropy is extremal, namely maximal in the

case of Φ < 0, γ > 0 and minimal in the case of Φ > 0, γ < 0, respectively.

These entropic selection rules indicate that evolutionarily stable states correspond to extremal states of

evolutionary entropy. Evolutionary entropy is positively correlated with demographic stability, the rate at

which the population returns to the steady state condition after a random perturbation [50]. Consequently,

the evolutionarily stable state will be also characterized by states of extremal demographic stability.

5.4. Selection Principle and Resource Constraints

The analysis of the effect of resource constraints on the outcome of selection will be based

on the following assumption: The resource abundance R and the total population size M are in

dynamical equilibrium.

Consistent with Equations (34) and (35), we will also assume that the dynamics of the population size

N is determined by the growth rate, r, and the demographic variance σ2, respectively.
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Table 3. Invasion criteria.

Ecological Constraints Demographic Condition Selective Cutcome

∆H > 0 Variant invades a.s.

Φ < 0, γ > 0

∆H < 0 Variant becomess extinct a.s.

∆H < 0 Variant invades a.s.

Φ > 0, γ < 0

∆H > 0 Variant becomess extinct a.s.

∆H > 0 Variant invades a.s.

M large

∆H < 0 Variant becomes extinct a.s.

Φ < 0, γ < 0

∆H > 0 Variant invades with

probability increasing in size

M small

∆H < 0 Variant becomes extinct with

probability increasing in size

∆H < 0 Variant invades a.s.

M large

∆H > 0 Variant becomes extinct a.s.

Φ > 0, γ > 0

∆H < 0 Variant invades with

probability increasing in size

M small

∆H > 0 Variant becomes extinct with

probability increasing in size

The outcome of competition between the ancestral type X and the variant type X∗ depends on

two factors:

(1) Resource-metabolic process: The relative capacity of the two types to acquire the resources

which the environment avails. This property will depend on the metabolic efficiency of the

organisms and their capacity to acquire the energy of the resources and to transform this energy into

metabolic energy.

(2) Metabolic-demographic process: The relative capacity of the types to convert the metabolic energy

of the organism into net-offspring production

The relative contribution of these two factors to the outcome of selection will depend on the resource

abundance R. When R is large, effectively infinite, the changes ∆r and ∆σ2 will not be correlated with

changes ∆R in resource abundance. In this case, the competitive outcome will be completely regulated

by the metabolic-demographic process. However, when resource abundance is finite, the changes ∆r and
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∆σ2 will both be correlated with the change ∆R in resource abundance and hence the resource-metabolic

process becomes a critical factor in determining selective outcome.

We will distinguish between these two factors in delineating the effect of resource abundance, finite

or infinite, on the dynamics of selection.

(I) Resource abundance infinite

When this condition prevails, the metabolic-demographic process determines selective outcome.

Accordingly, the outcome will now depend on the demographic variables ∆r, ∆σ2 and the population

size M .

When the population size M is infinite, the selective process will be completely determined by ∆r.

The selective advantage now becomes

s = ∆r.

When M is finite, the measure of selective advantage is now a function of ∆r, ∆σ2 and M ,

s = ∆r − 1

M
∆σ2.

(II) Resource abundance finite

When this condition prevails, the resource-metabolic process now becomes a critical factor in deciding

the outcome of competition. Let us assume that the dynamical changes in resource abundance R can be

described in terms of two parameters, resource production rate and resource diversity, respectively. Now

when resource abundance is finite, the changes ∆R will induce changes in the net-reproduction function

and consequently, correlated changes ∆r and ∆σ2 in the growth rate and the demographic variance,

respectively. Now if r(δ) and σ2(δ) are the resulting parameters after changes in r and σ2 due to a

perturbation of magnitude δ in the net-reproduction function, we have

dr

dδ
|δ=0 = Φ,

dσ2

dδ
|δ=0 = γ. (40)

Since the resource abundance is limited, we conclude that

Φ 6= 0 and γ 6= 0.

Moreover Φ and γ, which are demographic parameters, will be correlated, and hence characterize the

resource variables, production rate and diversity, respectively.

Now the rate at which the population returns to its steady state condition after a random perturbation

in the individual parameters, is given by evolutionary entropy H . The parameter ∆H will now describe

the relative capacity of the two types to respond to changes in resource abundance.

Accordingly, when resource abundance is finite, the outcome of competition between the incumbent

and variant type will now be contingent on the parameters Φ and γ, and predicted by ∆H .

When M is infinite, the measure of selective advantage can be inferred from Equation (39),

and becomes

s = −Φ∆H. (41)

Hence,
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(i) when Φ < 0, ∆H > 0 or Φ > 0, ∆H < 0, s > 0, and the variant increases in frequency,

(ii) when Φ > 0, ∆H > 0 or Φ < 0, ∆H < 0, s < 0 and the variant decreases in frequency.

When M is finite, the measure of selective advantage now becomes

s̃ = −
(
Φ− γ

M

)
∆H. (42)

Hence Φ − γ
M
< 0, ∆H > 0 or Φ − γ

M
> 0, ∆H < 0 implies s̃ > 0, and the variant increases in

frequency. Whereas Φ − γ
M
< 0, ∆H < 0 or Φ − γ

M
> 0, ∆H > 0 implies s̃ < 0 and the variant

decreases in frequency.

The relation between the resource conditions (finite and infinite), population size M , and the various

measures of selective advantage is summarized in Table 4.

Table 4. Measures of selective advantage and resource constraints.

Population Size
Resource Abundance

Limited Unlimited

Finite s = −
(
Φ− γ

M

)
∆H s = ∆r − 1

M
∆σ2

Infinite s = −Φ∆H s = ∆r

We can appeal to the characterization given in Table 4 to assert the following proposition:

The Malthusian principle and the entropic selection principle—a relation: The Malthusian prin-

ciple is the limit as resource abundance and population size tend to infinity of the entropic

selection principle.

Since Fisher’s discovery of the Malthusian principle in 1930, the notion that the population growth

rate predicts the outcome of natural selection has been the basis for most evolutionary studies.

The relation between the Malthusian and the entropic principle we have described indicates that

the Malthusian principle represents an approximation to the entropic principle. The validity of the

approximation will increase with increasing population size and increasing resource abundance. The

explanatory power of the Malthusian model in evolutionary biology, is based on the fact that in many

experimental and laboratory contexts, population size is indeed large and resources are indeed abundant.

In the natural populations however, resources are often limited, and population size is small. In this case

the evolutionary entropic principle now becomes the critical tenet for understanding the dynamics of

evolutionary change.

5.5. Demographic Parameters and Resource Constraints

We will now appeal to the description of the reproductive potential Φ and the demographic index

γ to show that when resource abundance is finite, the sign of Φ can be invoked to represent different

degrees of resource abundance, whereas the sign of γ can be used to characterize different degrees of

resource diversity. The empirical and computational support for the correlation between the demographic

parameters and the resource constraints is established in [29].
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(A) Reproductive potential Φ as index of resource abundance

From Equation (24) we have

Φ = r −H. (43)

Hence Φ < 0 ⇒ r < H and Φ > 0 ⇒ r > H .

Since r denotes population growth rate, the rate of increase in population size, and H characterizes

population stability, the rate of return of populations to their steady state condition after a perturbation,

we can infer from Equation (43) that the following characterizations of the reproductive potential obtain:

1. Φ < 0: constant limited resources

2. Φ > 0: large variance in resource abundance.

The condition Φ < 0 characterizes equilibrium species. These populations are described by a

relatively constant population size and inhabit environments where resources are constant and limited.

The relation Φ > 0 describes opportunistic species. Population size in this case can undergo large

variations and the resources fluctuate in abundance.

(B) Demographic index γ as a measure of resource diversity

The demographic index γ is related to the demographic parameters σ2 and κ according to the identity,

see [20],

γ = 2σ2 + κ.

The variance σ2 is positive, whereas κ as a measure of the skewness of the random variable logϕ can

assume both positive and negative values.

The condition κ ≪ 0, represents a large skewness in the net-reproductive function and entails γ < 0,

whereas κ ≈ 0 or κ > 0, a flatness in the net-reproductive function, implies γ > 0. These relations

entail:

1. γ < 0: peaked distribution in net-reproductive function–a homogeneous resource type

(singular resource),

2. γ > 0: a flat distribution in net reproductive function–a heterogeneous resource type

(diverse resources).

The property γ < 0 describes univalent systems. This defines a homogeneous resource with low

diversity, whereas γ > 0 characterizes multivalent systems. The available resources in this case are

heterogeneous and diverse. The constraints which the resource abundance and the resource diversity

imposes on the demographic variables Φ and γ are summarized in Table 5.

Table 5. Demographic parameters and resource constraints.

Reproductive Potential Φ Demographic Index γ (resource composition)

(resource abundance) γ > 0 γ < 0

Φ < 0 constant and limited, diverse constant and limited, singular

Φ > 0 variable, diverse variable, singular
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6. Complexity and Stability of Biological Networks

The complexity–stability dichotomy in biological systems has its origin in studies of integrative

medicine. These investigations aimed to elucidate the mechanisms which organisms exploit to maintain

their functionality, despite large endogenous and exogenous perturbations. The two main contributors

to these studies were the French experimentalist, Claude Bernard [57] and the American physiologist,

Walter Cannon [58]. Bernard introduced the notion of constancy of the Milieu Interieure to describe the

capacity of organisms to maintain their metabolic integrity when subject to various stresses induced by

the interaction with the environment. This stability, according to Bernard, was a result of the high degree

of connectance of the metabolic networks in living organisms. The large diversity of pathways that define

the networks was proposed as the factor which buffered the system against perturbations, and ensured

constancy of energy production despite random variations in the reaction kinetics. Cannon introduced

the term homeostasis to describe the capacity of a metabolic network to maintain its functionality. The

factors which ensured homeostasis was attributed to the topology of the regulatory network.

The empirical observations of Bernard and Cannon can be considered the basis for the hypothesis that

the robustness of cellular and metabolic networks are correlated with the diversity of the pathways of

energy flow between the individual elements.

The contrast between complexity, as a measure of the connectance of a biological network, and

stability, as characterizing its response to perturbations, later emerged as a central theme in ecology.

The significance of the complexity–stability hypothesis as a fundamental biological property is largely

due to Elton [59] who provided empirical evidence to show that the robustness of ecological networks is

typically greater in communities described by a high degree of connectance between the species.

The empirical observations of Elton has been the stimulus for several analytical studies of the

complexity–stability hypothesis in the context of ecological models. One of the first efforts to develop

a formal analysis of the problem is due to MacArthur [60]. Heuristic arguments were adduced to show

that the complexity of the network, as defined in terms of number of species and the number of trophic

levels, was positively correlated with stability.

MacArthur’s model, despite its highly qualitative nature, emerged as a important contribution to

ecological studies as it furnished a powerful heuristic, and a proximate mechanism for understanding

the empirical observations of Elton.

May [61], in an effort to introduce a more rigorous framework for studying the relation between

complexity and stability, appealed to earlier computational studies due to Gardner and Ashby [62],

and proposed a model where the interaction coefficients between species are described as random

variables fixed in time. May appealed to certain properties of large random matrices to claim that

increasingly severe constraints must be imposed on the distribution of the interspecific coefficients to

ensure the stability of the ecological community. The argument, as advanced in [61], contends that, as

the connectance of the network or the average interaction strength between the species increases, the

transition from stability to instability is sharp.

May’s proposition, based on extensive numerical studies, runs counter to MacArthur’s result which

was derived by a heuristic argument and formulated in highly qualitative terms. The stability concepts

invoked in the two classes of models, however, are based on quite different criteria. Stability in Mac
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Arthur’s model describes “the amount of choice which energy has in following the paths up through

the food web”. In May’s model, a network is defined to be stable if and only if all eigenvalues of

the community matrix associated with the network have negative real parts. This notion of stability

has considerable explanatory power in studies of systems which are isolated, or closed to the action

of external forces. However, this characterization of stability becomes less significant in the case

of systems, biological networks for example, whose steady states are described by non-equilibrium

constraints.

The model proposed in Demetrius, Gundlach and Ochs [50] was formulated in order to provide a

general mathematical framework for the empirical observations documented in the studies by Bernard,

Cannon and Elton, and also to furnish an evolutionary understanding for the large differences in stability

observed in studies of biological networks.

Our analysis appealed to recent developments in the ergodic theory of dynamical systems and the

theory of large deviations to formally characterize the notions of complexity and stability. We assume

that the dynamical system associated with the network is at steady state, and is described in terms of

the mathematical object (Ω, µ, ϕ). Here Ω denote the configuration space of genealogies; ϕ represents a

potential function on Ω, and µ denotes the Gibbs measure associated with ϕ.

Now, the complexity of a network can be qualitatively described in terms of the connectance of

the network, and the intensity of interaction between the nodes. We will appeal to the ergodic theory of

dynamical systems to describe these properties in terms of the entropy of the dynamical system (Ω, µ, ϕ).

The robustness of a biological network describes its capacity to maintain its functionalities in the face

of internal and external perturbations. Large deviation theory, Ellis [63], Young [64], can be adduced to

obtain an analytic depiction of robustness in terms of the rate at which the system returns to the steady

state configuration after a random perturbation.

We will show that the entropy H , and the robustness, R are analytically related. This result, [50],

called the complexity-stability theorem, asserts.

∆H.∆R > 0 (44)

The quantities ∆H and ∆R denote the changes in entropy and robustness which are generated as a

result of a change in the microscopic parameters that define the network.

The complexity–stability theorem given by Equation (44) implies that evolutionary entropy H ,

predicts the macroscopic response of the system to a spontaneous fluctuation. The application of

this result to elucidate the response of biological networks to external perturbations is based on the

fluctuation–dissipation theorem in statistical mechanics. According to this result, Kubo [65], the

response of a system in thermodynamic equilibrium to a small external perturbation is equivalent to

its relaxation after a spontaneous fluctuation. We can apply this result and the relation given by

Equation (41), to establish that evolutionary entropy determines the response of the system to any

endogenous or exogenous perturbation. Hence evolutionary entropy is a proximate cause of network

stability, and parametrizes the resilience of the system and its capacity to maintain its functionalities

after random perturbations.
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6.1. Complexity and Evolutionary Entropy

The complexity of a biological network denotes, in qualitative terms, the extent to which the behavior

of the components of the network are correlated. The concept thus involves properties such as: the

connectance of the network, the intensity of interaction between the nodes, and the size of the network.

Any analytic measure of complexity should be an increasing function of size and should: (a) attain its

minimum value when the network is described my a unique cycle; (b) for fixed size, increase with the

clustering of the nodes and the intensity of the interaction between the nodes; and (c) attain its maximum

value when all nodes are connected to each other by a path of unit length.

Fig 9 denote three graphs with the same number of nodes but with different connectance between the

nodes.

According to our prescription, any complexity measure, C, should satisfy the properties C(a) <

C(b) < C(c).

Figure 9. Entropy as measure of network complexity. (a) H = 0; (c) H = log 3.
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We will show that the dynamical entropy of the model (Ω, µ, ϕ) satisfies the complexity criteria that

we have postulated. If we denote the entropy by H , we observe that

H(a) < H(b) < H(c)

and H(a) = 0, H(c) = log 3.

In general, if d denote the number of nodes in the network, we have

0 ≤ H ≤ log d

The characterization of entropyH as a measure of complexity rests on the analytical fact thatH describes

the asymptotic rate of increase of the number of “typical” genealogies generated by the network.

In the case of a given network, the genealogies generated up to time t can be ordered in terms of their

frequencies. According to the Shannon-McMillan theorem, when t is large, the genealogies will fall into

two classes: (i) a class S1 where each genealogy has approximately the same frequency, (ii) a class S2

where the sum of the probabilities of the genealogies belonging to this class is ε. The class S1 constitutes

the typical genealogies. At time t, the number in this class is approximately etH .

The notion of typical genealogies can be formalized as follows. Let Ω(t) denote the set of genealogies

generated during the time interval (0, t), and let E denote a subset of Ω(t). We will use the measure µ on

Ω to associate with the set E a probability measure, which we denote by µE.
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Consider an element z ∈ E where

z = (z0, z1, . . . , zt−1)

and write

[z] =
{
x ∈ Ω : xi = zi, 0 ≤ i ≤ t

}

We now write

µt(E) =
∑

z∈E

µ[z]

We now introduce a quantity N∗(t) defined by

N∗(t) = min
{
cardE : E ⊂ Ω(t), µt(E) > 1− ε

}
.

N∗(t) describes the minimal number of genealogies generated up to time t, whose probability exceeds

(1− ε). This quantity, by definition, is the typical number of genealogies up to time t.

The relation between the entropy H and the network complexity is an immediate consequence of the

Shannon-McMillan theorem, Billingsley [54],

H = lim
t→∞

(
1

t

)
logN∗(t) (45)

A heuristic interpretation of Equation (45) can be expressed as follows. We assert that for arbitrarily

small ε > 0, and δ > 0, and for sufficiently large t, all genealogies can be separated into classes S1 and

S2 such that:

(a) for every genealogy x in class S1 ∣∣∣∣
logµ(x)

t
+H

∣∣∣∣ < ε (46)

(b) the sum of the probabilities of genealogies belonging to the class S2 is less then δ.

For all genealogies x ∈ S1 we have that
(
−1

t

)
log µ(x) is close to H . Hence, all genealogies of

the class S1 have approximately the same probability, namely e−tH . This means that the number of

genealogies in this class, the typical genealogies, is approximately etH .

6.2. Robustness and the Fluctuation Decay Rate

Robustness pertains to the invariance of the macroscopic properties of the system in the face of

endogenous and exogenous perturbations. The nature of these perturbations will be conditioned by

the biological network, its level of organization and its structure.

The mathematical formalism of large deviation theory, Young [64], Ellis [63], provides a basis for

describing the robustness of a biological network. The network is represented by the mathematical

object (Ω, µ, ϕ). We now introduce the mean value Φ, defined by:

Φ =

∫
ϕdµ
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Write

Snϕ(x) =

n−1∑

j=0

ϕ
(
τ j(x)

)
.

Here τ denote the shift transformation on the space of genealogies.

By the Birkhoff ergodic theorem,

lim
n→∞

1

n
Snϕ(x) = Φ.

Now write

Pn(ϕ) =

∣∣∣∣
1

n
Snϕ(x)− Φ

∣∣∣∣ .

The quantity Pn(ϕ) represents the deviation or fluctuation of the sample mean 1
n
Snϕ(x) from the

normalized average value.

Given ε > 0, consider the probability Qn(ε) that the sample mean 1
n
Snϕ(x) differs from the mean

value by more than ε, that is

Qn(ε) = µ̃ {x ∈ Ω : Pn(ϕ)(x) > ε} . (47)

We have by the ergodic theorem

lim
n→∞

Qn(ε) = 0.

The convergence to zero is at least exponential. Hence for any ε > 0, there exist positive constants C

and M , such that for every n,

µ̃ {x ∈ Ω : Pnϕ(x) > ε} ≤ Ce−nM .

In order to depict the fluctuation decay rate, we ask: How fast on a logarithmic scale does the value

Qn(ε) go to zero? The rate R is given by

R = R(ε) = lim
n→∞

−1

n
logQn(ε). (48)

The quantity R is a measure of the relaxation of the system after a spontaneous fluctuation.

The significance of R as a measure of robustness depends on the Fluctuation dissipation theorem

(FDT) in statistical mechanics. According to the FDT, there exists an explicit relation between the

fluctuation properties of a thermodynamic system and its linear response which involves non-equilibrium

quantities. The theorem relates the dissipation of dynamics at equilibrium with macroscopic response

to exogenous perturbations. We can exploit this theorem to infer that R constitutes a measure of the

response of macroscopic properties of the biological network to external perturbations.

6.3. Entropy and Robustness: The Complexity–Stability Theorem

The complexity–stability theorem asserts that the entropy H , and the fluctuation decay rate R, are

positively correlated. The proof of will appeal to a class of analytic results in large deviation theory, due

to Young [64] and Ellis [63]. We first give a heuristic argument which elucidates the theorem before

proceeding to its proof.

The heuristic argument will depend critically on the characterization of H given by Equation (45).

We note from Equation (46) thatH embodies information regarding the asymptotic value of the minimal

number of genealogies whose total probability exceeds 1− ε.
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Now, it should be evident from Equation (46) that the greater the minimal number of genealogies

whose total number exceeds 1− ε, the smaller will be the measure of the set of genealogies that deviate

up to ε from the behavior of the typical genealogy. In view of the asymptotic representation of N∗(t)

and Qn(ε) given by Equations (45) and (48), we conclude that the larger the entropy, the more rapid

the fluctuation decay rate. This is essentially the meaning of the positive correlation between H and R
which the theorem asserts.

We now proceed to a precise statement of the theorem and its formal proof. We will consider the

network as described by the dynamical system (Ω, µ, ϕ) with entropy H . We will consider perturbations

of the form

ϕ(δ) = ϕ+ δϕ , (49)

We let µ(δ) denote the measure associated with the function ϕ(δ) and let H(δ) denote the

perturbed entropy.

Let R and R(δ) denote the fluctuation decay rates of the original and the perturbed system. Write

∆R = R(δ)−R(0),

∆H = H(δ)−H(0).

We will establish the following result.

Theorem. The evolutionary entropy H and the fluctuation decay rate R are positively correlated,

that is

∆R∆H > 0

for sufficiently small δ.

The proof of our result draws from certain characterizations of R in terms of a variational principle.

Recall that Equation (48) asserts

R = lim
n→∞

1

n
log µ̃

{
x ∈ Ω :

∣∣∣∣
1

n
Snϕ(x)− Φ

∣∣∣∣ > ε

}
.

In order to find a characterization of R we first define the more general decay rates

R̄(ϕ,E) = lim sup
n→∞

1

n
log µ̃

{
x ∈ Ω :

1

n

n−1∑

j=0

ϕ(τ jx) ∈ E

}
(50a)

R(φ,E) = lim inf
n→∞

1

n
log µ̃

{
x ∈ Ω :

1

n

n−1∑

j=0

ϕ(τ jx) ∈ E

}
(50b)

for arbitrary subsets E of the real line. The case we are mostly interested in corresponds to E = {s :

|s− ϕ| > ε}. Consider the function

hν(τ) +

∫
ϕdν

where ν denotes a probability measure in Ω which is invariant under the shift operator τ .

As shown, for example in Bowen [25], the pressure P (ϕ) satisfies a variational principle and is

given by

P (ϕ) = sup
ν

[
hν(τ) +

∫
ϕdν

]
.
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Write

G(ν) =

[
r −

(
hν(τ) +

∫
ϕdν

)]

and consider the function kϕ(s) defined by

kϕ(s) = inf

{
G(ν) : ν invariant under τ , and

∫
ϕdν = s

}
(51)

Applying the definition of G(ν) and taking into account that we have to restrict our attention to

measures with
∫
ϕdν = s, we obtain

kϕ(s) = P (ϕ)− s− sup

{
hν(τ) : ν invariant under τ , and

∫
ϕdν = s

}
. (52)

As shown by Young [64], the functions R(ϕ,E) and R̄(ϕ,E) defined in Equations (50a) and (50b)

can be expressed by the relations

R(ϕ,E) ≥ − inf{kϕ(s) : s ∈ E} for every open set E and

and

R̄(ϕ,E) ≤ − inf{kϕ(s) : s ∈ E} for every closed set E

Moreover, the function kϕ defined by Equation (51) satisfies the following relations: kϕ is continuous,

and by the variational principle given in Equation (20), kϕ(Φ) = 0.

The continuity of kϕ implies that in the case E = {s : |s − Φ| > ε} with some fixed ε > 0, the

lim sup and lim inf in Equations (50a) and (50b) are actually limits and therefore

R = R(ϕ,E) = R̄(ϕ,E) = − inf{kϕ(s) : s ∈ E}
= −min {kϕ (Φ− ε) , kϕ (Φ + ε)}

(53)

Let us now consider the perturbed system defined by the potential described by Equation (49). Since
∫
ϕ(δ) dν =

∫
(ϕ+ δϕ) dν ,

an application of the ergodic theorem yields

lim
n→∞

1

n

n−1∑

j=0

ϕ(δ)(τ jx) =

∫
ϕ(δ)dµ(δ) ≡ Φ(δ)

for genealogies x with probability one with respect to µ(δ), the unique equilibrium state corresponding

to ϕ(δ).

Using ϕ(δ) = (1 + δ)ϕ and dividing by 1 + δ, we obtain

lim
n→∞

1

n

n−1∑

j=0

ϕ(τ jx) =

∫
ϕdµ(δ).

Genealogies for which the sample mean 1
n

∑n−1
j=0 ϕ(τ

jx) after finite time n, deviates by more than ε

from the expected mean value
∫
ϕdµ(δ), are thus characterized by
∣∣∣∣∣
1

n

n−1∑

j=0

ϕ(τ jx)−
∫
ϕdµ(δ)

∣∣∣∣∣ > ε. (54)
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Multiplying Equation (54) by (1 + δ) we have

∣∣∣∣∣
1

n

n−1∑

j=0

ϕ(τ jx)(1 + δ)−
∫
ϕ(1 + δ)dµ(δ)

∣∣∣∣∣ > ε(1 + δ)

which is equivalent to ∣∣∣∣∣
1

n

n−1∑

j=0

ϕ(δ)(τ jx)− Φ(δ)

∣∣∣∣∣ > ε(1 + δ).

Let Qδ
n(ε) denote the measure of the set of genealogies where the sample mean 1

n
Snϕ(δ) differs from

the mean value Φ(δ) by more than ε. Analogously to the above considerations for the unperturbed model,

we find that Qδ
n(ε) decays exponentially with rate

R(δ) ≡ Rε(δ) = lim
n→∞

−1

n
logQδ

n(ε) (55)

In view of Equation (53), the decay rate R(δ), is given by

R(δ) ≡ min{kϕ(δ)(Φ(δ)− (1 + δ)ε), kϕ(δ)(Φ(δ) + (1 + δ)ε)}.

Using Equation (52), we obtain

kϕ(δ)(Φ(δ)− (1 + δ)ε)

= hµ(δ)(τ) + Φ(δ)

−
(
sup

{
hν(τ) : ν τ -invariant,

∫
ϕ(δ) dν = Φ(δ)− (1 + δ)ε

}
+ Φ(δ)− (1 + δ)ε

)

= hµ(δ)(τ) + (1 + δ)ε− sup

{
hν(τ) : ν τ -invariant,

∫
ϕdν = Φ− ε

}
. (56)

The last term sup
{
hν(τ) : ν τ -invariant,

∫
ϕdν = Φ− ε

}
is independent of δ since

∫
ϕ(δ)dν = Φ(δ)− (1 + δ)ε ⇔

∫
ϕdν = Φ− ε.

Analogously,

kϕ(δ)(Φ(δ) + (1 + δ)ε) = hµ(δ)(τ)− (1 + δ)ε− sup

{
hν(τ) : ν τ -invariant,

∫
ϕdν = Φ + ε

}
(57)

Combining Equations (56) and (57) applied with δ = δ1 and δ = 0, we obtain with ∆R = R(δ1) −
R(0) and ∆H = hµ(δ1)(τ)− hµ(τ)

∆H − δε ≤ ∆R ≤ ∆H + δε

and hence the desired result

∆H∆R > 0 (58)

for sufficiently small ε.

The expression (52) relates the entropy, a measure of the connectance of the biological network, with

robustness, the rate at which the system returns to the steady state after a spontaneous fluctuation. Now,
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according to the fluctuation-dissipation theorem in statistical mechanics, the response of a system to

external perturbations is correlated with the internal fluctuations of the system in the absence of the

disturbance, Kubo [65].

The external perturbations of biological networks are highly dependent on the level of biological

organization considered. These perturbations include:

(a) The removal of critical reactants in a metabolic network.

(b) The invasion of a pathogen in a demographic network.

(c) The extinction of certain species in an ecological network.

We can integrate the fluctuation–dissipation theorem of statistical mechanics with the fluctuation-

stability theorem to predict that the response of biological networks to these classes of external

perturbations is determined by evolutionary entropy. The complexity–stability theorem thus furnishes a

simple numerical index, namely entropy, for ranking networks according to their robustness, and hence

their vulnerability to extinction.

6.4. The Evolution of Robustness

The distinction between proximate and ultimate causations of biological systems has been discussed

by Mayr [3], who attributes the distinction, in the context of ecological systems, to David Lack [66].

Proximate causes relate the function of the system as well as its development, to the various local

forces that regulate it. Proximate mechanisms deal with the genetic programs that determine the function

or behavioral property of the system. Ultimate causes, on the other hand, purport to explain the origin

and history of the developmental and genetic programs that regulate the behavior of the system. The

complexity–stability theorem articulates the relation between the topology of the biological network and

its response to perturbation. The theorem thus depicts a proximate cause for the stability of biological

networks.

In order to characterize the evolutionary rationale for network stability, we will appeal to the entropic

selection principle. According to this principle, the outcome of competition between an incumbent and a

variant type is predicted by evolutionary entropy, and is contingent on the resource constraints, namely,

its abundance and diversity. This principle can be integrated with the complexity–stability theorem to

derive what we will call the:

Robustness–Selection principle: The outcome of competition between a variant type and the

incumbent is predicted by robustness, and regulated by the abundance and the heterogeneity of

the resource.

According to this principle, the measure of selective advantage s, is now given by

s = −(Φ− γ/M)∆R . (59)

Here ∆R denote the difference in robustness between the variant and the incumbent population.

The relation Equation (59) yields an evolutionary argument for the large difference in the stability of

biological networks. We observe from Equation (59), that when s > 0, we have the following conditions

on the various parameters:

(a) (Φ− γ/M) < 0, ∆R > 0 ; (b) (Φ− γ/M) > 0, ∆R < 0
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We infer from (a) and (b) a condition for the prevalence of robustness in terms of the ecological factors

that regulate the dynamics of selection among competing networks.

The condition (a) entails that when resources are constant in abundance, (Φ < 0), and diverse in

composition (γ > 0), networks with increased stability will have a selective advantage.

By contrast, condition (b) implies that when resources vary in abundance (Φ > 0), and is singular in

composition (γ < 0), networks with decreased stability will have a selective advantage.

7. The Evolution of Cooperation

Sociality is a very common feature in groups of living organisms. The ability to cooperate and to

perform acts which confer benefits to recipients and incur costs to the donor is ubiquitous. Cooperation

can be observed in colonies of single celled organisms; marine invertebrates, which consist of individuals

specialized to perform different roles; and insect societies [15,16,67]. The phenomenon is also observed

in human culture [68].

The understanding of this behavior has derived largely from studies of the social insects: ants, bees,

wasps and termites. The complex division of labour between members of the insect societies can be

described in terms of three modes of organization: solitary, quasi-social, and eusocial. The degree of

cooperation varies between each of these three modes. The extent to which the individual members of

the group cooperate can be parametrized in terms of patterns of resource allocation.

(a) Solitary: Resource allocation in the population is uniquely to self.

(b) Quasi-social: In insects which display this trait, nesting is communal, with the nest site

being shared by more than one adult female. Members in this colony allocate resources to both self

and non-self.

(c) Eusocial: Social organization involves reproductive division of labor, that is only some individuals

reproduce. The division into reproductive and non-reproductive castes means that certain individuals, the

non-reproductives, allocate no resources to self.

The prevalence of these three modes of sociality varies. Solitary and quasi-social behavior are

quite common. However, eusocial behavior is rare. Empirical studies of the ecological conditions

under which these different modes of sociality are observed indicate that the incidence is largely

modulated by the habitat, or more precisely, the resource conditions that characterize the habitat. For

example, a high degree of cooperation or sociality is prevalent in insects living in stable resource limited

environments, while solitary behavior is typical of species living in marginal habitats, where resources

vary in abundance. One of the fundamental problems in studies of cooperation concern the evolutionary

basis for this correspondence between various levels of sociality and the environmental constraints.

Studies of the evolution of sociality have been largely dominated by Hamilton’s inclusive fitness

theory. The model revolves around the notion that selection on a gene for social behavior is contingent

on two properties.

(i) The effects of the gene on the direct fitness of the bearer

(ii) The effects of the gene on the fitness of individuals who are genetically related to the bearer

Hamilton’s model is a natural extension of the classical Wright–Fisher models of population

genetics to situations where the unit of selection is now defined in terms of a group of genetically
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related individuals. Hamilton’s rule asserts that any social trait will be favored by natural selection if

and only if the sum of its direct and indirect fitness effects exceeds zero, [51]. Fitness, in the context of

these models is measured in terms of viability or reproductive success.

Inclusive fitness theory has generated considerable insight and qualitative understanding of social

behavior, in particular, cooperation among the social insects. The theory, structured as it is around the

basic assumptions of classical population genetics, has necessarily inherited certain limitations of this

class of models. These limitations derive largely from the assumption that population size is large,

effectively infinite, and resources are unlimited in abundance.

Critics of the Inclusive fitness theory, see for example, Bowles and Gitnis [67], Wilson [68], Wilson

and Hölldobler [69] have pointed to several common phenomena which are not readily accommodated

within the framework of the model. These phenomena include:

(1) The prevalence of cooperative behavior in groups larger than the immediate family.

A recognized example of this phenomenon is cooperation among Homo sapiens. Human cooperation

is known to extend beyond the immediate family to include strangers. Laboratory experiments indicate

that cooperation also occurs in interactions which are unlikely to be repeated, and in situations where no

reputational gains are conferred by cooperative behavior, [67].

(2) The rareness of eusociality and the ecological dominance of eusocial insects.

Eusociality is an advanced level of colonial organization described by division of labor between

reproductive and non-reproductive castes, overlapping generation and cooperative care for the young.

The eusocial condition is known to be rare. There exist only 15 taxonomic families of eusocial

species in a phylogeny consisting of 2600 families [68]. This phylogenetic rarity is inconsistent

with the hypothesis that genetic relatedness is the primary mechanism which determines the evolution

of cooperation.

(3) The correlation between eusociality and resource constraints.

The analysis of the Hymenopera and other species of insects indicate that all species that have attained

eusociality live in fortified nest sites. In the early stages leading towards eusocial behavior the nest

sites are generally guarded by workers. Moreover, a constant and dependable food resource is generally

within foraging range of the workers [68,69]. The correlation between these resource constraints and

the incidence of eusociality suggests that ecological factors may play a dominant role in the evolution

of cooperation.

According to the theory of Inclusive fitness, genetic relatedness is the central factor which drives the

spread of social traits. The formal structure of the model, and the various extensions that have been

proposed, are based on a gene-centric view of social evolution. This perspective implicitly ignores the

effect which constraints on the abundance and the composition of the resources may impose on the

evolution of sociality.

Directionality theory is a general model of the evolutionary process which takes into account the effect

of ecological and demographic factors on the outcome of natural selection. The model considers both the

effects of resource abundance and resource composition on the dynamics of selection. We will adduce
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the formalism of directionality theory to develop a general model of social evolution which considers

the effect of variations in resource abundance and resource composition on social behavior. The model

we propose is called the entropic theory of sociality. Our analysis considers the evolution of cooperation

from both phenotypic and genotypic perspectives. In the first class of models, Section 7.1–7.4, the

population is considered as the unit of selection. The second class of models, Section 8, is effectively

an extension of the theory of inclusive fitness. In this analysis, the individual is considered as the unit of

selection.

7.1. Evolutionary Entropy and Sociality

We consider a population as consisting of a group of individuals who interact through the allocation

and sharing of resources. The interaction can be described by a weighted directed graph, where the

weighted edges correspond to the intensity of the interaction between the individuals. The graph can

be identified with an adjacency matrix A = (aij) ≥ 0. The coefficient aij , i 6= j, is a measure of the

contribution of individuals in class (j) to the net-reproductive success of individuals in class (i), while

aii denotes the contribution of class (i) to its own reproductive success.

Let λ denote the dominant eigenvalue of A, and u = (ui) the eigenvector associated with λ:

Au = λu.

We write

pij =
aijuj
λui

.

The evolutionary entropy H associated with the network is given by

H = −
∑

ij

πipij log pij .

Here π = (πi) is the stationary distribution of the matrix P = (pij).

We will illustrate the relation between entropy and the degree of sociality by considering the three

classes of networks representing the interaction between the social insects. Without loss of generality,

we consider a system defined by two nodes corresponding to donor and recipient:

Figure 10. A general network with two nodes.

The elements a11, a22 denote the contribution to self, whereas a12, a21 denote the contribution

to non-self.
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(a) Solitary networks:

Figure 11. A solitary network.

There are no contributions from self to non-self; all distributions are directed to self; H = 0.

(b) Completely social networks:

Figure 12. A completely social network.

Contributions to self and non-self are equal; H = log 2. (c) Eusocial system:

Figure 13. An eusocial network.

Eusociality is a special case of cooperation where one group of individuals–the non-reproductives–

allocate no resources to self and invest all resources to non-self. The entropy is

H = − 1

c(1 + λ)

[
a log

( a
λc

)
+
b

λ
log

(
b

λ2c

)]

where

λ =
1

2c

[
a +

√
a2 + 4bc

]
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7.2. Evolutionary Entropy as a Measure of Social Organization

Cooperation pertains to an engagement with other individuals in a social network in a mutually

beneficial way. The social network in this context is defined in terms of interacting classes or groups of

individuals. The individuals in each group are assumed to belong to the same age, or social class, or in

general, defined by some common attribute.

We assume that the different groups appropriate resources from the external environment and allocate

these resources to other groups according to certain norms of social behavior. The norms are said to be

cooperative if they satisfy the following conditions.

(a) Reciprocity: This property describes the extent to which there exist differences between the

allocation of one group to another group. When complete reciprocity obtains, group A allocates to

group B the same amount that group B allocates to group A.

(b) Equitability: This norm describes the extent to which there exist differences between the

allocation of one group to itself, and its allocation to non–self. In the case of a network consisting

of two classes, A and B, complete equitability obtains when group A allocates the same amount to

A, as it allocates to B.

The significance of evolutionary entropy in studies of the evolution of sociality is based on the fact

that small changes in the norms, reciprocity and equitability, are positively correlated with changes in

evolutionary entropy. This property can be formalized in terms of the following tenet:

Entropy-Sociality Rule: Evolutionary entropy parametrizes the position of a population along a

sociality continuum defined in terms of the norms: reciprocity, and equitability.

Low entropic networks are described by weak reciprocity and low equitability. Networks with high

entropy are characterized by strong reciprocity, high equitability.

The relation between entropy and the norms of cooperation can be illustrated by considering the

dependence of entropy on reciprocity. We assume a symmetric interaction matrix

A =

(
a1 a2

a2 a1

)

The coefficient a1 describes resource allocation to self, and a2 describes allocation of resources

to non-self.

We write a1 = (1− θ)a2 where 0 < θ < 1. The parameter θ denotes deviation from reciprocity. The

entropy becomes

H = −1− θ

2− θ
log

1− θ

2− θ
− 1

2− θ
log

1

2− θ
.

We note, see Fig 14, thatH is a concave decreasing function of θ, with 0 ≤ H ≤ log 2. The maximum

value for H is attained when θ = 0, corresponding to complete reciprocity in resource allocation.
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Figure 14. Entropy and deviations from reciprocity.

Figure 15(a) and 15(b) describe networks with low and high entropy, respectively. In Figure 15(a),

resources are allocated almost exclusively to (1). Groups (2) and (3) receive small amounts ε, from (1),

but contribute amounts b and c to (1). In Figure 15(b), resources are equitably distributed to (1), (2)

and (3).

Figure 15. Inequitable and equitable resource allocation: low and high entropy.

(a) (b)

7.3. Relatedness and Social Network

The affiliation that describes the relation between individuals in a population depends on various

factors that they may share, namely genes or behavioral traits. We will distinguish between genetic

relatedness, the concept adduced in the gene-centric depictions of social behavior, and phenotypic

relatedness, the notion invoked in our analysis of the phenotypic models.

Genetic Relatedness

The concept genetic relatedness describes the average probability that two organisms share the same

gene. This notion of relatedness defines the genetic affiliation of individuals in a population. Clones
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have genetic relatedness, ρ = 1, since the offspring of individuals in a clone are genetically identical.

Outbreeding sexual diploids have genetic relatedness ρ = 1/2. Formally, the coefficient of relatedness,

denoted ρ, is the probability that two homologous genes, drawn randomly from two individuals are

identical by descent, [15,51].

The expression, ρ, in the case of two individuals I and J , is given by

ρ =
∑(

1

2

)n+1

Here n is the number of steps from an individual I to a common ancestor and back to J , and the

summation is over all such paths [51].

Phenotypic Relatedness

The concept phenotypic relatedness describes the average probability that two individuals who are

members of a social network possess the same social trait. Phenotypic relatedness can be quantified by

considering a social network in terms of a directed graph. The nodes describe the elements that comprise

the network. The links between the nodes are weighted. The weights describe the intensity of interaction

between the nodes. We can describe the interaction between the nodes i and j in terms of the matrix

A = (aij) ≥ 0.

Let P = (pij) denote the normalized Markov chain associated with A = (aij) and consider some

reference state X1 in the Markov chain. Let N1(t) denote the number of times the state X1 is visited

during the time 0, 1, 2, . . . , t.

The time average of the system is given by

N1(t)

t

We can interpret this quantity as describing the average phenotypic property that characterizes the

behavior of all individuals. By the ergodic theorem, the quantity ρ̃, the phenotypic relatedness is given

by

ρ̃ = lim
t→∞

N1(t)

t
This limit is well known, and is given by

ρ̃ = π1

where π̃ = (πi) is the stationary distribution of the matrix P .

Phenotypic relatedness depends on the topology of the network and the intensity of the interaction

between the individual elements.

7.4. The Evolution of Cooperation

We will now appeal to the entropic selection principle to study the evolution of cooperation under

two classes of resource constraints, namely, limited abundance and unlimited abundance. We will show

that when resource abundance is limited, then the outcome of selection is determined by the level of

resource abundance and the heterogeneity of its composition. When resource abundance is unlimited,

the outcome of selection will be contingent on relatedness.
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Limited Resource Abundance, Finite Population Size

The measure of selective advantage in models of the evolution of sociality is given by,

s = −
(
Φ− γ

M

)
∆H.

The condition s > 0 entails

(i) (Φ− γ/M) < 0 , ∆H > 0 ; (ii) (Φ− γ/M) > 0 , ∆H < 0

We can infer from (i) and (ii) the following set of rules which relate the resource constraint, as defined

by Φ and γ, with changes in the degree of sociality, as characterized by evolutionary entropy.

We infer from (i) and (ii) the following constraints on resource abundance and resource composition

I(a) When resources are constant in abundance and diverse in composition, cooperation will have a

selective advantage and increase in frequency.

I(b) When the resource varies in abundance and is singular in composition, selfishness will have a

selective advantage and increase in frequency.

Unlimited resource Abundance; Infinite Population Size

When M → ∞, R→ ∞, the measure of selective advantage is now given by

s = ∆r

Now, Φ < 0 ⇒ ∆r.∆H > 0; Φ > 0 ⇒ ∆r.∆H < 0.

We conclude that since the selective advantage is now determined by the growth rate, r, we can infer

from the above implications the following rules:

(a) When Φ < 0, cooperation has a selective advantage and will increase in frequency.

(b) When Φ > 0, selfishness has a selective advantage and will increase in frequency.

Now Φ = r −H . Hence Φ < 0 ⇒ r < H; Φ > 0 ⇒ r > H .

Now the phenotypic relatedness ρ is given by ρ = π1. Since

H = −
∑

i,j

πipij log pij

we obtain

H = ρH̃

where

H̃ = −
∑

i,j

πi
π1
pij log pij

Now

r < H ⇒ r < ρH̃ , and r > H ⇒ r > ρH̃

We can therefore infer from the tenets (a) and (b) given above, the following rules relating phenotypic

relatedness with the spread of cooperation or selfishness.
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II(a) When ρ > r/H̃, cooperation will have a selective advantage and increase in frequency.

II(b) When ρ < r/H̃, selfishness will have a selective advantage and increase in frequency.

The tenets (I) and (II) regarding the evolution of cooperation and selfishness indicate the critical

effect of resource abundance on the spread of the different behavioral traits. When resource abundance

is limited, the outcome of selection is determined by the rate at which resources are appropriated from

the external environment. In this case, the outcome of competition will be determined by the degree of

variation in resource abundance and the heterogeneity in resource composition.

However, when resource abundance is unlimited, the outcome of selection is decided by the rate

at which resources are converted into commodities which confer individual benefits. Relatedness now

becomes the critical factor in the spread of cooperative and selfish dispositions.

8. A Genetic Theory of the Evolution of Social Behavior

Hamilton proposed a classification of social behavior in terms of the gain or loss of offspring induced

by the performance of the behavior. The model distinguishes between an actor X and a recipient Y . In

Hamilton’s modelX performs some action on Y . Each individual experiences a change in their expected

offspring number as a result of the action. Four types of social action are distinguished—mutualism,

altruism, selfishness and spite.

Mutualism is defined as the social action in which both partners X and Y gain offspring from the

action. Altruism is defined as the social action in which the actor X loses offspring and the recipient Y

gains offspring. Selfishness is defined as a social action in which X profits and Y incurs a loss, whereas

spite corresponds to the condition where both X and Y incur losses.

8.1. Inclusive Fitness Theory

In this section we consider Hamilton’s rule in terms of the traits altruism and selfishness, and we

will appeal to the formalism of directionality theory to extend the theory by incorporating the effect of

environmental factors on social behavior. We will distinguish between two classes of ecological and

demographic constraints.

(i) limited resources, finite population size; (ii) unlimited resources, infinite population size.

We will show that when resource abundance is limited and population size is finite, then the evolution

of cooperation is independent of genetic relatedness, and is determined uniquely by the degree of

variation in resource abundance, and the degree of heterogeneity in resource composition. However,

when resource abundance is unlimited and population size infinite, then genetic relatedness determines

the evolution of cooperation.

We will consider a social network as defined in terms of the matrix

A =

(
a1 a2

a1 a2

)
.

This can be illustrated graphically as in Figure 16, where X1 denotes the donor and X2 the recipient.
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Figure 16. A social network with a donor and a recipient.

We let a1 and a2 denote the change in net-offspring number induced by the social behavior. We

distinguish between the actor X1 and the recipient X2 by assuming that a1 6= a2. Without loss of

generality, we will assume that a2 < a1.

We consider a change in the interaction between X1 and X2 and assume that the social network that

describes the variant is given by the matrix

A∗ =

(
a1(1− α1) a2(1− α2)

a1(1− α1) a2(1− α2)

)
.

Here α1 and α2 are assumed to be small and to be represented by α1 = ln(a1)δ and α2 = ln(a2)δ

for |δ| small and the dynamics of the network can be included in the context of our entropic selection

approach. As a further consequence, |α1 − α2| = |δ| | log(a1/a2)| is always much smaller than

| log(a1/a2)|.
Now let H and H∗ denote the entropy of A and A∗, respectively:

H = −
∑

i

pi log pi, H∗ = −
∑

i

p∗i log p
∗
i ,

where

pi =
ai

a1 + a2
, p∗i =

ai(1− αi)

a1(1− α1) + a2(1− α2)
, i = 1, 2.

Write

∆H = H∗ −H

and

z = a1 + a2, z∗ = a1(1− α1) + a2(1− α2).

Then it follows that

∆H = (α1 − α2)
a1a2
zz∗

log
a1
a2

+
a1
z∗

(1− α1) log
1− α2

1− α1
+ log

(
1− α1a1 − α2a2

z(1 − α2)

)
.

Since α1 and α are assumed small (and |α1 − α2| much smaller than | log(a1/a2)|), we have the

following implications:

∆H > 0 ⇔ α1 > α2. (60)

The dispositions, altruism and selfishness can be described in terms of constraints on the parameters

α1 and α2. The classification, adapted from Hamilton [51] and Bourke [15] is as follows.
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1. Altruism: (α1 > 0, α2 < 0). Altruistic behavior is a social action in which the actor, the altruist,

incurs a cost α1, and confers a benefit α2 to the recipient.

2. Selfishness: (α1 < 0, α2 > 0). Selfish behavior is defined as a social action in which the actor

profits, and the recipient incurs a loss.

We will have recourse to this classification in deriving a set of conditions for the evolution of altruism

and selfishness. The crux of our analysis is the distinction between the following two canonical classes

of resource and demographic constraints.

(A) Limited resources, finite population size: The measure of selective advantage under this class of

ecological-demographic conditions is

s = −(Φ− γ/M)∆H. (61)

The relation Equation (61) entails the following conditions which ensure the spread of the variant

trait:

Φ < 0, γ > 0,∆H ≥ 0; Φ > 0, γ < 0,∆H < 0

Now we have from Equation (60) that

α1 > α2 ⇒ ∆H > 0; α1 < α2 ⇒ ∆H < 0

By appealing to the characterization of altruism (α1 > 0, α2 < 0), and selfishness (α1 < 0, α2 >

0), we can infer a class of rules which specify the ecological constraints which will generate the

two modes of behavior, altruism and selfishness. The rules are as follows:

A(i) Diverse resources, constant abundance: altruism will have a selective advantage and

will spread.

A(ii) Singular resource, variable abundance: selfishness will have a selective advantage and

will spread.

(B) Unlimited resources, infinite population size: The measure of selective advantage when this

ecological-demographic situation prevails is,

s = ∆r

Here r denotes the population growth rate. Now if λ and λ∗ denote the dominant eigenvalue of the

matrices A and A∗, we have

λ = a1 + a2, λ = a1(1− α1) + a2(1− α2),

∆λ = −a1α1 − a2α2.

Now ∆r > 0 represents the condition for the evolution of a social action. Since ∆r∆λ > 0, we

conclude that the evolution of sociality is now determined by the conditions

a1α1 + a2α2 < 0, (62)
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Let ρ denote the genetic relatedness of X1 to X2. This quantity is defined by the probability of

sharing a focal gene over and above the average probability. Hence

ρ =
ρ2
ρ1
, where ρ2 =

a2
a1 + a2

, ρ1 =
a1

a1 + a2
.

Accordingly, we can express ρ, in terms of the fitness parameters, a1 and a2 namely ρ = a2
a1

.

The condition given by Equation (62) now becomes

a1

[
α1 +

(
a2
a1

)
α2

]
< 0

The criteria for the evolution of altruism and selfishness can be derived from the above equation

which becomes,

a1 [α1 + ρα2] < 0. (63)

We will now show that when resource abundance is unlimited and population size is large,

effectively infinite, the spread of a social trait now depends on the relation between the degree

of relatedness ρ, and the cost-benefit ratio.

In the case of altruism, we write α1 = c, the cost incurred by the actor, and α2 = −b, the benefit

which accrues to the recipient. We obtain from Equation (63) the following result.

B(i) If ρb > c, then altruism will have a selective advantage and will increase in frequency.

In the case of selfishness, we now write α1 = −c, to represent the benefit gained by the actor, and

α2 = b to describe the cost incurred by the recipient. We now obtain by appealing to Equation (63)

the following result:

B(ii) If ρb < c, then selfishness will have a selective advantage and will increase in frequency.

The proposition expressed by B(i) and B(ii) represents Hamilton’s rule.

8.2. Inclusive Fitness Theory and the Entropic Theory of Sociality

Hamilton’s theory of inclusive fitness is an extension of classical population genetics to analyze the

evolution of social behavior. These genetic models which have their origin in the pioneering studies of

Fisher, Haldane and Wright, implicitly assume that resource abundance is unlimited and that population

size is large, effectively infinite. Darwinian fitness in this context is characterized by the capacity of

an organism to convert the available resources into net-offspring production and is measured by net-

reproduction rate or some surrogate of this property.

Selective advantage in the framework of these models can be described by

s = ∆r

Here r denotes net-offspring production.

The entropic principle of sociality issues from a model which explicitly considers the organism–

environment interaction in the study of competition between resident and variant types. Consequently,

resource abundance and resource diversity now become critical components in the competition process.

Darwinian fitness is now characterized by the efficiency of the organism to acquire energy from the
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external environment–a condition which is regulated by the abundance of the resource, and its temporal

variation and diversity.

Selective advantage is now given by

s = −
(
Φ− γ

M

)
∆S .

We have shown analytically that these two measures of selective advantage are related as the following

diagram indicates

s = −
(
Φ− γ

M

)
∆S

M→∞

R→∞
// s = ∆r

Here R denote the resource abundance and M the population size.

This limiting condition entails the following property:

Inclusive fitness theory and the Entropic theory of Sociality: The theory of inclusive fitness is the

limit, as resource abundance and population size tend to infinity, of the entropic theory of sociality.

One of the anomalies of inclusive fitness theory is the large scale cooperation observed among

genetically unrelated individuals. The entropic theory of sociality indicates that the nature and intensity

of this cooperation is modulated by external factors, namely resource abundance and resource diversity.

Hamilton’s model ignores these essential constraints. Inclusive fitness theory thus represents an

approximation to the entropic theory of sociality. The validity of the approximation is contingent on

the resource constraints and population size. When resource abundance is unlimited and the population

size is large, effectively infinite, the predictions of both theories are equivalent.

9. Directionality Theory: Micorevolutionary Trends–Ecological Time Scale

The evolutionary process which unfolds on an ecological time scale can be analyzed in terms of

two events.

1. An invasion dynamic. This event involves the introduction of new variants in the population and

the subsequent competition between the incumbent and the variant type for the available resources.

2. An establishment dynamic. Its main signature is the generation of new types by Mendelian

segregation and the interaction of the array of genotype with the external environment.

The entropic principle specifies the outcome of the invasion process. Cooperation between the new

variant and the incumbent results in the generation of new types. The Mendelian principle of inheritance

is the rule which governs the distribution of types. The frequency of the types will change contingent on

the ecological constraints.

The integration of these processes was described in Demetrius [70]. The model assumed that the

phenotypic traits were controlled by a single locus. The incumbent population has genotype AA, the

variant is described by a genotype Aa. The microevolutionary dynamics studies the change in entropy as

the dynamical system evolves from one steady state configuration described by the incumbent population

with entropy H , to a new steady state condition, which is now defined by a composite population with

entropy Ĥ.
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This composite population will in general be polymorphic, comprising the incumbent, the successful

mutant–which initially will be rare–and the various genotypes generated by mating between the

incumbent and the mutant.

We are interested in evaluating the change ∆H = Ĥ − H , under various classes of ecological

constraints. We will first describe the dynamics of the incumbent population, defined by the

genotype AA.

9.1. The Dynamics of the Incumbent

We consider a nonlinear age-dependent model of population growth. Let u(x, t) denote the number

of individuals of age x at time t. The population size N(t) at time t is given by

N(t) =

∫ ∞

0

u(x, t)dx.

The changes in the function u(x, t) are determined by µ(x,N), the age-specific death rate, and

m(x,N), the age-specific birth rate at population size N .

The dynamics of u(x, t) is

∂u

∂x
+
∂u

∂t
= −µ(x,N)u(x, t)

u(0, t) =

∫ ∞

0

m(x,N)µ(x, t)dx

The entropy H of the population at steady state will be a function of the age-specific birth and death

rate at steady state.

We will now assume that a variant population with genotype Aa has invaded the incumbent

population. Mating between the variant Aa and the incumbent AA will result in the production of

genotypes AA, Aa and aa. These three types comprise the composite population. The Mendelian laws

will specif the birth rate of the population described by each of the genotypes. The dynamics of selection

will depend on the response of the different genotypes to the ecological and resource constraint.

9.2. The Composite Population

We assumed random mating between the two genotypes.

In sexual reproduction, the frequency of types generated by random mating is specified by Table 6.

Here m and f denote male and female types.

Table 6. Frequency of random mating.

f

m AA aa Aa

AA AA Aa 1
2 AA +1

2 Aa

aa Aa aa 1
2 Aa +1

2 aa

Aa 1
2 AA +1

2 Aa 1
2 aa +1

2 Aa 1
4 AA +1

4 aa +1
2 Aa
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The selective dynamics of the genotypes x1 = AA,X2 = Aa, X3 = aa can be analyzed in continuous

time, in terms of the following functions

u1(x, t) : age distribution of X1 at time t

2u2(x, t) : age distribution of X2 at time t

u3(x, t) : age distribution of X3 at time t

These functions describe the number of genotypes.

The dynamical equations for the changes in numbers ui(x, t) of the genotype Xi are given by

∂ui
∂x

+
∂ui
∂t

= −µi(x, t)ui(x, t). (64)

Here µi(x, t) denotes the mortality function of the genotype Xi. This typically is a function of the

resource constraints that regulates population growth.

The birth rate ui(0, t) of the genotypes are obtained from the Mendelian laws given in Table 6. The

model generally assumes that the birth rate ui(0, t) requires that

1. the fecundity of a mating between a given pair of individuals is determined uniquely by age

and genotypes,

2. mating is at random with respect to age and genotype.

Write

F1(x, t) =
u1(x, t) + u2(x, t)

U(x, t)
,

F2(x, t) =
u2(x, t) + u3(x, t)

U(x, t)

where U(x, t) = u1(x, t) + 2u2(x, t) + u3(x, t).

We can now appeal to the Mendelian laws of inheritance given in Table 6 to express ui(x, t) in

terms of the fecundity functions mi(x, t) and µi(x, t).

u1(0, t) =

∫ ∞

0

[m1u1 +m2u2]F2dx,

2u2(0, t) =

∫ ∞

0

[m1u1F1 +m2u2 +m3u3F2] dx,

u3(0, t) =

∫ ∞

0

[m2u2 +m3u3]F1dx.

The equilibrium solution of Equation (64) describes the ultimate effect of the selection process on

this initial increase of the mutant.

We will assume that the system evolves to a polymorphism which will be described by the presence

of all threee genotypes X1, X2 and X3.



Entropy 2014, 16 5496

9.3. The Fundamental Theorem of Evolution

The directional change in entropy as the system evolves from one steady state to the next is derived by

a comparison of the entropy H in the steady state defined by the presence of the incumbent X1, and the

entropy Ĥ in the steady state defined by the composite populationX1, X2 and X3. Write ∆̂H = Ĥ−H ,

the change in entropy as the system evolves from one steady state to the next and write ∆H = H∗ −H ,

where H∗ denotes the entropy of the variant type.

According to the entropic selection principle, the deterministic criterion for the invasion of the variant

type is given by

Φ < 0, γ > 0 and ∆H > 0,

Φ > 0, γ < 0 and ∆H < 0.
(65)

Now, an analysis of the dynamical system given by Equation (64) shows that

∆̂H∆H > 0. (66)

This asserts that the local change in entropy ∆H (due to the invasion process), and the global change

in entropy, ∆̂H (due to the establishment process) are positively correlated.

We can now appeal to Equations (65) and (66) to predict long term changes in entropy as the

incumbent population AA is replaced by the composition population consisting of the three genotypes

AA, Aa and aa.

We infer the following implications

1. If Φ < 0, γ > 0, then ∆̂H < 0 that is, the entropy increases.

2. If Φ > 0, γ < 0, then ∆̂H < 0 that is, the entropy decreases.

In view of the characterization of Φ and γ in terms of resource abundance and diversity, we can

now infer long term changes in entropy under mutation and natural selection–the Fundamental Theorem

of Evolution.

I (a) If resource composition is diverse (γ > 0) and resource abundance constant (Φ < 0), then the

entropy increases as the system evolves from one steady state to the next.

I (b) If resource composition is singular (γ < 0) and resource abundance variable (Φ > 0), then the

entropy decreases as the system evolves from one steady state to the next.

The relation between resource constraints and long term directional changes in entropy under the

microevolutionary process of mutation and selection is described in Table 7.

Table 7. Relation between resource constraints and directional changes in entropy.

Resource Constraints Change in Entropy

Φ < 0, γ > 0

Entropy increasesconstant abundance,

diverse resource

Φ > 0, γ > 0

Entropy decreasesvariable abundance,

singular resource
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9.4. Empirical Considerations

The fundamental theorem of evolution which Table 7 delineates has been empirically evaluated using

plant populations [73], human populations [52,53], and an analysis of the equid lineage [74]. The

analysis using plant population is based on demographic data of 56 species of plants. A statistical

analysis of correlations between entropy, S, and the parameter called the reproductive potential, Φ,

generated results which were consistent with a uni-directional increase in entropy under resource

conditions defined by constant abundance (Φ < 0), and a uni-directional decrease in entropy under

resource conditions defined by variable abundance (Φ > 0).

The analysis based on human populations [52,53] was complicated by the effect of cultural factors

on the evolutionary dynamics in modern human populations. The statistical analysis was nevertheless

robust enough to decode trends in evolutionary entropy which are consistent with the FTE.

The study using the equid lineage appeals to the fact that evolutionary entropy is analytically related

to body size. We can therefore infer from the FTE that body size increases, when resources are diverse

in composition and has constant abundance, and decreases, when resources are singular in composition

and has variable abundance.

These predictions regarding trends in body size were evaluated using data from the equid lineage

during the Plio-Pleistocene. The analysis was based on a comparative study of trends in body size in

North America and in Europe. An appeal to various sources which documented the ecological and

resource conditions which prevailed in the two continents during the Plio-Pleistocene indicates that the

North American equid lineage was subject to resources of constant abundance and diverse composition,

while the European lineage was characterized by variable resource abundance and singular composition.

The FTE predict that body size in the equid lineage will increase in North America and decrease in

Europe. The data described in [36] was consistent with these predictions.

9.5. The Fundamental Theorem of Natural Selection (FTS) and the Fundamental Theorem of Evolution

(FTE)

The central tenet of Darwin’s theory of evolution is the gradual replacement of one population type

by another through the action of the following processes.

(i) The production of variation:

Mutation is the primary mechanism generating variation. It is a random event. Once allelic

variation has been introduced, the total diversity of genotypes may be increased as a result of

genetic recombination.

(ii) The action of selection:

This process—differential survival and reproduction—is a non-random event. In every generation

only a small percentage of individuals will survive to reproductive age. Selection discriminates

between the various types in a population according to their capacity to annex resources from the

external environment, and to transform these resources into reproductive activities.

Fisher’s fundamental theorem of natural selection and the fundamental theorem of evolution are

propositions which aim to formalize the Darwinian process by analyzing the genotypic and phenotypic
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changes which occur during evolution. The two propositions differ in terms of the assumptions made

regarding the forces driving the changes in population composition.

(I) The fundamental theorem of natural selection (FTS)

The central assumptions of the FTS is the local nature of the genotypic and phenotypic changes, and

the mechanism of selection. The model considers selective changes occurring on a time scale in which

the production of new variation by mutation can be ignored. The changes in population composition

are induced uniquely by differences in the capacity of the organism to invest existing resources into

reproduction and survivorship. This assumption entails two modes of selection; Malthusian, which

pertains to selection due to differences in the growth rate of the types; and viability, which pertains to

selection due to differences in the individual probability to survive to reproductive age.

Studies of changes in population composition under Malthusian selection typically assume asexual

haploid populations. The mean fitness w̄ is given by

w̄ =
∑

j

wjpj

Here wj denote the Malthusian parameter of type Xj , and pj denote its frequency.

The extension of these studies to diploid population presents analytical problems in view of the genetic

complexities generated by Mendelian factors. Consequently, when diploid populations are considered,

the analysis is often restricted to viability selection.

The standard model of diploid populations and viability selection considers alleles A1, A2, . . . , Ak

at an autosomal locus. If Pii denote the relative frequency of the homozygotes, and 2Pij the relative

frequency of heterozygotes, then the frequency of the allele Ai is

pi =
∑

j

Pij

The mean fitness is now given by

w̄ =
∑

i,j

wijPij

The analysis of changes in the frequency of types under both modes of selection leads to the

following proposition

∆w̄ ≥ 0 (67)

Here ∆w̄ = w̄′ − w̄, the change in mean fitness from one generation to the next.

The relation (67) asserts the following proposition: Mean fitness increases under natural selection.

The extensions of Equation (67) to situations based on interactions at several loci all assume viability

selection. These extensions, and their relations with the fundamental theorem of natural selection, have

been reviewed and discussed in Edwards [71] and Ewens [72].

(II) The fundamental theorem of evolution (FTE)

The FTE considers genotypic and phenotypic changes as driven by two processes: (a) the introduction

of new variations by mutation, (b) the discrimination between variant and incumbent types by selection.
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The selection process is due to differences in the capacity of organisms to appropriate resources from

the environment, and to transform these resources into metabolic and reproductive work. This mode of

selection leads to the characterization of fitness by evolutionary entropy.

The FTE integrates the entropic selection principle with the laws of Mendelian inheritance to analyze

changes in evolutionary entropy as one population replaces another over evolutionary time. The changes

in evolutionary entropy are illustrated in Figure 17.

Figure 17. Evolutionary entropy changes.

H1 H2

HereH1 denotes the entropy of the incumbent at steady state, andH2 the entropy of the new composite

population at steady state. According to the FTE, the change ∆H = H2 − H1 is conditional on the

resource constraint. this is described by the directionality principle:

Evolutionary entropy increases (∆H > 0) when resource abundance is constant and composition

diverse; evolutionary entropy decreases (∆H < 0), when resource abundance is variable and

composition is singular.

The FTE can be considered a synthesis of Mendelian genetics, demography and ecology to furnish a

mathematical model of Darwin’s theory of evolution by variation and natural selection.

(III) The FTS and the FTE—implications

Darwin’s theory of evolution is a qualitative model of directional changes in the properties of

populations as one type replaces another under the action of variation and selection. Directional

transitions are not unique to the organic world. Changes in the macroscopic properties of material

objects, such as solids, also have a directional component.

Consider an insulated container in which two blocks of copper, one hot and the other cold, are sealed

together. There will be spontaneous flow of heat from the hot body to the cold body until both reach

some intermediate temperature. This directional property which this spontaneous physical change depict

is the Second Law of Thermodynamics. The law was explained by Boltzmann in terms of a model of

statistical mechanics of interacting particles. The cornerstone of Boltzmann’s work was the quantity,

thermodynamic entropy, denoted S̃, a measure of the spreading of energy throughout the energy storage

modes of the material aggregate.

Directionality in inanimate material aggregates is characterized by the condition

∆S̃ ≥ 0
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This describes an increase in thermodynamic entropy as the system moves from one initial state, where

the individual blocks have different temperatures, to an equilibrium state where both blocks have the

same temperature.

Fisher considered the FTS, which describes a uni-directional change in mean fitness, as a biological

analogue of the Second Law of thermodynamics. According to Fisher:

“It will be noticed that the fundamental theorem of natural selection bears some remarkable

resemblances to the Second Law of Thermodynamics. Both are properties of populations,

or aggregates, true irrespective of the nature of the units which compose them; both

are statistical laws; each requires the constant increase of a measurable quantity, in the

one case, the entropy of a physical system, and in the other the fitness measured by the

Malthusian parameter of a biological population.”

The remarkable resemblance Fisher has postulated does not hold up to a critical scrutiny.

Thermodynamic entropy, the statistical measure adduced in Boltzmann’s directionality theorem, is a

valid measure of the spread of energy within the microscopic storage modes of a material aggregate.

The increase in thermodynamic entropy which Boltzmann’s analysis establishes, offers a statistical

mechanics explanation of the Second Law. Boltzmann’s theorem thus represents a valid mechanistic

rationale for empirical observation that the spontaneous flow of heat is uni-directional, namely from

hotter to colder bodies.

The Malthusian parameter, the concept cited in Fisher’s theorem, is an aggregate measure of

individual birth and death rates. This measure describes the rate at which an organism converts

resources into net-offspring production. The Malthusian parameter, thus describes the outcome of natural

selection under a special class of ecological constraints, namely those defined by unlimited resource

condition. When resources are unlimited, the capacity of the organism to appropriate energy from the

external environment does not impact on the outcome of selection. The deciding factor, when this

resource constraint obtains, is the efficiency in converting the metabolic energy of the organism into

reproductive activity.

Evolution in natural populations generally unfold under conditions where resources are limited in

abundance. Accordingly, the Malthusian parameter, the mainstay in the Fisherian analysis, does not

generally predict selective outcome.

These observations indicate that Fisher’s theorem does not represent a valid explanation of the

changes in population composition induced by the force of natural selection. Fisher’s theorem, in sharp

contrast to Boltzmann’s theorem, is not consistent with empirical observations concerning changes in

the various properties that describe natural populations.

The formulations of the FTS based on Malthusian selection and viability selection pertain to local

or instantaneous changes in mean fitness. This mode of selection ignores ecological constraints and

consequently is unable to explain the long term changes in genotypic and phenotypic composition

observed in natural populations.

The FTE, in sharp contrast to the FTS, integrates Mendelian genetics with demography and ecology

to explain the changes in population composition as new variants are introduced in the population by

mutation, and then screened by natural selection.
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Table 8 summarizes the different properties of the FTS and the FTE.

Table 8. FTS and FTE: a contrast.

Properties FTS FTE

Evolutionary force Selection Mutation and Selection

Ecological constraint Unlimited Resources Limited Resources

Mode of Selection Malthusian Entropic

(i) ∆H > 0 (Global);

Resource abundance constant,

composition diverse

Directionality ∆w̄ > 0 (Local) (ii) ∆H < 0 (Global);

Resource abundance variable,

composition singular

10. Directionality Theory: Evolutionary Trends on a Geological Time Scale

Microevolution pertains to the changes in the genotypic and phenotypic composition of populations

over an ecological time scale. This evolutionary process pertains to changes within a population

or within a phyletic lineage. The changes in population composition are driven by mutation and

natural selection.

The entropic selection principle is the basis for the quantitative understanding of microevolutionary

patterns. This principle, as we have observed, gives a mechanistic explanation of processes such as the

evolution of life history, the evolution of sociality, and the origin and proliferation of cancer cells.

Macroevolution pertains to the changes in the species composition of clades over geological time

scales. This evolutionary process is driven by speciation–the formation of new species, and extinction,

the demise of species or complete biota.

The history of life when viewed on a geological time scale has a directionality component. This

property can be described by changes in mean body size within clades, and changes in the maximum

body size over the whole history of life.

Mean body size increases in most phyletic lineages. This fact, now called Cope’s rule, see Cope [35],

has been observed originally in clades of Cenozoic mammals. The largest known representative among

these taxonomic groups are usually geologically younger than their smaller relatives.

Newell [76], in later studies, showed that the increase in mean size also holds in many invertebrates.

Among foraminferans, arthropods, echinoderms, all widely separated lineages, there exist a distinct trend

towards size increase. The increase in mean body size, however, is not universal. Among brachiopods,

bryozoans, there is little increase in size. Some of the lineages are known to show a distinct stability of

size over geological time. The study of body size evolution in Cretaceous molluscs by Jablonski [77]

indicates both patterns of size increase and decrease.

Maximum body size, that is the maximum size attained by species within a clade, does however show

a uni-directional increase. The recent period level compilation of the largest known fossil organisms

show that maximum size increased by 16 orders of magnitude over the past 3.5 billion years [78].



Entropy 2014, 16 5502

The entropic selection principle, the organizing tenet in explaining the adaptation of populations

on a microevolutionary level, is also the basis for explaining the adaptation of species and directional

trends observed on a macroevolutionary level. The significance of the entropic selection principle

in understanding macroevolutionary change derives from the fact, underscored by Mayr [4] that all

macroevolutionary processes unfold in populations and genotypes of individuals, and are thus the

emergent features of microevolutionary events. Speciation and extinction–macroevolutionary events–can

therefore be analyzed in terms of the dynamics of allelic variation within populations, and competition

between populations.

We will therefore apply the formalism developed in the study of microevolution to establish certain

correlations between evolutionary entropy and the macroevolutionary parameters, speciation rates and

extinction rates. We will then exploit these correlations to derive a class of macroevolutionary principles

which describe changes in mean entropy and maximum entropy over geological time. These principles

constitute the evolutionary rationale for the trends in mean and maximum body size documented in the

fossil record.

10.1. The Dynamics of Speciation

Speciation is the process by which new lineages arise. The process has two aspects: (i) the gradual

change from an ancestral to a derived species; (ii) the splitting of a species to generate two derived

species, Coyne and Orr [79].

The speciation rate is expressed as the number of new species produced per existing species per

time period–typically a million years. The inverse of this number is the mean waiting time for the

transformation of one species into another. This quantity is the average period elapsing between the

origin of a new lineage and the reproductive isolation of the lineage. Hence the waiting time measures

the interval between the emergence of a new mutation and the ultimate fixation of the mutant.

The mean waiting time is proportional to the mean time to fixation of a mutant allele. We will exploit

methods introduced in [80,81] to show that the mean waiting time τ is given by

τ ≈ 2N

σ2
. (68)

Here N denotes the population size and σ2 the demographic variance. We will then use Equation (68)

to derive a relation between the speciation rate and evolutionary entropy.

10.1.1. Mean Fixation Time

We consider a population X1 with demographic parameters (r,H, σ2,Φ) and the mutant X2 defined

by the parameter (r∗, H∗, σ2∗,Φ∗). Let f(p, t) denote the probabilitiy that the mutant allele X2 becomes

fixed by the t-th generation, given that its frequency is p at time t = 0. Write f(p) = limt→∞ f(p, t).

Then f(p) denotes the probability of ultimate fixation.

Consider the quantity

T (p) =

∫ ∞

0

t
∂[f(p, t)]

∂t
dt. (69)
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Then

τ(p) =
T (p)

f(p)

represents the mean fixation time, that is the average number of generations until the mutant allele with

initial frequency becomes fixed in the population, [80].

Now, see [20], the function f(p, t) satisfies the Kolmogorov backward equation

∂f(p, t)

∂t
= α(p)

∂f(p, t)

∂p
+

1

2
β(p)

∂2f(p, t)

∂p2
(70)

where

α(p) = p(1− p)

[
∆r − 1

N
∆σ2

]

and

β(p) =
p(1− p)

N

[
σ2 +∆σ2(1− p)

]
.

We can obtain an ordinary differential equation for T (p) as follows: We differentiate each term in

Equation (70) with respect to t, and we multiply each of the resulting terms by t. By integrating the

terms with respect to t from 0 to ∞, we obtain

∫ ∞

0

t
∂2f(p, t)

∂t2
dt = α(p)

∂T (p)

∂p
+

1

2
β(p)

∂2T (p)

∂p2
. (71)

Under the natural assumption that t∂f(p,t)
∂t

vanishes at t = ∞ it follows that

∫ ∞

0

t
∂2f(p, t)

∂t2
dt = −f(p).

Equation (71) now yields

d2T (p)

∂p2
+

2α(p)

β(p)

dT (p)

dp
+ 2

f(p)

β(p)
= 0. (72)

Equation (72) can now be integrated to yield an expression for T (p). We write

g(x) =
2
∫ 1

0
G(y) dy

β(x)G(x)

where

G(x) = exp

(
−2

∫ x

0

α(y)

β(y)
dy

)
.

Then

T (p) = f(p)

∫ 1

p

g(x)f(x)[1− f(x)]dx+ [1− f(p)]

∫ p

0

g(x)f 2(x) dx. (73)

The boundary conditions are limp→0 T (p) = a for some finite a, and T (1) = 0. From Equation (73),

the mean time to fixation τ(p) = T (p)/f(p) can be calculated as

τ(p) =
2N

σ2

[
(1− p)− 1− p

p
(p+ log(1− p))

]

=
2N

σ2

1− p

p
log(1− p) ≈ 2N

σ2
as p→ 0.
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10.1.2. Entropy and Speciation Rate

We will assume throughout that speciation is driven by allopatric processes, that is complete

geographic isolation of the two species, see Mayr [3]. Allopatric speciation is often subdivided into

two modes: vicariant speciation, in which reproductive isolation evolves after the geographic range

splits into two or more largely isolated populations, and peripatric speciation, in which reproductive

isolation evolves after an isolated habitat is colonized by a few individuals, or a small population becomes

geographically isolated, beyond the periphery of the parential population. We will assume, following

Mayr [3] that the peripatric mode of speciation is the dominant mode.

The peripatric isolate will be described by a small population size and a gene pool which is

statisticallly different from the parental gene pool. The ecological niche the isolate occupies will be

much narrower than the niche of the parental population.

This restriction on the niche breadth and the population size means that variations in resource

abundance may be ignored and that the principal environmental factors which will influence the

speciation dynamics will be the resource diversity as described by the parameter γ: We establish the

following relations between rate of speciation and entropy:

I (a) If γ < 0, then the rate of speciation is positively correlated with entropy.

I (b) If γ > 0, then the rate of speciation is negatively correlated with entropy.

We will assume that the rate of speciation, denoted α, is inversely related to the mean waiting time

for the fixation of an allele. We can then infer from Equation (68), the relation

α =
cσ2

N
(74)

where c is a positive constant.

Now, from Equation (31), we have that γ < 0 ⇒ ∆σ2∆S̃ > 0 and γ > 0 ⇒ ∆σ2∆S̃ < 0. We

conclude that

1. when γ < 0, ∆α∆S̃ > 0 and speciation rate is positively correlated with entropy;

2. when γ > 0, ∆α∆S̃ < 0 and speciation rate is negatively correlated with entropy.

Now, evolutionary entropy is positively correlated with body size. The model thus predicts that the

nature of the correlations between speciation rate and body size will be contingent on the demographic

resource constraint γ. We have that when γ < 0–a singular resource–speciation rate will increase with

body size. However, when γ > 0–corresponding to species utilizing diverse resources–speciation rate

will decrease as body size increases.

10.2. The Dynamics of Extinction

Species extinction represents the other component that determines changes in the composition

of clades . Species extinction has two signatures: background extinction and mass extinction [3].

Background extinction refers to the steady demise of individual species. This steady extinction derives

from certain intrinsic limits of the genetic constitution of the population to adapt to changes in the
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environment which may occur during the species evolutionary history. These changes may involve the

arrival of a new competitor or the invasion of a new pathogen.

Mass extinction pertains to the annihilation of a large proportion of the biota–this process occurring

in a very short time on a geological time scale. Although background extinction is driven primarily

by biotic factors and natural selection, and mass extinction is due primarily to physical factors such as

changes in climate or the chemical composition of the terrestrial atmosphere, both extinction processes

can be analyzed in terms of a similar mathematical formalism.

We will show that for a population of size N with growth rate r, and demographic variance σ2, the

probability of ultimate extinction, denoted ω, is given by

ω = exp

(
−rN
σ2

)
for r > 0. (75)

We will then appeal to this expression to obtain relations between the extinction probability and

entropy, for extinction under background and mass-extinction regimes.

The derivation of Equation (75) considers a population of size N(t) subject to fluctuations induced

by the demographic structure. We therefore assume that the change in logN(t) in the interval ∆t due

to fluctuations is caused by Brownian motion with variance σ2∆t/N(t). We can therefore describe

the evolution of the density f(N, t) of the process by the solution of the Fokker-Planck equation, see

Demetrius, Gundlach and Ochs [20], given by

∂f

∂t
= −r∂(fN)

∂N
+
σ2

2

∂2(fN)

∂N2
. (76)

This equation can be solved explicitly, see Feller [56].

The probability ω(t) that the population dies out before time t, is given by

ω(t) = 1−
∫ ∞

0

f(N, t)dN.

It was shown in Feller [56] that

ω = lim
t→∞

ω(t) =

{
exp

(
− rN

σ2

)
for r > 0

1 for r ≤ 0
(77)

We can appeal to Equation (77) to establish certain correlations between extinction rates and entropy

under background and mass extinction regimes.

10.3. Background Extinction

The extinction of species under this regime is a steady and gradual process. Extinction derives from

the inability of the population to adapt sufficiently rapidly to the changing ecological conditions.

In our analysis of this process, we assume that rN = C and write

logω = −C

σ2
(78)

We will now use Equation (78) to show that the direction of the correlation between extinction rate β

and entropy is contingent on the demographic parameter γ.
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Let β denote the extinction rate, and assume that ∆ω∆β > 0, that is probability of ultimate extinction

ω, and the extinction rate β, are positively correlated. We now show the following.

(II) (a) when γ < 0, the changes in extinction rate and the changes in entropy are

positively correlated,

∆β∆S > 0. (79)

(II) (b) when γ > 0, the changes in extinction rate and the changes in entropy are negatively correlated,

∆β∆S < 0. (80)

To establish Equations (79) and (80) we observe from Equation (78) that

∆ω

ω
=

C

(σ2)2
∆σ2.

By appealing to the series of relations, see Section 5.1,

∆σ2 = γδ, ∆H = −σ2δ, ∆H ∆S̃ > 0.

Evolutionary entropy is related to body size. This empirical and analytical fact [31] can be integrated

with the patterns described by Equations (79) and (78) to predict correlations between extinction rate

and body size.

Since γ is a measure of habitat or resource diversity,we can infer from Equations (79) and (78) the

following patterns.

1. When resource is singular, weak habitat diversity, extinction rate will increase with increasing

body size.

2. When resource is diverse, strong habitat diversity, extinction rate will decrease with increasing

body size.

We can now appeal to the macroecolgocial perspective [82,83] to predict relations between extinction

rate and body size on islands and on continents.

Islands and continents differ largely in terms of habitat or resource diversity which is typically weak

when habitat range is small and strong when habitat size is large. Accordingly, we have the following

extinction patterns for the two habitats.

(a) Islands: Extinction rate will increase with increasing body size. Computational studies of this

extinction pattern, indicate that the body size frequency distribution induced will be log-normal.

(b) Continents: Extinction rate will decrease with increasing body size. Numerical studies of this

extinction pattern indicate a body size frequency distribution which is strongly right skewed.

Empirical studies of body size frequency distribution on islands are known to vary from log-normal

to weakly right skewed, whereas the distribution patterns on continents are strongly right skewed, [83].

These observations are indicative of a certain robustness as regards the constraints on habitat diversity

on correlations between extinction and body size.
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10.4. Mass Extinction

Mass extinction refers to the demise of species, complete lineages or biota by physical factors such

as the large and widespread changes in climatic conditions.

The factors which induce these events are episodic in nature. The effect of mass extinction regimes

will typically be described by a large decrease in population size with minimal effects on the life-history

properties of the population.

In evaluating the dynamics of mass-extinction, we will therefore evaluate the effects of this event on

changes in population size N and changes in ω, the probability of ultimate extinction. We have

∆ω

ω
= − r

σ2
∆N.

Hence
∆ω

ω
= (logω)

∆N

N
. (81)

Now ∆ω∆β > 0, where β is the extinction rate. Since evolutionary entropy S̃ is negatively correlated

with popolation size N , we conclude from Equation (81) the following.

(III) Mass extinction rate is positively correlated with entropy:

∆β∆S̃ > 0. (82)

By invoking the analytic relation between entropy and body size we can now predict that mass

extinction rate will be positively correlated with body size.

Empirical data on the relation between mass extinction rates and body size are consistent with this

prediction. We illustrate the correlation by considering three of the largest mass-extinction events–the

Cretacous, the Perminian and the Pleiostocene. In all three mass-extinction events, species with larger

body sizes had higher extinction rates.

During the Cretaceous event, the species with the highest extinction rate were the dinosaurs. At that

time, these organisms were dominant and the most successful group vertebrates.

Species with large body size, such as certain terrestrial vertebrates were the most vulnerable during

the Perminian extinction. The Pleiostocene extinction was characterized by the demise of the largest

megafaunal species.

Mass extinction rate, which is primarily driven by abiotic factors is largely independent of ecological

constraints and habitat diversity. This process stands in sharp contrast to background extinction processes

which are regulated by biotic factors and the degree of adaptation of the population to the prevailing

environmental conditions.

11. Directionality Principles in Macroevolution

Macroevolutionary change, that is changes in the composition of clades on an geological time scale,

are determined by speciation and extinction processes. The extinction process has two signatures:

background events and mass extinction events.

The anaytic relations between speciation-extinction events and evolutionary entropy give a framework

for evaluating changes in entropy on a geological time scale.
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Mass extinctions are relatively rare events when contrasted with the process of background extinction.

The events are in effect decoupled from each other; background extinction acting over a large span of

geological time, whereas mass extinction relegated to small intervals of geological times.

In the study of changes in species composition over geological time we distinguish between

two phases

1. an episode defined uniquely by speciation and background extinction–a process which unfold over

several million years;

2. an extended phase involving speciation and the alternation of background and mass extinction

regimes–a process which occurs over billion of years.

11.1. Speciation and Background Extinction

Our model considers a clade consisting of several distinct lineages. We let Ni(t) denote the number

of species in the lineage Xi at time t and we let S̃i denote the entropy of species in the lineage Xi. Each

lineage characterizes a group of species with common phenotypic and adaptive properties and hence

common speciation and extinction rates. The mean entropy S̃ of the species in the clade is given by

S̄(t) =
∑

i

pi(t)S̃i

where

pi(t) =
Ni(t)∑
Nj(t)

.

Here pi(t) denotes the frequency of the lineage Xi at time t.

Let αi and βi denote the speciation and extinction rates of the lineage Xi. Write µi = αi − βi and

µ̄(t) =
∑

i

pi(t)µi.

Then we obtain from

p′i(t) =
N ′

i(t)∑
Nk(t)

−
Ni(t)

∑
N ′

j(t)

(
∑
Nk(t))2

=
N ′

i(t)∑
Nk(t)

− pi(t)

∑
N ′

j(t)∑
Nk(t)

and with the help of
dNi

dt
= µiNi (83)

that
dS̄(t)

dt
=
∑

i

pi(t)µiS̃i −
∑

i

pi(t)S̃i

∑

j

pj(t)µj = Cov(µ, S̃), (84)

the covariance of the entropy and the speciation-extinction rate.

Now according to Equation (83) we have

Ni(t) = Ni(0)e
tµi

and hence

pi(t) =
etµiNi(0)∑
j e

tµjNj(0)



Entropy 2014, 16 5509

We will now assume that the evolutionary process is driven uniquely by peripatric speciation, as

in the model proposed by Mayr [3]. According to the peripatric model, the speciation event occurs

typically at peripheral isolates. In the case of the peripatric model, we have the following speciation and

extinction conditions:

1. γ < 0:

∆α∆S̃ > 0 and ∆β∆S̃ > 0

2. γ > 0:

∆α∆S̃ < 0 and ∆β∆S̃ < 0

Let µi denote the net-diversification rate,

µi = αi − βi.

We call the lineage type 1, if

∆µi∆S̃i > 0,

and type 2, if

∆µi∆S̃i < 0.

(I) In the case of type 1 clades, we have

∆µ∆S̃ > 0, (85)

such that we can deduce from Equation (84) that

dS̄

dt
= Cov(µ, S̃) ≥ 0. (86)

(II) In the case of type 2 clades, we have

∆µ∆S̃ < 0, (87)

such that we can deduce from Equation (84) that

dS̄

dt
= Cov(µ, S̃) ≤ 0. (88)

11.2. Speciation and Alternation of Background and Mass Extinction

Background extinction represents the steady extinction of species due to biotic factors. This extinction

process is a continuous and steady event induced by the inability of species to respond to local changes

in their environment. Such environmental changes are generated, typically, by the introduction of new

predators or the invasion of a new pathogen.

Quite distinct from the steady demise of individual species are the mass extinction events. Such

processes derive from physical factors. They result in the extermination in a very short time of a large

proportion of the biota.

The mean entropy of the species in a clade at any point in time, constitutes a useful parameter for

describing macroevolutionary changes when speciation and background extinction are the two processes



Entropy 2014, 16 5510

driving changes in the species distribution of clade. The analysis given in Section 11.1 shows that the

mean entropy increases in type 1 lineages and decreases in type 2 lineages.

However, when the macroevolutionary process is analyzed on a geological time scale which includes

mass-extinction events, a useful measure of directionality is the maximum entropy, Ŝ, defined by

Ŝ = max
i
S̃i. (89)

Here S̃i is the entropy of a species in the clade.

The maximum value given in Equation (89) is evaluated at steady state and is assessed by considering

all the species in the clade.

We will assume that the macroevolutionary process is described by the alteration of speciation-

background extinction with mass-extinction events. Since we are concerned with directional changes

int the maximum entropy Ŝ, we will restrict the analysis to type 1 lineages, that is lineages whose mean

entropy increases over geological time in a dynamic driven by speciation-background extinction events.

The change in mean entropy due to the alternation of speciation-background extinction with

mass-extinction in the case of type 1 lineages can be represented by the graphs shown in Figure 18.

Figure 18. Evolution of mean entropy under mass extinction events.

E1 and E2 represent mass extinction events. The graphs X1, X2 and X3 describe the change in mean

entropy which occurs within the clade over the period of geological time.

In order to model the alternation of background and mass extinction events, we assume that as a

result of a mass extinction event, a large fraction of the lineages become extinct. The system after the

mass extinction event will be described by a new ancestral clade with mean entropy S1. Since mass

extinction events occur on a much shorter time scale than background extinction events, we may assume

S1 > S0, that is the mean entropy of the new ancestral lineage exceeds the mean entropy of the preceding

ancestral lineage. Speciation and background extinction will then drive the new clade to a state described

by increased mean entropy.

If Ŝ∗ = maxi S
∗
i , where S∗ denotes the maximum entropy of species in the new clade, we infer from

the above argument that

Ŝ∗ > Ŝ.
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We conclude that in the process where mass-extinction events alternate with the process of speciation

and background extinction we have

∆̃S > 0 (90)

where ∆̃S = Ŝ∗ − Ŝ.

11.3. The Evolution of Mean Body Size

The directionality principles for the mean entropy and the maximum entropy can be used to predict

directional trends in body size. The predictions derive from the fact that entropy and body size are

analytically related. We have, as discussed earlier, the relation

S̃ = a+ logW.

We can now appeal to Equations (86) and (88) to infer the following trends for mean body size.

1. In type 1 lineages, mean body size increases.

2. In type 2 lineages, mean body size decreases.

Directionality theory thus accounts for the non-universality of Cope’s rule. Our analysis indicates that

directional trends in body size–an increase or decrease–is highly contingent on the correlation between

net-diversification rate and entropy–a property which is dependent on demographic constraints. These

constraints are in effect the result of the ecological forces which prevail during the evolutionary history

of the species.

11.4. The Evolution of Maximum Body Size

The maximum size of organisms has increased enormously since the origin of life more than

3.5 billion years ago [84]. The relation between entropy and body size entails that the change in

maximum size can be explained in terms of the principle of selection for maximum entropy as given

by Equation (90).

This principle asserts that when mass-extinction events alternate with the process of speciation and

background extinction, the maximum entropy of species in a clade will increase. We conclude that

maximum body size increases over geological time.

The blue whale is the largest animal that has ever existed on earth; the giant sequoia the largest plant.

These organisms are both the descendants, through processes of mutation, selection and speciation of

prokaryotic organisms that originated 3.5 million years ago. During this period there has been size

changes within groups–an increase in mean body size within certain lineages: a decrease in mean

body size within other lineages. However, as indicated by Figure 18, the maximum sizes attained at

any geological period increases. The maximum sizes are reached by progressive size increases within

each clade. Accordingly the over-all size change derives from the emergence of successive clases, their

extinction by mass extinction events and their replacement by new clades. The maximum size, at each

geological period will be attained from a different major group of organism.

The empirical evidence indicates that over geological time, the maximum sizes are attained from a

different major group of organisms. In the case of plants, they are, for instance, lycopos, gymnosperms
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and angiosperms; In the case of animals, the major groups are dinosaurs, mammals [84]. These

maximum sizes were attained by progressive size increases within each clade. This suggests that the

overall size change over geological time is a consequence of the sequential emergence of different

successive taxonomic groups and differential extinction of these groups by mass extinction events.

12. Evolutionary Dynamics and Thermodynamics

Thermodynamic theory in its widest sense can be considered as the analysis of changes in energy

distribution in aggregates of inanimate matter in so far as these changes are due to differences in

temperature. Evolutionary theory in its widest sense can be considered as the study of changes in the

energy distribution of aggregates of living matter, in so far as these changes are regulated by differences

in cycle time.

12.1. The Entropic Principles: A Characterization

Inanimate matter manifests itself primarily as three distinct states–solid, liquid and gas. These states

differ in their physical attributes–a property which is largely dependent on the degree of organization

of the constituent molecules. The reasons for these differences in physical attributes and the rules

that govern the transition from one state to another are described by thermodynamic theory. The

central concepts of the theory are the temperature, which describes the mean kinetic energy of the

constituent molecules and thermodynamic entropy. The entropy S̃ is related to temperature T̃ by the

Clausius expression

dS̃ =
dQ̃

T̃
. (91)

Here dQ̃ denotes the energy supplied as heat, and dS denotes the change in entropy.

Thermodynamic entropy has a statistical representation, namely,

S̃ = −
∑

p̃j log p̃j .

Here p̃j denote the probability that a randomly chosen particle in the aggregate is in energy state j.

The Second Law of Thermodynamics, the fundamental tenet of the theory, states that in an isolated

system, all transformations proceed towards a state of equilibrium defined by maximum entropy.

Accordingly, thermodynamically stable states are characterized by states which maximize entropy.

Living organisms are entities which are far from thermodynamic equilibrium. These systems

transform the free energy of the external environment into chemical energy which is used to maintain the

metabolic activity of the system. A prokaryotic cell, a simple example of living matter, can be considered

as a metabolic network organized within a membrane structure. The molecular organization that defines

a cell is strikingly different from the organization observed in an inanimate aggregate. The reasons for

these differences can be understood in terms of directionality theory. The fundamental concepts in this

theory are the generation time, that is the mean turnover time of the macromolecules in the cell, and

evolutionary entropy. The entropy S̃ is related to the cycle time T̃ according to the expression

dS = −T dP. (92)
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Here dP denotes the change in metabolic rate induced by the change in activity of the metabolic

process, and dS denotes the change in evolutionary entropy.

The entropy S also has a statistical representation, namely

S = −
∑

pj log pj .

Here pj denotes the probability that the precursor of a randomly chosen metabolite in the network is

in energy state j.

The directionality principle for evolutionary entropy describes the changes in the distribution of

energy within the cell. These changes are contingent on the abundance and diversity of the external

resources which the cell converts into chemical energy used for biosynthesis. The main tenets of the

theory assert:

1. When resources are constant, limited and of large diversity, all transformations proceed towards

states of increasing entropy, the steady state being defined by maximum entropy;

2. When resources are subject to large variations in abundance and its diversity is weak, all

transformations proceed towards a state of decreasing entropy, the steady state is now defined

by minimum entropy.

Consequently, the evolutionarily stable states are described by extremal states of entropy–maximum

entropy, when resources are constant and limited, minimum entropy when resources undergo large

variations in abundance.

We will appeal to the depiction of thermodynamic and evolutionary entropy given by Equations (91)

and (92) to show that the thermodynamic principle is the limit, as the resource production rate tends to

zero and the population size tends to infinity, of the evolutionary entropic principle.

13. The Entropic Principles: An Analytic Relation

Directionality in energy flow in material aggregates under isolated conditions involves two

parameters, temperature and thermodynamic entropy. Irreversibility is specified by the condition that,

∆S̃ > 0 ,

as the system evolves towards a state of thermodynamic equilibrium.

Directionality in energy flow in living systems–which are metabolic replicating systems–involves the

parameters cycle time and evolutionary entropy. Irreversibility under these constraints is contingent on

the resource constraints.

If we assume that the population size is large so that the effect of resource diversity can be ignored,

then the change in evolutionary entropy will depend uniquely on the resource abundance and we obtain

the following relations:

∆S > 0 : constant abundance

∆S < 0 : variable abundance.
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We will now show that when R̃ → 0, where R̃ denote the resource supply rate, we have

∆S ·∆S̃ > 0 .

The derivation is based on an analysis of energy transformation within a living cell, the fundamental

unit of biological systems. Such energy transformation can be analyzed in terms of both the

thermodynamic and evolutionary formalism.

Our analysis is based on a system in which irreversible processes are confined to a region (I) which is

small compared to the surrounding (II). We may consider (I) as an aqueous solution of several thousand

chemical substances contained within a membrane structure that is permeable to both matter and energy.

Substrates which are present in (II) will enter (I). These substrates will undergo reaction and are

returned to (II) as products. We imagine (II) as a portion of the local environment.

We assume that the region (II) is well mixed so that the temperature T̃ and other thermodynamic

parameters are constant.

Metabolic activity in (I) can be expressed in terms of a network of chemical reactions. We assume

that the activity in the network is maintained away from equilibrium by the input of energy and matter

from regions (II).

Provided there is a constant flux of energy into the model system, new values of concentrations and

flow will emerge. The system will evolve to a steady state condition where the concentration of the

substrates remain constant.

Let T denote the mean cycle time of the chemical reaction network. As shown in Demetrius [5], at

steady state, the mean cycle time T will be inversely related to the temperature T̃ . We have

T =

(
ch

kT̃

) (
1

ρ

)
. (93)

Here h denotes Planck’s constant, k, the Boltzmann’s constant and ρ an effective activation energy.

Now the mass-specific metabolic rate P and the generation time T , will satisfy the allometric

relations, Demetrius and Tuszynski [85],

P = αW−(1/1+β)

T = α̃W (1/1+β)

where α and α̃ are the proportionality constants and β the scaling exponent.

We conclude that

PT = αα̃ = b . (94)

Let Ẽ denote the energy being produced in (II) and E the energy created by the occurence of

irreversible processes in (I).

We assume that

E + Ẽ = A (95)

where A is a constant. This condition entails that the resource production rate, R̃ = 0.

We will assume that the energy Ẽ is proportional to the temperature T̃ and write

Ẽ = cT̃ . (96)
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Now, from Equation (94), we obtain

−TdP = P dT = b

(
dT

T

)
= −b

(
dT̃

T̃

)

=

(
b

c

)
dẼ

T̃
. (97)

Now dS = −TdP , and

dS̃ =
dẼ

T̃
. (98)

We conclude from Equations (97) and (98) that

dS = k dS̃ , (99)

where k is a numerical constant.

Let ∆S and ∆S̃ denote the change in thermodynamic and evolutionary entropy, respectively. We

conclude from Equation (99) that

∆S∆S̃ > 0 . (100)

14. The Origin of Metabolic-Replicating Systems

The fundamental processes which distinguish aggregates of inanimate matter from living matter are

replication and metabolism. Replication, a molecular level phenomenon, pertains to the construction of

an exact copy of a molecule through chemical assembly. Metabolism is a process of physico–chemical

organization which involves the appropriation of free energy and its conversion into chemical energy

to execute biological work. Modern cells are replicating–metabolic systems which consist of

macromolecules encapsulated within a phospholipid membrane.

The problem of the origin of life can be described, in more formal and general terms, as elucidating

the energy transformations that define the transition from inanimate matter to a metabolic-replicating

system, and determining the physico-chemical principles that govern this transition, Pross [86].

14.1. Inanimate Matter and Living Systems

The chemical composition of a living cell is qualitatively different from that of the environment in

which it resides. The chemical components are organic molecules, proteins, nucleic acids, substances

which are highly fragile and unstable. These molecules are unable to withstand high temperatures.

Consequently, cells are unable to use heat as a source of energy. Cells convert energy by means of an

electron transfer process. The solar energy trapped by green plants and the chemical energy conserved

by animal cells are transformed into a flow of electrons along an electron transfer chain. The energy of

electron flow is conserved not in the form of heat but in the form of the chemical energy of ATP which

is used to execute the mechanical osmotic and biosynthetic work of cells.

During these processes, the ATP loses some of its chemical energy but also its terminal phosphate

bond: The ADP produced is then rephosphorylated to ATP by transfer of phosphate from a phosphate

donor. ATP represents the linking agent between phosphate donors and phosphate acceptors and
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constitutes the primary molecule in the cellular energy cycle. The duration of this cycle, the metabolic

cycle time, constitutes a fundamental parameter in energy transformation in living systems.

The contrast between inanimate matter and living systems described indicates that there exist

fundamental differences in the forces and processes that determine the transfer of energy within

these systems.

The fundamental differences between the thermodynamic processes of energy transfer in inanimate

matter, and the evolutionary processes of energy transfer in living organisms, suggest that the transition

from inanimate matter to living systems requires the resolution of two classes of problems, Pross [86].

The first class deals primarily with experimental issues and can be formulated in the following terms:

What is the nature of the mechanisms that drive the transition from an aggregate of inanimate matter to

a protocell with replicative and metabolic activity? Important contributions to this problem have been

proposed based from several different perspectives. A recent review of these contributions is given in

Deamer and Szostak [87]. This review concerns problems of hierarchical organization: the formation of

fatty acid vesicles, the encapsulation of nucleotides and polypeptides into vesicles, and the emergence

of cyclic growth and division from purely physical and chemical systems.

The second class of problems revolve around the question: What are the physico–chemical principles

that govern the transition from a system regulated by thermodynamic selection to a system governed

by evolutionary selection? In [21], we exploited certain relations between the processes of energy

transformation in non-living and living systems to derive a Continuation Rule. This tenet asserts that

the transition from inanimate matter to living systems is a continuous physico-chemical process based

on variation and selection. The continuation principle entails a class of rules which we claim regulate

the transition from inanimate matter to a prebiotic cell.

14.2. The Continuation Rule and the Origin of Life

The thermodynamic selection principle asserts that energy flow is determined by changes in

thermodynamic entropy S̃, and the selective advantage is given by

s = ∆S̃ .

The evolutionary selection principle asserts that energy transformation within and between living

organisms is predicted by evolutionary entropy S, and is contingent on the resource abundance and

resource diversity.

The measure of selective advantage is given by

s = −(Φ− γ/M)∆S .

As observed in Section 13, when M → ∞, R̃ → 0, (where M denote population size, and R̃

denote resource production rate) then the evolutionary selection principle reduces to the thermodynamic

selection principle. An immediate consequence of this relation is:

The Continuation Rule. The evolutionary process of variation and selection in

metabolic-replicating systems is the kinetic continuation of the thermodynamic selection process

in physico-chemical systems.
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The Continuation Rule implies that the transition from inanimate matter to living system is a

continuous process of selection at various levels of molecular organization, and under a spectrum of

resource constraints. Hence, the transition from non-life to life is not a singular event but a gradual

process which will spontaneously emerge, given the appropriate resource conditions [21].

The Continuation Rule and the evolutionary selection principle suggest a series of processes which

involve the following stages: the emergence of an RNA world described by polynucleotides and

polypeptides encapsulated in a fatty acid vesicle, the development of a RNA–DNA–protein world

described by the encapsulation of these molecules within a phospholipid vesicle .

The various stages we depict are consistent with the experimental studies reviewed in Deamer and

Szostak [87]. Our model furnishes an evolutionary basis for the various stages by showing that each

transition can be understood in terms of the entropic selection principle.

15. Conclusions

Inanimate material aggregates and living organisms, at various levels of organization–cellular and

populational, both manifest, when observed over certain particular time scales, changes which have a

strong directional component.

The canonical example of directional change in the inanimate world is the flow of heat in isolated

systems: heat always flows from hotter bodies to colder bodies and not the other way round. The

mechanistic understanding of this process derives from the pioneering efforts of Carnot, Clausius and

Boltzmann. This understanding is embodied in the Second Law of Thermodynamics which states that in

an isolated system, all transformations proceed irreversibly towards a state of maximum thermodynamic

entropy. Thermodynamic entropy is a statistical measure of structural organization in an aggregate of

inanimate matter. This quantity describes the number of ways the molecules in the material aggregate

can be arranged to achieve the same total energy. Thermodynamic entropy also describes the extent to

which energy is distributed over all the microscopic storage modes of the system.

Macroevolutionary change in the history of life is embodied in the fossil record. This record indicates

a uni-directional increase of maximum body size of organisms since the initial appearance of life more

than 3.5 billion years ago. A mechanistic, albeit, qualitative understanding of this directionality was

advanced by Darwin in terms of the principle of variation and selection. Darwin’s central insight was

the introduction of the concept, fitness, a measure of the capacity of a type to extract energy from the

external environment and to convert this energy into net-offspring production.

A quantitative model of Darwin’s argument is incarnated in directionality theory, a mathematical

model of microevolutionary and macroevolutionary processes based on evolutionary entropy as the

measure of fitness. Evolutionary entropy is a statistical measure of dynamic organization in an aggregate

of metabolic entities. These entities include: the substrate and products that form the elements of a

metabolic network; the organisms that are the units of an age-structured or size-structured population;

the individuals that define the cooperative units in a social network. The entropy, in the context of these

models, describes the number of pathways of energy flow within the network. Evolutionary entropy

also characterizes the rate at which energy from the external environment is appropriated, and then

transformed into activities which contribute to the persistence and integrity of the network.
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The fundamental tenets of directionality theory, as regards population of replicating organisms,

pertain to the dynamics of evolutionary change under mutation and natural selection. These tenets can

be qualitatively described in terms of the following rules.

1. When resources are diverse, and constant in abundance, all changes proceed towards a state of

maximum entropy.

2. When resources are singular, and undergo large variation in abundance, all changes proceed

towards a state of minimum entropy.

Accordingly, the laws which govern energy transfer in aggregates of inanimate matter and in

aggregates of living matter are distinct. In thermodynamic systems, the transitions are towards a

state of maximum entropy. In evolutionary systems, the transitions are towards states of maximum or

minimum entropy: the direction of change being contingent on the environmental constraints. However,

the thermodynamic and evolutionary laws are related. The thermodynamic principle is the limit, as

population size tends to infinity and resource production rate tends to zero, of the evolutionary tenet.

This thermodynamic–evolutionary dichotomy has important implications towards the understanding of

the principles which underlie the transition from inanimate reactive molecules to a living cell.
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