
Entropy 2014, 16, 5677-5697; doi:10.3390/e16115677

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

A Load Balancing Algorithm Based on Maximum Entropy
Methods in Homogeneous Clusters

Long Chen *, Kehe Wu and Yi Li

North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing 102206,

China; E-Mails: lw_ncepu@163.com (K.W.); liyi174748@163.com (Y.L.)

* Author to whom correspondence should be addressed; E-Mail: easy_cl@163.com;

Tel.: +86-135-8158-1023.

External Editor: Kevin H. Knuth

Received: 17 April 2014; in revised form: 13 October 2014 / Accepted: 23 October 2014 /

Published: 30 October 2014

Abstract: In order to solve the problems of ill-balanced task allocation, long response time,

low throughput rate and poor performance when the cluster system is assigning tasks, we

introduce the concept of entropy in thermodynamics into load balancing algorithms. This

paper proposes a new load balancing algorithm for homogeneous clusters based on the

Maximum Entropy Method (MEM). By calculating the entropy of the system and using the

maximum entropy principle to ensure that each scheduling and migration is performed

following the increasing tendency of the entropy, the system can achieve the load balancing

status as soon as possible, shorten the task execution time and enable high performance. The

result of simulation experiments show that this algorithm is more advanced when it comes

to the time and extent of the load balance of the homogeneous cluster system compared with

traditional algorithms. It also provides novel thoughts of solutions for the load balancing

problem of the homogeneous cluster system.

Keywords: entropy; maximum entropy methods (MEM); homogeneous cluster; load

balancing; scheduling

PACS Codes: 07.05.TP; 89.20.Ff; 65.40.gd

OPEN ACCESS

Entropy 2014, 16 5678

1. Introduction

Nowadays, with the rapid development of information and terminal technology, the needs of

information industry are moving in the direction of high-end services and low-end terminals. Therefore,

the subsequent massive data integration and computing needs have become the bottleneck of the server

cluster technology at the current stage [1]. As a single server would be unable to satisfy the growing

demand, cluster systems—with good scalability and high performance—turn out to be the primary

choice. The homogeneous cluster is a major cluster system in which each of the computing nodes in it

has the same hardware and software configuration [2]. It is significant and difficult to decide how to

assign tasks reasonably. This means that the tasks should be evenly distributed, which won’t make one

server over-assigned and the rest less-assigned. Consequently, the load balancing mechanisms emerged

and it became a main target for resource allocation of cluster system.

The load balancing technology is applied to the distribution of the load among the resources including

multi-processor, multi-computer, multi-network and multiple hard drives, to evenly distribute the load.

Moreover, computing load balancing implies distributing the computing tasks among different nodes in

the cluster system, to improve the computing performance of whole cluster system, which is called a

high-performance cluster and is widely used in fields like scientific computation. Moreover, load

balancing is one of the main indexes of resource allocation in high-performance cluster systems [3].

2. Related Studies

In recent years, there have already been numerous studies about load balancing technology. It is

developing towards the direction of intelligence. More and more known load balancing information and

unknown predictive information have been chosen by researchers as the judgment standard of load balancing.

Ibrahim et al. [4] did a lot of research on how to use dynamic load balancing to solve the parallel

search tree problem, and proposed the Round Robin dynamic load balancing algorithm, whereby all

nodes in the cluster can be equally selected in a reasonable order, which is usually from the head to the

tail of the list, and then again and again. However, since this algorithm does not take the current moment

load of the nodes into consideration, the judgment of the dynamic load balancing is not precise enough.

Liu et al. [5] gave a load balancing optimization algorithm with a genetic algorithm. It applied the

artificial intelligence technology to solving the load balancing problem. However, this algorithm can only be

used in ideal situations like the laboratory, and it is unable to meet the complex needs of practical applications.

Chau [6] studied the problem of load balancing between distant clusters, proposed an improved

Dimension Exchange Method (DEM) synchronous load balancing algorithm under a hypercube

structure, whose performance is better than the original DEM algorithm and it is similar to the CWA

algorithm. However, this paper mainly discusses the problem of load balancing within the cluster, so the

algorithm isn’t applicable.

Balasubramaniam et al. [7] presented a dynamic load balancing library in clusters, which combined

the technology of dynamic load balancing with round-robin scheduling, and could be used as a load

balancing application interface of a distributed shared memory (DSM) system. However, the dynamic

load balancing library is built on heterogeneous clusters, so it can not always be efficient on

homogeneous clusters.

Entropy 2014, 16 5679

Sit et al. [8] studied the reasonable migration quantity of load during the migration process, proposing

a dynamic load balancing algorithm based on clusters. Moreover, this algorithm mapped the load

difference between the nodes to an appropriate cluster. Using the center of mass of the cluster to obtain

the appropriate number of tasks that need to be migrated, it can adjust the load imbalance between the

nodes. However, this algorithm only studied one aspect of a dynamic load balancing-migrate execution,

while the other two aspects—information collection and migration strategy—have not been studied.

Dai et al. [9] applied the idea of fuzzy control and heuristic strategy from the traditional control theory

to the load balancing problem, and presented a fuzzy control-based heuristic algorithm for load balancing

in workflow engines, which offers a new idea for solving the problem of load balance.

Kim and Kim [10] presented a load balancing algorithm named Perpendicular Image Partitioning (PIP)

for parallel vision processing. The algorithm is developed for a specific enviroment such as a small-scale

parallel system, and it takes the load variance as the metric for load balancing. The load-balancing

problem is converted to the position determination problem of partitioning lines, and the purpose of the

algorithm is to find the balanced partitioning line position pair so to make the load variance becomes the

minimum value, and thus achieve load balancing. As it is a data-oriented and static load balancing

algorithm, it cannot satisfy well the demands of homogeneous clusters.

Nair et al. [11] considered different load balancing algorithms and the queue-size processes generated

by these algorithms, and used the entropy rate of the induced queue-size process as a metric to understand

the trade-off performance for implementation simplicity, it offers a new metric for load balancing.

Dong et al. [1] discussed the relationship between the load balancing problems of a cloud computing

cluster system and the energy from the aspects of entropy and generalized complexity, and calculated

the value of the energy which could make the cloud computing cluster system achieve an equilibrium

state. This makes possible solving the problem of load balancing by using the change of entropy.

Zuo et al. [12] proposed a resource evaluation model based on entropy optimization and dynamic

weighting. The entropy optimization filtered the resources that satisfy the QoS and system maximization

by goal function and constraints of maximum entropy and the entropy increase principle, which achieved

optimal scheduling and satisfied the QoS. Then the evaluation model evaluated the load of having

filtered resources by dynamic weighted algorithm. However, in this paper, the entropy has only been

used to filter the resources, and it only focused on evaluating the loads. There is no detailed description

and implementation of the load balancing algorithm, so it is not feasible in homogeneous clusters.

Therefore, inspired by the related studies, this paper introduces the concept of entropy in

thermodynamics into load balancing for homogeneous clusters, redefining the target of load balancing

by using the entropy as a measure of the degree of load balancing, and then proposing a load balancing

algorithm based on the Maximum Entropy Methods (MEM) in homogeneous clusters, which can be used

to equally distribute the tasks in homogeneous clusters for reducing the response time and increasing the

throughput. Compared with other traditional algorithms, the new algorithm is better in terms of the time

and the degree of system load balancing, which indicates that the new algorithm is workable to a certain

extent to balance the load in homogeneous cluster.

The paper is organized as follows: in Section 2, we introduce related research studies on load

balancing; in Section 3, we describe the basic concepts of entropy, load balancing, and the principle of

Maximum Entropy; in Section 4, we introduce the thermodynamic concept of entropy into the load

balancing algorithm, defins the model and then perform the theoretical analyses; in Section 5, we present

Entropy 2014, 16 5680

our Maximum Entropy Methods-based load balancing (MEMBLB) algorithm and give a brief

introduction to it. Section 6 concerns some experiments on this algorithm and compares the algorithm with

other algorithms. The last section is the conclusion of the paper and illustrates our future work plans.

3. Basic Concept

Before introducing the algorithm, it is necessary to understand the basic concepts of entropy and load

balancing and the maximum entropy methods, so as to better comprehend the algorithm better.

3.1 Entropy

Entropy is a very important concept in physics, which is used to describe and study the widespread

irreversibility of motion conversion direction in nature. In 1850, German physicist

R. J. E. Clausius firstly used the thermodynamic state function-entropy (S) to quantitatively describe the

dissipation character of changing in energy during the irreversible process, and quantize the second law

of thermodynamics, so that the thermodynamics was greatly improved. The entropy is primarily used

for representing the degree of uniformity of any kind of energy distribution in the space. The more

uniform energy distributed, the greater the entropy. When the energy of a system achieves a completely

uniform distribution, the entropy of the system reaches a maximum. See formula as follows:

/S Q TΔ = (1)

where Q represents the change of system energy and SΔ represents the variation of entropy. Since then,

the concept of entropy quickly spreaded to other fields, thus opening up new research fields one after

another inside and outside physics. Nowadays, the concept of entropy not only infiltrated disciplines like

chemistry, biology, mathematics, engineering, meteorology, geology and other traditional natural

sciences, but also extended to many aspects of humanities and social science. Albert Einstein once said:

“The entropy theory is the first rule of the whole science”. Eddington also believed that the entropy is

the sovereign philosophy principle in the whole universe. Historically, all the theories (thermodynamics,

statistical physics, information theory), which are known to be very successful, contained some

understanding and definition of entropy. Although these understandings and definitions are not identical,

there is a close relationship between them.

This section focuses on the concept of entropy in information theory, which regards entropy as an

uncertainty degree of information states. In 1948, in order to emphasize the concept of “the amount of

information”, Shannon connected information entropy with statistical mechanics entropy, and regarded

the channel theorems as a special form of the second law of thermodynamics in communication theory,

thus making information entropy a formal branch of information theory. The idea used by Shannon to

break through the key concept of “the amount of information” is that, “Can I define a quantity, which

can to some extent measure how much information is produced in this process? Or more ideally, how

much is the information rate produced by this process?” Then, he put the amount of information as the

central concept of information theory. With this idea, he used the statistical properties of Markov process,

that is using the “entropy” to represent the characteristics of the information source, and given the

formula of information entropy as follows:

Entropy 2014, 16 5681

1
ln

n

i ii
H C p p

=
= −  (2)

where presents the probability of occurrence of the ith event, is a proportionality constant, and

is the in the famous Boltzmann constant. The above formula when used to express the connection

between the uncertainty and random events, can solve the problem of the quantitative description of

information. As a measure of the loss of the system information, the information entropy means that the

higher the degree of order of a system, the less the degree of uncertainty, the smaller the entropy, and

the greater the amount of information; the more the degree of disorder of a system, the greater the degree

of uncertainty, the greater the entropy, and the less the amount of information. “The average of the

amount of the information has various characteristics of entropy” means the application of entropy will

be beyond some fields of natural science by the information theory. Development of the theory

mushroomed, and in 1984, Xie et al. [10] introduced the concept of entropy to measure the information

of fuzzy sets, and it functioned perfectly, so the concept of entropy has been extended ever since.

3.2. Maximum Entropy Methods

There are some random events whose distribution function are unknown and cannot be calculated

directly. We only know the average value of one or a few random variables related to the random event.

Obviously, this kind of probability distribution is not unique, so how to select the “best” or the “most

reasonable” one from the compatible distribution as the actual common distribution? To do this, we need

a standard—that is Maximum Entropy Method—which is a big application of principle of entropy

increase in thermodynamics [11].

According to the MEM, selecting such a distribution from all the compatible distributions means

finding a distribution with the maximum information entropy under some constraint conditions—usually

a certain average value of the given random variable. Based on MEM, we can find the distribution with

the maximum entropy by using the Lagrange multiplier method.

The most common and most practical probability distribution corresponds to the maximum

information entropy. When the information entropy takes the maximum value, the corresponding

probability distribution must be the most possible one. Therefore, it is reasonable to make MEM a

selection criterion. The MEM broadens the application range of entropy [12]. For engineering structural

systems—due to the prior knowledge level—the difference of system decomposition method and the

influence of various uncertainty factors, the system identification problem often has more than one

solution, so the MEM is an effective solving method. According to the MEM, we should choose the one

with maximum entropy among all the feasible solutions of an ill-posed problem. The maximum entropy

means the man-made hypothesis is the minimum because of the data deficiency. Regarding entropy as

an uncertain measurement, the solution here and now contains the least subjective elements, which

makes it the most objective.

The mathematical model using the MEM to solve the probability distribution problem can be written

as follows [13]:

Set sample data as: , 1, 2,...,ix i n= , so:

1 1 1
max(ln | . . / , 0,1,...,)

n n nk k
i i i i ii i i

p p s t p x x n k m
= = =

− = =   (3)

ip C H

H

Entropy 2014, 16 5682

where . .s t represents constraint conditions, and the probability condition is
1

1
n

ii
p

=
= when k equals

zero. While the rest of 1, 2,...,k m= , the k origin moment is equal to the corresponding sample moment.

Usually we can use the Lagrange Multiplier Method to solve it, or using the Optimization Method to

work out its numerical solution.

3.3. Load Balancing

The load is an abstract concept to indicate how busy the system is and it refers to the subtasks, which

are assigned to each server node and executed in parallel [14]. The so-called load balancing strategy

means to balance the load of each server node by adopting certain policy to make the load essentially

equal. It can be understood in two aspects: on the one hand, it refers to the allocation of large volumes

of concurrent access and data traffic to multiple server nodes, and processing them separately to reduce

the waiting time; on the other hand, it means that a single heavy load calculation task can be shared

among multiple server nodes for dealing with it in parallel, and then summarizing the results back to the

user, improving the treatment capacity of the system [15]. The mathematical model is defined as follows:

Definition 1. The so-called load-balancing means giving a set of load 1{ , , }nL L L=  , a set of server

nodes 1{ , , }mS S S=  and a set of current server load 1{ , , }mSL SL SL=  , to find a function ()f L , in

which the set of load L can be mapped to the set of server nodes iS , making the load iSL of each server

node iS be essentially equal, that is:

1 2 ... mSL SL SL≅ ≅ ≅ (4)

where iSL represents the sum of all the load ()if L mapped to this server node iS .

If we use oτ to reflect the time needed for executing task oL on the server node iS , the time needed

for executing all the task on the server node iS is as follows:

()()1, ,i
i oo f L i n

t τ
∈ =

= 
 (5)

Definition 2. If m equals to one, that means there is only one server node, and all the tasks should be

executed serially on the server node, so the time needed is the sum of all the time, which can be

represented as 1T shown below:

()1 1, ,oT o nτ= =  (6)

Definition 3. If m is greater than one, that means there are more than one server node, and the tasks

can be shared to multiple server nodes for dealing with in parallel, the time needed is represented as mT

shown below:

1, ,
maxm i
i n

T t
=

=


 (7)

Thus, the target of the load balancing is to solve the mapping ()f L to get the minimum of mT under

the circumstance that 1 2 mSL SL SL≅ ≅ ≅ .

Entropy 2014, 16 5683

4. Model of the Algorithm and Its Properties

4.1. The Define of the Model

Through the description of the basic concept above, we find that the features of load-balancing in

cluster systems have much in common with the relative concepts of thermodynamic systems [16], which

means that the entropy can be used to show the randomness of material. The more uniform the

distribution, the bigger the entropy. The purpose of load-balancing is the load-distribution uniformity,

so we introduce the concept of entropy in thermodynamics into the cluster system and take advantage of

the MEM to solve the load-balancing problems. For this we redefine some concepts of load balancing

as follows:

Definition 4 (the concept of entropy). If a homogeneous cluster system has n compute nodes, so the
load of the node i is iL as well as the relative load factor is ()/ 1, 2, ,i i ii

p L L i n= =  at time t, then

the system entropy value ()H t at time t can be expressed as below:

() ()
1

ln 1/
n

i ii
H t p p

=
=    (8)

The probability distribution of maximum entropy is:

()1 1
max ln | . . 1

n n

i i ii i
p p s t p

= =
− =  (9)

Only under the probability conditions without other constraints, using Lagrange Multiplier Method,

namely introducing the Lagrange multiplier λ into solving an unconstrained maximization objective

function, which means to maximize the following function:

()()1 1
ln 1 1 max

n n

i i ii i
p p pλ

= =
− + + −   (10)

Obviously:

()()1 1
ln 1 1 0

n n

i i ii i
i

p p p
p

λ
= =

∂  − + + − =  ∂   (11)

In order to achieve simple results, using ()1λ + instead of oλ , and get the results: ln ipλ = or

, 1,2, ,ip e i nλ= =  .

According to the constraint conditions it should be as follows:

1
1

n

ii
p neλ

=
= = that is 1/ , 1,2, ,ip e n i nλ= = =  (12)

Considering that the solution is a probability distribution, the maximum entropy value is:

() () () ()
1

1/ ln ln
n

i
H t n n n

=
= =   (13)

From Section 3.3 we know that the target of the load balancing is to solve the mapping ()f L to get

the minimum of mT under the circumstance that 1 2 mSL SL SL≅ ≅ ≅ . Moreover, through the concept of

entropy, we can know that the entropy will reach its maximum value when 1 2 1/mp p p m= = = = ,

which equals to 1 2 mSL SL SL≅ ≅ ≅ . Therefore, the target of using MEM to redefine the load balancing

can be described as follows:

Entropy 2014, 16 5684

Definition 5 (the target of load-balancing). The target of load balancing is always moving with the

trend of increasing entropy, the greater the entropy, the more homogeneous the load, and when the load

of cluster system completely uniformly distributed, the entropy value reaches the maximum at the same

time. That is, to find a probability distributions of ip —make the distribution evenly as possible—to get

the maximum of ()H t under constrain condition.

4.2. The Properties

Through the definition above, we can conclude that the entropy of a homogeneous cluster has the

following properties:

Property 1. The load balancing is always moving with the trend of increasing entropy. In other words,

the changing trends of the entropy value determine the load-balancing.

As the entropy can be used to indicate the randomness of material, an increase of the entropy

represents that the material tends to be stable. The target of load-balancing is the even distribution, so

the increase of the entropy can achieve the target, which means that the changing trends of the entropy

value can determine the load-balancing distribution.

Property 2. The entropy will reach its maximum if and only if the load is completely balanced, that is,

the state of maximum entropy is the most balanced state of load.

From Property 1 we know that the load balancing is always moving with the trend of increasing

entropy, so when the load completely balanced, the entropy reached its maximum.

Property 3. When the entropy reaches its maximum, the execution time of the task reaches the minimum.

From the definition of entropy, when the relative load factors are the same in each node, the entropy

reaches its maximum. At the same time, the execution time of the program reaches its minimum.

Property 4. The change of the entropy is incremental. After it reaches its maximum and remains stable

for a while, it will decrease.

At the starting stage of the system, the time when the load starts to be scheduled, the load distribution

of the cluster is not balanced, so the value of the entropy is smaller. The load is assigned evenly to each

server as time passes by, so the system reaches balance and the value of the entropy reaches the

maximum. However, due to the difference of tasks, some servers will have completed their tasks while

others are still running, which will destroy the balance. Then the load distribution of the system won’t

be balanced, and the value of the entropy will decrease gradually.

Property 5. As the entropy increases, the maximum relative load factor of a homogeneous cluster

decreases. If and only if the load is completely balanced, the entropy reaches its maximum.

Theorem 1. If the relative load factor is 1 2, , , np p p , then the sufficient and necessary conditions of

maximum entropy ()H t is 1 2 1/ nnp p p= = = = .

Proof. As
1

1
n

ii
p

=
= , so we can use the Lagrange Multiplier Method to get the ip of maximum entropy:

() ()1 1 1
, , ln 1

n n

n i i ii i
G p p p p pλ

= =
= − + −  (14)

Entropy 2014, 16 5685

then take the partial respect of G to ip , and set it to zero to obtain the equation as follows:

ln 1 0, 1, 2, ,i
i

G
p i n

p
λ∂ = − − + = =

∂
 (15)

()1
ip e λ−= (16)

because of
1

1
n

ii
p

=
= , so:

1
1 1 1/

n

i i ii
p np p n

=
=  =  = (17)

that is 1 2 1/ nnp p p= = = = , and the corresponding entropy is () () ()
1

1/ ln 1/ ln
n

i
n n n

=
− = .□

Theorem 2. If the relative load factor is 1 2, , , np p p , then the entropy can be expressed as

H(p1, p2, …, pn), so H(p1, p2, …, pn) < H(p1, p2, …, pi + δ, …, pj ‒ δ, …, pn) when ()0 / 2j ip pδ< ≤ − .

Proof. set ()1 2, , , , , , ,i j ny H p p p x p x p= + −   , then:

() ()1, ,

1 1 1
ln ln ln

n

k i jk k i j
k i j

y p p x p x
p p x p x= ≠

= + + + −
+ − (18)

() ()ln lni j

dy
p x p x

dx
= − + + − (19)

when ()0 / 2j ix p p< ≤ − , there is 0
dy

dx
≥ , if and only if the x is equal to () / 2j ip p− , the equality holds

and the Theorem 2 certificate. □

Theorem 3. If the relative load factor is 1 2, , , np p p , then the entropy can be expressed as

()1 2, , , nH p p p . For i jp p∀ ≤ , there is () ()1 2 1 2, , , , , , , , , ,n i j nH p p p H p p p p pδ δ> − +   

when 0 ipδ< ≤ and ()1 jpδ ≤ − .

Proof. set ()1 2, , , , , , ,i j ny H p p p x p x p= − +   , then

() ()1, ,

1 1 1
ln ln ln

n

k i jk k i j
k i j

y p p x p x
p p x p x= ≠

= + − + +
− + (20)

() ()ln lni j

dy
p x p x

dx
= − − + (21)

when 0 ipδ< ≤ and ()1 jpδ ≤ − , there is 0
dy

dx
≤ , the equality holds and the Theorem 3 certificate. □

Through the definition, properties and theorems above, we can realize that entropy is a good measure

to judge the degree of load balancing and the MEM can accurately indicate the target of load balancing,

so in this paper, a load balancing algorithm based on the MEM is proposed. It not only can make the

system load balanced in a short period of time with respect to the trend of entropy increase, but also can

make full use of server resources and avoid waste caused by the uneven distribution of the load.

Entropy 2014, 16 5686

5. Implementation of the Algorithm

In order to achieve the goal of load balance in a cluster system, the operation can be divided into two

stages: the first stage is distributing the load equally to all servers in the cluster when doing the load

dispatch, which can make the system achieve balance; the second stage is making partial adjustment

after the load distribution on the servers, which means migrating the tasks on the overload server nodes

to a lightly-loaded one. Then the system will achieve balance. Therefore, the following four questions

should be solved:

(1) The collection and processing of load information on server nodes

(2) The selection of the scheduling policy

(3) The selection of the migration strategy

(4) The implementation of migration

In this paper, a new load balancing algorithm based on MEM in homogeneous clusters was put

forward and the difficult problems above were solved. The solutions to the four problems will be

described in detail below, and finally, a complete description of the algorithm will be given.

5.1. Collection and Processing of Load Information

This paper focuses on the variance of entropy. According to the definition of entropy, it is related to

the relative load factor, which is the ratio of the load of the nodes to the total load of the system. The

load can not only be calculated by the number of tasks, but also can be measured by the calculation of

tasks. However, in the homogenous cluster system—when the calculation of tasks can be measured—it

is better to use the total computation of tasks to reflect the load of the server node iS than the number of

tasks of node iS in the server, so we chose the calculation of tasks as the measurement of the load for

the server node in this paper. In order to calculate the value of entropy, we need to know the load of each

server node. We need to synchronize, coordinate the nodes status information to the back-end services.

If using traditional dynamic monitoring, it could cause a lot of traffic and increase the load of the system,

so in this paper, we introduced a monitor node to centralize the collection of the load information, and

then calculated the relative load factor ip of each server node as well as the entropy ()H t of the current

system. Finally, all the information we obtained should be fed back to the scheduler for load scheduling.

In this way, each server node merely needs to transmit the load information to the monitor node for

processing and feed back the information uniformly, which ensured the state synchronization between

servers and reduced the traffic. Meanwhile, this avoids single points of failure caused by a single monitor

node. With a hot-standby strategy, it can switch over to the standby monitor node when the main node

failure, which will ensure the system keeps running normally.

5.2. Selection of the Scheduling Policy

There are many mature scheduling algorithms, such as Round-Robin Scheduling Algorithm,

Least-Connection Scheduling Algorithm, Weighted Round-Robin Scheduling Algorithm, Destination

Address Hashing Scheduling Algorithm and so on. The algorithm proposed in this paper is based on the

MEM, which means scheduling based on the change of obtain the maximum entropy of the system. After

Entropy 2014, 16 5687

the scheduler obtained the relative load factor of each server node and the entropy of the system from

the monitor node, we first need to calculate the entropy changes according to the calculation of the

scheduled tasks after the tasks have been scheduled to the server node, and then select a server node,

whose entropy is increasing and whose increment of the entropy is the maximum, as the machine whose

purpose is task scheduling to complete this schedule. In this way, the entropy of the system is increased

with the maximum increment when every scheduling is processing, so that the entropy increases to the

maximum when we finish the task scheduling, and according to Property 2 above, the load of the system

has achieved the most balanced state at the moment. This scheduling algorithm can make the system

achieve a load balancing state in a comparatively short period of time so as to avoid wasting server

resources.

5.3. Selection of the Migration Strategy

Due the differences of the tasks and the fact the times needed to complete the tasks are different,

which means some tasks have completed while some other tasks are still performing, this leads to the

change of the relative load factor of the server node, which will influence the entropy changes. According

to Property 4, we know that the entropy will be reduced at this moment, which indicates that the load of

the system becomes unbalanced at this moment. We need to reschedule the load to put it back into

balance, such as using migration. However, the migration needs to take up system resources and time of

the system, so if we do it without rules, it will do more harm than good, which will not only worsen the

situation of the system load, but also will increase the burden on the system.

Therefore, the key point we have to focus on is when and how to do the migration. In this paper, we

propose a load balancing algorithm based on the MEM by taking the entropy value as the judgment

condition of whether to do the load migration.
For this, we design a threshold value oH of system entropy as the load migration critical condition

and compare the current system entropy ()H t calculated by the monitor node with this threshold value
oH . If ()H t is less than oH , it reflects that the load distribution of system is unbalanced, and the load

migration is needed, which means transferring the tasks from high-load nodes to low-load nodes.

Balancing the load of each server node the entropy value will increase, so as to realize the system load

balance; on the country, if ()H t is greater than or equal to oH , it explains that the load of system is

balanced, there is no need to do any migration. We can be seen that the key influencing factor for

migration is the threshold value oH of the system entropy. If the threshold value oH is too low, it will

reduce the chances of migration, and that will lead to an unbalanced load on system nodes, which will

cause the tasks on the high-load nodes to not be processed, while there is no task for the low-load nodes

to handle. As a result, there will be a waste of system resources, and even a system crash caused by the

overload; or otherwise, if the threshold value oH is too high, the migration will happen frequently, and

since the migration needs to consume system resources, this will degrade the system performance.

5.4. Implementation of the Migration

The monitor node calculates the relative load factor by obtaining the current load information of each

server node, so as to calculate the current entropy value ()H t of the system, which will be compared

with the threshold value oH . Then the results may feed back into the scheduler, which determines

Entropy 2014, 16 5688

whether to do the migration, the tasks that need migration and the migration target server. The migration

is also based on the entropy value, ensuring that the entropy of the system will increase after the migration

so as to achieve load balance, otherwise, the migration is not executed. This is an NPC problem [17], so

we cannot find a common formula to solve it, so we use the following conventions:

(1) The tasks are always migrated from high-load nodes to low-load nodes, but not vice versa.

It means that the migration is always toward the increasing trend of system entropy value.

(2) The tasks with too small an amount of calculation are beyond the selection scope of the migration

because the migration needs to use system resources and execution time Maybe the time taken to

do the migration is far beyond the execution time of tasks. This will cause a waste of system

resources and time.

Therefore, whether the system does the migration depends on whether the system entropy value

increased and the load-balanced situation is improved significantly after the migration.

5.5 Description of the Algorithm

The main description of this algorithm is listed as follows:

Step 1. According to the information collected, we can calculate the load kL and relative load factor ip

of each server node as well as the average relative load factor, so as to obtain the system’s current entropy
value. Then, we turn to Step 2;

Step 2. To compare the system’s current entropy value ()H t with the threshold value oH we do

the following:

(1) If the ()H t is less than oH , it means that the system load is unbalanced and needs migration.

For the server nodes whose relative load factor ip of each server node is greater than or equal to

the average relative load factor op , the relative load factor ip should be sorted in descending

order to form a server queue sQ . That is the server queue which needs to do the load migration;

for the other server nodes whose relative load factor ip of each server node is less than the

average relative load factor op , the relative load factor ip should be sorted in ascending order

to form a server queue tQ . That is the server queue which can accept the load. Then we turn to

Step 3 to do the migration;

(2) If the ()H t is greater than or equals to oH , it shows that the system load is comparatively

balanced and it is unnecessary to do the migration. We see if there is any new load to be scheduled

and if there is, then we turn to Step 4 and do the scheduling operation; otherwise, return to Step

1 and calculate the next moment;

Step 3. To traverse the queue sQ and tQ , and take out the nodes S and T to migrate the task on node S

to node T , ensuring that the entropy of the system will increase after the migration. For the node S , the

operation will be continued until the relative load factor ip of each server node is less than the average

relative load factor op , then we remove the node S from the queue sQ ; for the node T , the operation

will be finished when the relative load factor ip of each server node is greater than or equal to the

average relative load factor op , then we remove the node T from the queue tQ . The migration won’t

be finished until any queue is empty, and then we go back to Step 1;

Entropy 2014, 16 5689

Step 4. To schedule the new tasks, and form a server queue Q sorted by the relative load factor ip in

ascending order, scanning this queue and finding out the node S whose entropy increased and is the

maximum after the scheduling. If it exists, then the task is scheduled to the node S to finish the task

scheduling, and then we return to Step 1.

6. Experiments and Results

In order to verify the effectiveness and feasibility of the algorithm proposed in this paper, we designed

the following experiments to compare the Maximum Entropy Methods-based load balancing algorithm

in homogeneous cluster (MEMBLB) with the Task Threshold Value-based load balancing algorithm

(TTVBLB) and the Genetic Algorithm-based load balancing algorithm (GABLB).

6.1. Environment of the Experiments

The tools we used to create the environment of the experiments are as below:

(1) OpenStack: OpenStack is an open source cloud management platform, which provides an easy

way to create, manage, and release virtual machines. As is known to all, no two leaves are

identical in the world, so it is difficult to create a completely homogeneous cluster. We solved

this problem by using OpenStack to create some near-identical virtual machines with the same

image. There are three servers with the same configuration of 2.4GHz CPU, 8G RAM and

Ubuntu 12.04.

(2) Haproxy: Haproxy is an open source traditional load balancing procedure. We have changed the

procedure to use the above two load balancing algorithms and compare them in the experiments.

(3) KVM: KVM is a virtualization platform, which provides some programmatic APIs to create,

migrate and destroy virtual machines. In this experiment, OpenStack used KVM to create the

virtual machines.

6.2. Results of the Experiments

Experiment 1. Comparison of MEMBLB and TTVBLB on the degree of load balancing and load

migration for multiple tasks under the case of the same node number.

In this experiment, the experiment object are fifty tasks selected randomly from the system, and the

environment is a homogeneous cluster formed by five virtual machines, created by OpenStack with the

same image. They had the same configuration and were indicated by the letters A, B, C, D and E.

This experiment is divided into two steps: firstly, we adopt the traditional algorithm TTVBLB to

schedule and load balance, and record the load amount of each of the system’s servers after reaching

balance, and then calculate the corresponding entropy; secondly, we do the same task using the

MEMBLB algorithm mentioned in this paper; finally, we compare the results of the two groups and

analyze them.

Among a large number of experiments, this paper selects the most representative one to explain. Table 1

shows the load of each server after scheduling with the two algorithms, the MEMBLB algorithm and the

traditional TTVBLB algorithm. For convenience this paper calculates the tasks instead of the load.

Entropy 2014, 16 5690

Table 1. The load of each node after scheduling with the two algorithms.

Nodes
The load after scheduling
TTVBLB MEMBLB

Node A 11 10
Node B 11 13
Node C 16 12
Node D 15 15
Node E 10 13
Entropy 1.5914 1.6010

By applying to the definition of entropy, that is () ()
1

ln 1/
n

i ii
H t p p

=
= ∗   , the current entropy of

system can be calculated, and the entropy with the TTVBLB algorithm is 1.5914, while the entropy with

the MEMBLB algorithm is 1.6010. According to the properties of the entropy, we know that the

scheduling with the MEMBLB algorithm can make the system load more balanced than the one with the

traditional algorithm, that is, the MEMBLB algorithm can make the system load tend to be balanceable

faster than the TTVBLB algorithm. Table 2 shows the load of each server after migration with the

two algorithms.

Table 2. The load of each node after migration with the two algorithms.

Nodes
the load after migration
TTVBLB MEMBLB

Node A 13 12
Node B 11 13
Node C 13 12
Node D 13 13
Node E 13 13
Entropy 1.6074 1.6087

The current entropy of the system can be calculated, and the entropy with the TTVBLB algorithm is

1.6074, while the entropy with the MEMBLB algorithm is 1.6087. By comparing with the above data,

we see that both algorithms can make the system entropy increase after migration, which means that the

system load is distributed more evenly after migration. Moreover, the entropy value with the MEMBLB

algorithm is greater than the one with the TTVBLB algorithm, showing that the MEMBLB algorithm

can make the system load balancing more effective than the TTVBLB algorithm.

Experiment 2. Comparison of MEMBLB and TTVBLB on the executing time of the programs, the

efficiency and the change of system entropy during an application's execution for the same large

computing task under the case of different node number.

The feature of the computing tasks is to start on one node in the cluster, and when the load is

imbalanced, it would be decomposed into multiple small tasks, which will be transferred to other nodes

to perform, so that it makes the system load balanced, and when the load is balanced, the tasks can be

executed directly without decomposing. First, we compared the changing execution time with node

number, which is 1–20. When there’s only one node, the program is carried out serially; and if there’s

Entropy 2014, 16 5691

more than one node, there is a node for scheduling and other nodes for computing. The results are shown

in Figure 1:

Figure 1. Executing time change with node number.

As can be seen from Figure 1, that with the increasing number of nodes in the cluster, the program

execution time is reduced. When there are two nodes, it means that there is only one computing node,

and the program execution time is slightly longer than the serial program because of the cost of the load

balancing algorithm. With an increasing number of nodes, there is more migration and the cost of load

balancing increases, but the increasing number of nodes does not affect the program execution time

much, which even does not rise and instead falls. When the node number is 16, the MEMBLB

algorithm’s program execution time has reached its lowest point (10.4 ms), while the TTVBLB

algorithm’s program execution time is 11.8 ms, so the MEMBLB algorithm will reduce the minimum

execution time by approximately 11.9%.

Figure 2. Efficiency change with node number.

Secondly, Figure 2 shows how the efficiency of the two algorithms changes with node number. It is

seen that the MEMBLB algorithm’s maximum efficiency is 0.83, while the TTVBLB algorithm’s is

0.74, so the MEBLB algorithm raises the maximum efficiency by about 22.9%.

Entropy 2014, 16 5692

Then, we focus on how the system entropy value changes with time during the application’s execution.

There is a cluster with 10 nodes, one node for scheduling and the other nine for computing. We record the

change of system entropy of the scheduling node during system execution, which means recording the

entropy value before and after each migration. The experimental results shown in Figure 3 as below:

Figure 3. The entropy value change with time.

As can be seen from Figure 3, at the beginning the system entropy is 0 because the task is on only one

node, so there is no load migration. After the decomposition, the task will generate multiple sub-tasks

running on multiple nodes, so the entropy value increases. What’s more, the entropy is further increased

and close to the maximum value 9 2.197In = after the migration, then the system entropy remains stable

at about 2.17. When the program is coming to an end, the entropy value fell sharply because the tasks

are completed, and the load on the node is very small, so there is no load migration at this moment.

Experiment 3. Comparison of the three algorithms regarding the execution time of the programs and

the efficiency under the case of different task number.

At first, we compared how the execution time changes with task number, which is 20-200. The results

are shown in Figure 4

Figure 4. The execution time change with task number.

Entropy 2014, 16 5693

As can be seen from Figure 4, the TTVBLB algorithm’s program execution time is always the longest

one, and the gap between them widens with task number. When there are fewer tasks, the MEMBLB

algorithm’s program execution time is shorter than that of the GABLB algorithm. However, as the

number of tasks increases, the MEMBLB algorithm’s program execution time is longer than that of the

GABLB algorithm, but not that much more. Secondly, Figure 5 shows how the efficiency of the three

algorithms changes with task number. It is seen that the MEMBLB algorithm’s efficiency is always the

highest, which means that the MEMBLB algorithm can make the system load balancing more effectively

than the other two algorithms.

Figure 5. The efficiency change with task number.

6.3. Analysis of the Results

In order to better illustrate the effectiveness and feasibility of this algorithm proposed in this paper,

we used the variance analysis method to analyse the experimental results. The variance is used to

evaluate the random variable and its mathematical expectation (average) deviation. The greater the

variance, the higher the degree of deviation; the smaller the variance, the lower the degree of deviation.

Thus, we can use the variance to measure the degree of load balancing. Let’s define load variance as the

variance of load amount among servers:

()2

0

p

ii
v l m

=
= − (22)

where p is the number of servers, il is the load amount of each server, and m is average load:

()
0

1/
p

ii
m p l

=
=  (23)

The smaller the load variance, the lower the degree deviation and the higher the degree of load

balancing; while the greater the load variance, the higher the degree deviation, the lower the degree of

load balancing. In the ideal situation, the load variance is zero when the load becomes totally balanced.

Here we use load variance to validate the result of the experiments.

Entropy 2014, 16 5694

As revealed in Table 1, from the result of Experiment 1 can be concluded that the value of the load

by using the TTVBLB algorithm is ()
0

1/ 12.6
p

ii
m p l

=
= = , and the load variance is

()2

0
29.2

p

ii
v l m

=
= − = ; while the value of the load by using the MEMBLB algorithm is

()
0

1/ 12.6
p

ii
m p l

=
= = , and the load variance is ()2

0
13.2

p

ii
v l m

=
= − = .

By comparing these two results, we can conclude that the load variance obtained by using the

MEMBLB algorithm is less than that of the TTVBLB algorithm, which can demonstrate that the degree

of load balancing achievable using the MEMBLB algorithm is higher than that of the TTVBLB algorithm.

As revealed in Table 2, we can calculate that the value of the load by using the TTVBLB algorithm

is ()
0

1/ 12.6
p

ii
m p l

=
= = , and the load variance is ()2

0
3.2

p

ii
v l m

=
= − = ; while the value of the load

by using the MEMBLB algorithm is ()
0

1/ 12.6
p

ii
m p l

=
= = , and the load variance is

()2

0
1.2

p

ii
v l m

=
= − = .

By comparing these two results, we can conclude that the load variance achieved using the MEMBLB

algorithm is less than that of the TTVBLB algorithm, which can demonstrate that the degree of load

balancing using the MEMBLB algorithm is higher than that of the TTVBLB algorithm. In addition, by

comparing with the above data, both algorithms can make the load variance decrease after migration,

which means that the system load is distributed more evenly after migration.

Through the comparison and analysis above, we can draw the conclusion that it is feasible to use the

entropy as a metric of the degree of load balancing, and the MEMBLB algorithm is an effective load

balancing algorithm. As revealed in Figure 4, as the tasks increase, the MEMBLB algorithm’s program

execution time is longer than that of the GABLB algorithm but not that much more, so we should apply

the GA to the MEMBLB algorithm in a future version so that it can do better. Moreover, as this algorithm

is executed on a homogeneous cluster without consideration of the heterogeneity of servers, fault

detection and recovery and the design of network topology, it cannot satisfy well the demands of a

practical application environment. Thus, the next step in the work is optimizing this algorithm in order

to extend it to heterogeneous clusters.

7. Conclusions

By introducing the concept of entropy in thermodynamics into load balancing, this paper proposes a

load balancing algorithm in homogeneous clusters based on the Maximum Entropy Method, gives the

theoretical model and the basic properties of system entropy, uses the entropy as a measure for the degree

of load balancing, and schedules and migrates in accordance with the entropy change to make the system

achieve the goal of load balancing faster and better. Meanwhile, this paper compares the proposed

algorithm with other traditional algorithms, showing that the new algorithm is better than the traditional

algorithms on the time and degree of system load balancing, which indicates that the new algorithm is

workable to a certain extent to balance the load in homogeneous clusters. However, since the algorithm is

executed on homogeneous clusters without consideration of the heterogeneity of servers, fault detection

and recovery, the design of network topology and so on, there are still many problems that have to be

solved in practical application environments. Therefore, the next task of this work should focus on the

Entropy 2014, 16 5695

optimization of this algorithm to enable it to adapt to the situation of heterogeneous clusters and, as a result,

achieve a load balancing algorithm with wide applicability.

Acknowledgments

The authors thank the editor and referees for their helpful conmments. This research was supported

by the National Natural Science Foundation of China (No. 61300132) and the Specialized Research

Fund for the Doctoral Program of Higher Education (No.20120036120003).

Author Contributions

All authors have contributed to the manuscript. Long Chen and Kehe Wu have contributed to the

research methods and the results have been discussed among all authors. The contributions by sections

are: Long Chen: Abstract, Introduction, Related Works, Basic Concept, Model, Implementation,

Experiments, Results and Conclusions; Kehe Wu: Model, Results and Discussion; Yi Li: Related Works

and Conclusions. All authors have read and approved the final manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Dong, J.Y.; Wang, P.; Chen, L. The entropy value of load blance algorithm about cloud computer

cluster. J. Chengdu Univ. Inf. Tech. 2010, 65, 581–583.

2. Lu, K.Z.; Sun, H.Y. Parallel computing entropy in homogeneous cluster. J. Shenzhen Univ. Sci.

Eng. 2009, 1, 26. (In Chinese)

3. LV, S. Load Balancing. Available online: http://kh.linuxvirtualserver.org/wiki/Load_balancing#

Computing_Loa-d_Balancing (accessed on 23 October 2014).

4. Ibrahim, M.A.M.; Lu, X. In Performance of dynamic load balancing algorithm on cluster of

workstations and PCs. In Proceedings of Fifth International Conference on Algorithms and

Architectures for Parallel Processing, Los Alamitos, CA, USA, 23–25 October 2002; IEEE Comput.

Society: Los Alamitos, CA, USA, 2002; pp. 44–47.

5. Liu, Z.H.; Wang, X. Load balancing algorithm with genetic algorithm in virtual machines of cloud

computing. J. Fuzhou Univ. (Nat. Sci. Ed.) 2012, 4, 9. (In Chinese)

6. Chau, S.C.; Fu, A.W. Load balancing between computing clusters. In Proceedings of the Fourth

International Conference on Parallel and Distributed Computing, Applications and Technologies,

2003 (PDCAT’2003), Chengdu, China, 27–29 August 2003; pp. 548–551.

7. Balasubramaniam, M.; Barker, K.; Banicescu, I.; Chrisochoides, N.; Pabico, J.P.; Carino, R.L.

A novel dynamic load balancing library for cluster computing. In Third International Symposium

on/Algorithms, Models and Tools for Parallel Computing on Heterogeneous Networks, Cork,

Ireland, 5–7 July 2004; pp. 346–353.

Entropy 2014, 16 5696

8. Sit, H.Y.; Ho, K.S.; Leong, H.V.; Luk, R.W.; Ho, L.K. An adaptive clustering approach to dynamic

load balancing. In Proceedings of the 7th International Symposium on Parallel Architectures,

Algorithms and Networks, Hong Kong, China, 10–12 May 2004; pp. 415–420.

9. Dai, Y.; Cao, J. Fuzzy control-based heuristic algorithm for load balancing in workflow engine.

J. Commun. 2006, 27, 84–89.

10. Kim, Y.J.; Kim, B.K. Load balancing algorithm of parallel vision processing system for real-time

navigation. In Proceedings of 2000 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS 2000), Takamatsu, Japan, 31 October–5 November 2000; pp. 1860–1865.

11. Nair, C.; Prabhakar, B.; Shah, D. The randomness in randomized load balancing. In Proceedings of

the Annual Allerton Conference on Communication Control and Computing, Monticello, IL, USA,

October 2001; pp. 912–921.

12. Zuo, L.Y.; Cao, Z.B.; Dong, S.B. Virtual resource evaluation model based on entropy optimized

and dynamic weighted in cloud computing. J. Softw. 2013, 24, 1937–1946. (In Chinese)

13. Leibnitz, K.; Shimokawa, T.; Peper, F.; Murata, M. Maximum entropy based randomized routing

in data-centric networks. In Proceedings of the 15th Asia-Pacific Network Operations and

Management Symposium (APNOMS 2013), Hiroshima, Japan, 25–27 September 2013; pp. 1–6.

14. Xie, W.X; Bedrosian, S. An information measure for fuzzy sets. IEEE Trans. Syst. Man Cybern.

1984, 1, 151–156.

15. Hu, C.; Wang, B. Distribution model based on maximum entropy principle. J. Shandong Univ.

Tech.(Nat. Sci. Ed. 2008, 21, 87–90. (In Chinese)

16. Yang, J.; Hu, D.X.; Wu, Z.R. Bayesian uncertainty inverse analysis method based on pome.

J. Zhejiang Univ.(Eng. Sci.) 2006, 40, 810–815. (In Chinese)

17. Lv, W. The applications of Maximum Entropy Method (MEM) and Bayes in data processing. Univ.

Electron. Sci. Tech. China. 2006, volume, firstpage–lastpage. (In Chinese)

18. Zou, H.; Luo, S.X. The computer cluster and the parrllel computer environment based on the

networks. Comput. Tech. Geophys. Geochem. Explor. 2001, 23, 375–379. (In Chinese)

19. Luo, Y.J.; Li, X.L.; Sun, R.X. Summarization of the load-balancing algorithm. Sci-Tech Inf. Dev.

Econ. 2008, 18, 134–136. (In Chinese)

20. Sun, H.Y.; Xie, W.X.; Yang, X. A Load balancing algorithm based on Parallel computing entropy

in HPC. J. Shenzhen Univ. Sci. Eng. 2007, 1, 24. (In Chinese)

21. Heirich, A. Analysis of Scalable Algorithms for Dynamic Load Balancing and Mapping with

Application to Photo-Realistic Rendering. Ph.D. Thesis, California Institute of Technology,

Pasadena, CA, USA, 1997.

22. Sharma, R.; Kanungo, P. Dynamic load balancing algorithm for heterogeneous multi-core

processors cluster. In Proceedings of the Fourth International Conference on Communication

Systems and Network Technologies (CSNT 2014), Bhopal, India, 7–9 April 2014; pp. 288–292.

23. Yun, S.Y.; Proutiere, A. Distributed load balancing in heterogenous systems. In Proceedings of the

48th Annual Conference on Information Sciences and Systems (CISS 2014), Princeton, NJ, USA,

19–21 March 2014; pp. 1–6.

24. Li, H.-Y.; Du, J.-C.; Peng, J.; Wang, J.-Y. A load-balancing scheduling scheme based on

heterogeneous workloads in cloud data centers. J. Sichuan Univ. (Eng. Sci. Ed.) 2013, 45, 112–117.

(In Chinese)

Entropy 2014, 16 5697

25. Overman, R.E.; Prins, J.F.; Miller, L.A.; Minion, M.L. Dynamic load balancing of the adaptive fast

multipole method in heterogeneous systems. In Proceedings of IEEE 27th International Parallel and

Distributed Processing Symposium Workshops & PhD Forum (IPDPSW 2013), Cambridge, MA,

USA, 20–24 May 2013; pp. 1126–1135.

26. Sheng, J.; Qi, B.; Dong, X.; Tang, L. Entropy weight and grey relation analysis based load balancing

algorithm in heterogeneous wireless networks. In Proceedings of the 8th International Conference

on Wireless Communications, Networking and Mobile Computing (WiCOM 2012), Shanghai,

China, 21–23 September 2012; pp. 1–4.

27. Chi, K.-H.; Yen, L.-H. Load distribution in non-homogeneous wireless local area networks. Wirel.

Pers. Commun. 2014, 75, 2569–2587.

28. Moreno, A.; Cesar, E.; Guevara, A.; Sorribes, J.; Margalef, T. Load balancing in homogeneous

pipeline based applications. Parallel Comput. 2012, 38, 125–139.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

