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Abstract: In order to solve the problems of ill-balanced task allocation, long response time, 

low throughput rate and poor performance when the cluster system is assigning tasks, we 

introduce the concept of entropy in thermodynamics into load balancing algorithms. This 

paper proposes a new load balancing algorithm for homogeneous clusters based on the 

Maximum Entropy Method (MEM). By calculating the entropy of the system and using the 

maximum entropy principle to ensure that each scheduling and migration is performed 

following the increasing tendency of the entropy, the system can achieve the load balancing 

status as soon as possible, shorten the task execution time and enable high performance. The 

result of simulation experiments show that this algorithm is more advanced when it comes 

to the time and extent of the load balance of the homogeneous cluster system compared with 

traditional algorithms. It also provides novel thoughts of solutions for the load balancing 

problem of the homogeneous cluster system. 
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1. Introduction 

Nowadays, with the rapid development of information and terminal technology, the needs of 

information industry are moving in the direction of high-end services and low-end terminals. Therefore, 

the subsequent massive data integration and computing needs have become the bottleneck of the server 

cluster technology at the current stage [1]. As a single server would be unable to satisfy the growing 

demand, cluster systems—with good scalability and high performance—turn out to be the primary 

choice. The homogeneous cluster is a major cluster system in which each of the computing nodes in it 

has the same hardware and software configuration [2]. It is significant and difficult to decide how to 

assign tasks reasonably. This means that the tasks should be evenly distributed, which won’t make one 

server over-assigned and the rest less-assigned. Consequently, the load balancing mechanisms emerged 

and it became a main target for resource allocation of cluster system. 

The load balancing technology is applied to the distribution of the load among the resources including 

multi-processor, multi-computer, multi-network and multiple hard drives, to evenly distribute the load. 

Moreover, computing load balancing implies distributing the computing tasks among different nodes in 

the cluster system, to improve the computing performance of whole cluster system, which is called a 

high-performance cluster and is widely used in fields like scientific computation. Moreover, load 

balancing is one of the main indexes of resource allocation in high-performance cluster systems [3]. 

2. Related Studies 

In recent years, there have already been numerous studies about load balancing technology. It is 

developing towards the direction of intelligence. More and more known load balancing information and 

unknown predictive information have been chosen by researchers as the judgment standard of load balancing. 

Ibrahim et al. [4] did a lot of research on how to use dynamic load balancing to solve the parallel 

search tree problem, and proposed the Round Robin dynamic load balancing algorithm, whereby all 

nodes in the cluster can be equally selected in a reasonable order, which is usually from the head to the 

tail of the list, and then again and again. However, since this algorithm does not take the current moment 

load of the nodes into consideration, the judgment of the dynamic load balancing is not precise enough. 

Liu et al. [5] gave a load balancing optimization algorithm with a genetic algorithm. It applied the 

artificial intelligence technology to solving the load balancing problem. However, this algorithm can only be 

used in ideal situations like the laboratory, and it is unable to meet the complex needs of practical applications. 

Chau [6] studied the problem of load balancing between distant clusters, proposed an improved 

Dimension Exchange Method (DEM) synchronous load balancing algorithm under a hypercube 

structure, whose performance is better than the original DEM algorithm and it is similar to the CWA 

algorithm. However, this paper mainly discusses the problem of load balancing within the cluster, so the 

algorithm isn’t applicable. 

Balasubramaniam et al. [7] presented a dynamic load balancing library in clusters, which combined 

the technology of dynamic load balancing with round-robin scheduling, and could be used as a load 

balancing application interface of a distributed shared memory (DSM) system. However, the dynamic 

load balancing library is built on heterogeneous clusters, so it can not always be efficient on 

homogeneous clusters. 
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Sit et al. [8] studied the reasonable migration quantity of load during the migration process, proposing 

a dynamic load balancing algorithm based on clusters. Moreover, this algorithm mapped the load 

difference between the nodes to an appropriate cluster. Using the center of mass of the cluster to obtain 

the appropriate number of tasks that need to be migrated, it can adjust the load imbalance between the 

nodes. However, this algorithm only studied one aspect of a dynamic load balancing-migrate execution, 

while the other two aspects—information collection and migration strategy—have not been studied. 

Dai et al. [9] applied the idea of fuzzy control and heuristic strategy from the traditional control theory 

to the load balancing problem, and presented a fuzzy control-based heuristic algorithm for load balancing 

in workflow engines, which offers a new idea for solving the problem of load balance. 

Kim and Kim [10] presented a load balancing algorithm named Perpendicular Image Partitioning (PIP) 

for parallel vision processing. The algorithm is developed for a specific enviroment such as a small-scale 

parallel system, and it takes the load variance as the metric for load balancing. The load-balancing 

problem is converted to the position determination problem of partitioning lines, and the purpose of the 

algorithm is to find the balanced partitioning line position pair so to make the load variance becomes the 

minimum value, and thus achieve load balancing. As it is a data-oriented and static load balancing 

algorithm, it cannot satisfy well the demands of homogeneous clusters. 

Nair et al. [11] considered different load balancing algorithms and the queue-size processes generated 

by these algorithms, and used the entropy rate of the induced queue-size process as a metric to understand 

the trade-off performance for implementation simplicity, it offers a new metric for load balancing. 

Dong et al. [1] discussed the relationship between the load balancing problems of a cloud computing 

cluster system and the energy from the aspects of entropy and generalized complexity, and calculated 

the value of the energy which could make the cloud computing cluster system achieve an equilibrium 

state. This makes possible solving the problem of load balancing by using the change of entropy. 

Zuo et al. [12] proposed a resource evaluation model based on entropy optimization and dynamic 

weighting. The entropy optimization filtered the resources that satisfy the QoS and system maximization 

by goal function and constraints of maximum entropy and the entropy increase principle, which achieved 

optimal scheduling and satisfied the QoS. Then the evaluation model evaluated the load of having 

filtered resources by dynamic weighted algorithm. However, in this paper, the entropy has only been 

used to filter the resources, and it only focused on evaluating the loads. There is no detailed description 

and implementation of the load balancing algorithm, so it is not feasible in homogeneous clusters. 

Therefore, inspired by the related studies, this paper introduces the concept of entropy in 

thermodynamics into load balancing for homogeneous clusters, redefining the target of load balancing 

by using the entropy as a measure of the degree of load balancing, and then proposing a load balancing 

algorithm based on the Maximum Entropy Methods (MEM) in homogeneous clusters, which can be used 

to equally distribute the tasks in homogeneous clusters for reducing the response time and increasing the 

throughput. Compared with other traditional algorithms, the new algorithm is better in terms of the time 

and the degree of system load balancing, which indicates that the new algorithm is workable to a certain 

extent to balance the load in homogeneous cluster. 

The paper is organized as follows: in Section 2, we introduce related research studies on load 

balancing; in Section 3, we describe the basic concepts of entropy, load balancing, and the principle of 

Maximum Entropy; in Section 4, we introduce the thermodynamic concept of entropy into the load 

balancing algorithm, defins the model and then perform the theoretical analyses; in Section 5, we present 
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our Maximum Entropy Methods-based load balancing (MEMBLB) algorithm and give a brief 

introduction to it. Section 6 concerns some experiments on this algorithm and compares the algorithm with 

other algorithms. The last section is the conclusion of the paper and illustrates our future work plans. 

3. Basic Concept 

Before introducing the algorithm, it is necessary to understand the basic concepts of entropy and load 

balancing and the maximum entropy methods, so as to better comprehend the algorithm better. 

3.1 Entropy 

Entropy is a very important concept in physics, which is used to describe and study the widespread 

irreversibility of motion conversion direction in nature. In 1850, German physicist  

R. J. E. Clausius firstly used the thermodynamic state function-entropy (S) to quantitatively describe the 

dissipation character of changing in energy during the irreversible process, and quantize the second law 

of thermodynamics, so that the thermodynamics was greatly improved. The entropy is primarily used 

for representing the degree of uniformity of any kind of energy distribution in the space. The more 

uniform energy distributed, the greater the entropy. When the energy of a system achieves a completely 

uniform distribution, the entropy of the system reaches a maximum. See formula as follows: 

/S Q TΔ =   (1) 

where Q  represents the change of system energy and SΔ  represents the variation of entropy. Since then, 

the concept of entropy quickly spreaded to other fields, thus opening up new research fields one after 

another inside and outside physics. Nowadays, the concept of entropy not only infiltrated disciplines like 

chemistry, biology, mathematics, engineering, meteorology, geology and other traditional natural 

sciences, but also extended to many aspects of humanities and social science. Albert Einstein once said: 

“The entropy theory is the first rule of the whole science”. Eddington also believed that the entropy is 

the sovereign philosophy principle in the whole universe. Historically, all the theories (thermodynamics, 

statistical physics, information theory), which are known to be very successful, contained some 

understanding and definition of entropy. Although these understandings and definitions are not identical, 

there is a close relationship between them. 

This section focuses on the concept of entropy in information theory, which regards entropy as an 

uncertainty degree of information states. In 1948, in order to emphasize the concept of “the amount of 

information”, Shannon connected information entropy with statistical mechanics entropy, and regarded 

the channel theorems as a special form of the second law of thermodynamics in communication theory, 

thus making information entropy a formal branch of information theory. The idea used by Shannon to 

break through the key concept of “the amount of information” is that, “Can I define a quantity, which 

can to some extent measure how much information is produced in this process? Or more ideally, how 

much is the information rate produced by this process?” Then, he put the amount of information as the 

central concept of information theory. With this idea, he used the statistical properties of Markov process, 

that is using the “entropy” to represent the characteristics of the information source, and given the 

formula of information entropy as follows: 
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where  presents the probability of occurrence of the ith event,  is a proportionality constant, and  

is the  in the famous Boltzmann constant. The above formula when used to express the connection 

between the uncertainty and random events, can solve the problem of the quantitative description of  

information. As a measure of the loss of the system information, the information entropy means that the 

higher the degree of order of a system, the less the degree of uncertainty, the smaller the entropy, and 

the greater the amount of information; the more the degree of disorder of a system, the greater the degree 

of uncertainty, the greater the entropy, and the less the amount of information. “The average of the 

amount of the information has various characteristics of entropy” means the application of entropy will 

be beyond some fields of natural science by the information theory. Development of the theory 

mushroomed, and in 1984, Xie et al. [10] introduced the concept of entropy to measure the information 

of fuzzy sets, and it functioned perfectly, so the concept of entropy has been extended ever since. 

3.2. Maximum Entropy Methods 

There are some random events whose distribution function are unknown and cannot be calculated 

directly. We only know the average value of one or a few random variables related to the random event. 

Obviously, this kind of probability distribution is not unique, so how to select the “best” or the “most 

reasonable” one from the compatible distribution as the actual common distribution? To do this, we need 

a standard—that is Maximum Entropy Method—which is a big application of principle of entropy 

increase in thermodynamics [11]. 

According to the MEM, selecting such a distribution from all the compatible distributions means 

finding a distribution with the maximum information entropy under some constraint conditions—usually 

a certain average value of the given random variable. Based on MEM, we can find the distribution with 

the maximum entropy by using the Lagrange multiplier method. 

The most common and most practical probability distribution corresponds to the maximum 

information entropy. When the information entropy takes the maximum value, the corresponding 

probability distribution must be the most possible one. Therefore, it is reasonable to make MEM a 

selection criterion. The MEM broadens the application range of entropy [12]. For engineering structural 

systems—due to the prior knowledge level—the difference of system decomposition method and the 

influence of various uncertainty factors, the system identification problem often has more than one 

solution, so the MEM is an effective solving method. According to the MEM, we should choose the one 

with maximum entropy among all the feasible solutions of an ill-posed problem. The maximum entropy 

means the man-made hypothesis is the minimum because of the data deficiency. Regarding entropy as 

an uncertain measurement, the solution here and now contains the least subjective elements, which 

makes it the most objective. 

The mathematical model using the MEM to solve the probability distribution problem can be written 

as follows [13]: 

Set sample data as: ,  1, 2,...,ix i n= , so: 

1 1 1
max( ln | . . / , 0,1,..., )

n n nk k
i i i i ii i i

p p s t p x x n k m
= = =

− = =     (3) 

ip C H

H
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where . .s t  represents constraint conditions, and the probability condition is 
1

1
n

ii
p

=
=  when k  equals 

zero. While the rest of 1, 2,...,k m= , the k  origin moment is equal to the corresponding sample moment. 

Usually we can use the Lagrange Multiplier Method to solve it, or using the Optimization Method to 

work out its numerical solution. 

3.3. Load Balancing 

The load is an abstract concept to indicate how busy the system is and it refers to the subtasks, which 

are assigned to each server node and executed in parallel [14]. The so-called load balancing strategy 

means to balance the load of each server node by adopting certain policy to make the load essentially 

equal. It can be understood in two aspects: on the one hand, it refers to the allocation of large volumes 

of concurrent access and data traffic to multiple server nodes, and processing them separately to reduce 

the waiting time; on the other hand, it means that a single heavy load calculation task can be shared 

among multiple server nodes for dealing with it in parallel, and then summarizing the results back to the 

user, improving the treatment capacity of the system [15]. The mathematical model is defined as follows: 

Definition 1. The so-called load-balancing means giving a set of load 1{ , , }nL L L=  , a set of server 

nodes 1{ , , }mS S S=   and a set of current server load 1{ , , }mSL SL SL=  , to find a function ( )f L , in 

which the set of load L  can be mapped to the set of server nodes iS , making the load iSL  of each server 

node iS  be essentially equal, that is: 

1 2 ... mSL SL SL≅ ≅ ≅   (4) 

where iSL  represents the sum of all the load ( )if L  mapped to this server node iS . 

If we use oτ  to reflect the time needed for executing task oL  on the server node iS , the time needed 

for executing all the task on the server node iS  is as follows: 

( )( )1, ,i
i oo f L i n

t τ
∈ =

= 
  (5) 

Definition 2. If m  equals to one, that means there is only one server node, and all the tasks should be 

executed serially on the server node, so the time needed is the sum of all the time, which can be 

represented as 1T  shown below: 

( )1 1, ,oT o nτ= =    (6) 

Definition 3. If m is greater than one, that means there are more than one server node, and the tasks 

can be shared to multiple server nodes for dealing with in parallel, the time needed is represented as mT  

shown below: 

1, ,
maxm i
i n

T t
=

=


  (7) 

Thus, the target of the load balancing is to solve the mapping ( )f L  to get the minimum of mT  under 

the circumstance that 1 2 mSL SL SL≅ ≅ ≅ . 
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4. Model of the Algorithm and Its Properties 

4.1. The Define of the Model 

Through the description of the basic concept above, we find that the features of load-balancing in 

cluster systems have much in common with the relative concepts of thermodynamic systems [16], which 

means that the entropy can be used to show the randomness of material. The more uniform the 

distribution, the bigger the entropy. The purpose of load-balancing is the load-distribution uniformity, 

so we introduce the concept of entropy in thermodynamics into the cluster system and take advantage of 

the MEM to solve the load-balancing problems. For this we redefine some concepts of load balancing 

as follows: 

Definition 4 (the concept of entropy). If a homogeneous cluster system has n compute nodes, so the 
load of the node i is iL  as well as the relative load factor is ( )/ 1, 2, ,i i ii

p L L i n= =   at time t, then 

the system entropy value ( )H t  at time t can be expressed as below: 

( ) ( )
1

ln 1/
n

i ii
H t p p

=
=      (8) 

The probability distribution of maximum entropy is: 

( )1 1
max ln | . . 1

n n

i i ii i
p p s t p

= =
− =    (9) 

Only under the probability conditions without other constraints, using Lagrange Multiplier Method, 

namely introducing the Lagrange multiplier λ  into solving an unconstrained maximization objective 

function, which means to maximize the following function: 

( )( )1 1
ln 1 1 max

n n

i i ii i
p p pλ

= =
− + + −     (10) 

Obviously: 

( )( )1 1
ln 1 1 0

n n

i i ii i
i

p p p
p

λ
= =

∂  − + + − =  ∂     (11) 

In order to achieve simple results, using ( )1λ +  instead of oλ , and get the results: ln ipλ =  or 

,  1,2, ,ip e i nλ= =  . 

According to the constraint conditions it should be as follows: 

1
1

n

ii
p neλ

=
= =  that is 1/ , 1,2, ,ip e n i nλ= = =   (12) 

Considering that the solution is a probability distribution, the maximum entropy value is: 

( ) ( ) ( ) ( )
1

1/ ln ln
n

i
H t n n n

=
= =     (13) 

From Section 3.3 we know that the target of the load balancing is to solve the mapping ( )f L  to get 

the minimum of mT  under the circumstance that 1 2 mSL SL SL≅ ≅ ≅ . Moreover, through the concept of 

entropy, we can know that the entropy will reach its maximum value when 1 2 1/mp p p m= = = = , 

which equals to 1 2 mSL SL SL≅ ≅ ≅ . Therefore, the target of using MEM to redefine the load balancing 

can be described as follows: 
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Definition 5 (the target of load-balancing). The target of load balancing is always moving with the 

trend of increasing entropy, the greater the entropy, the more homogeneous the load, and when the load 

of cluster system completely uniformly distributed, the entropy value reaches the maximum at the same 

time. That is, to find a probability distributions of ip —make the distribution evenly as possible—to get 

the maximum of ( )H t  under constrain condition. 

4.2. The Properties 

Through the definition above, we can conclude that the entropy of a homogeneous cluster has the 

following properties: 

Property 1. The load balancing is always moving with the trend of increasing entropy. In other words, 

the changing trends of the entropy value determine the load-balancing. 

As the entropy can be used to indicate the randomness of material, an increase of the entropy 

represents that the material tends to be stable. The target of load-balancing is the even distribution, so 

the increase of the entropy can achieve the target, which means that the changing trends of the entropy 

value can determine the load-balancing distribution. 

Property 2. The entropy will reach its maximum if and only if the load is completely balanced, that is, 

the state of maximum entropy is the most balanced state of load. 

From Property 1 we know that the load balancing is always moving with the trend of increasing 

entropy, so when the load completely balanced, the entropy reached its maximum. 

Property 3. When the entropy reaches its maximum, the execution time of the task reaches the minimum. 

From the definition of entropy, when the relative load factors are the same in each node, the entropy 

reaches its maximum. At the same time, the execution time of the program reaches its minimum. 

Property 4. The change of the entropy is incremental. After it reaches its maximum and remains stable 

for a while, it will decrease. 

At the starting stage of the system, the time when the load starts to be scheduled, the load distribution 

of the cluster is not balanced, so the value of the entropy is smaller. The load is assigned evenly to each 

server as time passes by, so the system reaches balance and the value of the entropy reaches the 

maximum. However, due to the difference of tasks, some servers will have completed their tasks while 

others are still running, which will destroy the balance. Then the load distribution of the system won’t 

be balanced, and the value of the entropy will decrease gradually. 

Property 5. As the entropy increases, the maximum relative load factor of a homogeneous cluster 

decreases. If and only if the load is completely balanced, the entropy reaches its maximum. 

Theorem 1. If the relative load factor is 1 2, , , np p p , then the sufficient and necessary conditions of 

maximum entropy ( )H t  is 1 2 1/ nnp p p= = = = . 

Proof. As 
1

1
n

ii
p

=
= , so we can use the Lagrange Multiplier Method to get the ip  of maximum entropy: 

( ) ( )1 1 1
, , ln 1

n n

n i i ii i
G p p p p pλ

= =
= − + −    (14) 
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then take the partial respect of G  to ip , and set it to zero to obtain the equation as follows: 

ln 1 0, 1, 2, ,i
i

G
p i n

p
λ∂ = − − + = =

∂
   (15) 

( )1
ip e λ−=   (16) 

because of 
1

1
n

ii
p

=
= , so: 

1
1 1 1/

n

i i ii
p np p n

=
=  =  =   (17) 

that is 1 2 1/ nnp p p= = = = , and the corresponding entropy is ( ) ( ) ( )
1

1/ ln 1/ ln
n

i
n n n

=
− = .□ 

Theorem 2. If the relative load factor is 1 2, , , np p p , then the entropy can be expressed as  

H(p1, p2, …, pn), so H(p1, p2, …, pn) < H(p1, p2, …, pi + δ, …, pj ‒ δ, …, pn) when ( )0 / 2j ip pδ< ≤ − . 

Proof. set ( )1 2, , , , , , ,i j ny H p p p x p x p= + −   , then: 

( ) ( )1, ,

1 1 1
ln ln ln

n

k i jk k i j
k i j

y p p x p x
p p x p x= ≠

= + + + −
+ −   (18) 

( ) ( )ln lni j

dy
p x p x

dx
= − + + −   (19) 

when ( )0 / 2j ix p p< ≤ − , there is 0
dy

dx
≥ , if and only if the x is equal to ( ) / 2j ip p− , the equality holds 

and the Theorem 2 certificate. □  

Theorem 3. If the relative load factor is 1 2, , , np p p , then the entropy can be expressed as

( )1 2, , , nH p p p . For i jp p∀ ≤ , there is ( ) ( )1 2 1 2, , , , , , , , , ,n i j nH p p p H p p p p pδ δ> − +     

when 0 ipδ< ≤  and ( )1 jpδ ≤ − . 

Proof. set ( )1 2, , , , , , ,i j ny H p p p x p x p= − +   , then 

( ) ( )1, ,

1 1 1
ln ln ln

n

k i jk k i j
k i j

y p p x p x
p p x p x= ≠

= + − + +
− +   (20) 

( ) ( )ln lni j

dy
p x p x

dx
= − − +   (21) 

when 0 ipδ< ≤  and ( )1 jpδ ≤ − , there is 0
dy

dx
≤ , the equality holds and the Theorem 3 certificate. □ 

Through the definition, properties and theorems above, we can realize that entropy is a good measure 

to judge the degree of load balancing and the MEM can accurately indicate the target of load balancing, 

so in this paper, a load balancing algorithm based on the MEM is proposed. It not only can make the 

system load balanced in a short period of time with respect to the trend of entropy increase, but also can 

make full use of server resources and avoid waste caused by the uneven distribution of the load. 
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5. Implementation of the Algorithm 

In order to achieve the goal of load balance in a cluster system, the operation can be divided into two 

stages: the first stage is distributing the load equally to all servers in the cluster when doing the load 

dispatch, which can make the system achieve balance; the second stage is making partial adjustment 

after the load distribution on the servers, which means migrating the tasks on the overload server nodes 

to a lightly-loaded one. Then the system will achieve balance. Therefore, the following four questions 

should be solved: 

(1) The collection and processing of load information on server nodes 

(2) The selection of the scheduling policy 

(3) The selection of the migration strategy 

(4) The implementation of migration 

In this paper, a new load balancing algorithm based on MEM in homogeneous clusters was put 

forward and the difficult problems above were solved. The solutions to the four problems will be 

described in detail below, and finally, a complete description of the algorithm will be given. 

5.1. Collection and Processing of Load Information 

This paper focuses on the variance of entropy. According to the definition of entropy, it is related to 

the relative load factor, which is the ratio of the load of the nodes to the total load of the system. The 

load can not only be calculated by the number of tasks, but also can be measured by the calculation of 

tasks. However, in the homogenous cluster system—when the calculation of tasks can be measured—it 

is better to use the total computation of tasks to reflect the load of the server node iS  than the number of 

tasks of node iS  in the server, so we chose the calculation of tasks as the measurement of the load for 

the server node in this paper. In order to calculate the value of entropy, we need to know the load of each 

server node. We need to synchronize, coordinate the nodes status information to the back-end services. 

If using traditional dynamic monitoring, it could cause a lot of traffic and increase the load of the system, 

so in this paper, we introduced a monitor node to centralize the collection of the load information, and 

then calculated the relative load factor ip  of each server node as well as the entropy ( )H t  of the current 

system. Finally, all the information we obtained should be fed back to the scheduler for load scheduling. 

In this way, each server node merely needs to transmit the load information to the monitor node for 

processing and feed back the information uniformly, which ensured the state synchronization between 

servers and reduced the traffic. Meanwhile, this avoids single points of failure caused by a single monitor 

node. With a hot-standby strategy, it can switch over to the standby monitor node when the main node 

failure, which will ensure the system keeps running normally. 

5.2. Selection of the Scheduling Policy 

There are many mature scheduling algorithms, such as Round-Robin Scheduling Algorithm,  

Least-Connection Scheduling Algorithm, Weighted Round-Robin Scheduling Algorithm, Destination 

Address Hashing Scheduling Algorithm and so on. The algorithm proposed in this paper is based on the 

MEM, which means scheduling based on the change of obtain the maximum entropy of the system. After 
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the scheduler obtained the relative load factor of each server node and the entropy of the system from 

the monitor node, we first need to calculate the entropy changes according to the calculation of the 

scheduled tasks after the tasks have been scheduled to the server node, and then select a server node, 

whose entropy is increasing and whose increment of the entropy is the maximum, as the machine whose 

purpose is task scheduling to complete this schedule. In this way, the entropy of the system is increased 

with the maximum increment when every scheduling is processing, so that the entropy increases to the 

maximum when we finish the task scheduling, and according to Property 2 above, the load of the system 

has achieved the most balanced state at the moment. This scheduling algorithm can make the system 

achieve a load balancing state in a comparatively short period of time so as to avoid wasting server 

resources. 

5.3. Selection of the Migration Strategy 

Due the differences of the tasks and the fact the times needed to complete the tasks are different, 

which means some tasks have completed while some other tasks are still performing, this leads to the 

change of the relative load factor of the server node, which will influence the entropy changes. According 

to Property 4, we know that the entropy will be reduced at this moment, which indicates that the load of 

the system becomes unbalanced at this moment. We need to reschedule the load to put it back into 

balance, such as using migration. However, the migration needs to take up system resources and time of 

the system, so if we do it without rules, it will do more harm than good, which will not only worsen the 

situation of the system load, but also will increase the burden on the system. 

Therefore, the key point we have to focus on is when and how to do the migration. In this paper, we 

propose a load balancing algorithm based on the MEM by taking the entropy value as the judgment 

condition of whether to do the load migration.  
For this, we design a threshold value oH  of system entropy as the load migration critical condition 

and compare the current system entropy ( )H t  calculated by the monitor node with this threshold value 
oH . If ( )H t  is less than oH , it reflects that the load distribution of system is unbalanced, and the load 

migration is needed, which means transferring the tasks from high-load nodes to low-load nodes. 

Balancing the load of each server node the entropy value will increase, so as to realize the system load 

balance; on the country, if ( )H t  is greater than or equal to oH , it explains that the load of system is 

balanced, there is no need to do any migration. We can be seen that the key influencing factor for 

migration is the threshold value oH  of the system entropy. If the threshold value oH  is too low, it will 

reduce the chances of migration, and that will lead to an unbalanced load on system nodes, which will 

cause the tasks on the high-load nodes to not be processed, while there is no task for the low-load nodes 

to handle. As a result, there will be a waste of system resources, and even a system crash caused by the 

overload; or otherwise, if the threshold value oH  is too high, the migration will happen frequently, and 

since the migration needs to consume system resources, this will degrade the system performance. 

5.4. Implementation of the Migration 

The monitor node calculates the relative load factor by obtaining the current load information of each 

server node, so as to calculate the current entropy value ( )H t  of the system, which will be compared 

with the threshold value oH . Then the results may feed back into the scheduler, which determines 
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whether to do the migration, the tasks that need migration and the migration target server. The migration 

is also based on the entropy value, ensuring that the entropy of the system will increase after the migration 

so as to achieve load balance, otherwise, the migration is not executed. This is an NPC problem [17], so 

we cannot find a common formula to solve it, so we use the following conventions: 

(1) The tasks are always migrated from high-load nodes to low-load nodes, but not vice versa.  

It means that the migration is always toward the increasing trend of system entropy value. 

(2) The tasks with too small an amount of calculation are beyond the selection scope of the migration 

because the migration needs to use system resources and execution time Maybe the time taken to 

do the migration is far beyond the execution time of tasks. This will cause a waste of system 

resources and time. 

Therefore, whether the system does the migration depends on whether the system entropy value 

increased and the load-balanced situation is improved significantly after the migration. 

5.5 Description of the Algorithm 

The main description of this algorithm is listed as follows: 

Step 1. According to the information collected, we can calculate the load kL  and relative load factor ip  

of each server node as well as the average relative load factor, so as to obtain the system’s current entropy 
value. Then, we turn to Step 2; 

Step 2. To compare the system’s current entropy value ( )H t  with the threshold value oH  we do  

the following:  

(1) If the ( )H t  is less than oH , it means that the system load is unbalanced and needs migration. 

For the server nodes whose relative load factor ip  of each server node is greater than or equal to 

the average relative load factor op , the relative load factor ip  should be sorted in descending 

order to form a server queue sQ . That is the server queue which needs to do the load migration; 

for the other server nodes whose relative load factor ip  of each server node is less than the 

average relative load factor op , the relative load factor ip  should be sorted in ascending order 

to form a server queue tQ . That is the server queue which can accept the load. Then we turn to 

Step 3 to do the migration; 

(2) If the ( )H t  is greater than or equals to oH , it shows that the system load is comparatively 

balanced and it is unnecessary to do the migration. We see if there is any new load to be scheduled 

and if there is, then we turn to Step 4 and do the scheduling operation; otherwise, return to Step 

1 and calculate the next moment; 

Step 3. To traverse the queue sQ  and tQ , and take out the nodes S  and T  to migrate the task on node S  

to node T , ensuring that the entropy of the system will increase after the migration. For the node S , the 

operation will be continued until the relative load factor ip  of each server node is less than the average 

relative load factor op , then we remove the node S  from the queue sQ ; for the node T , the operation 

will be finished when the relative load factor ip  of each server node is greater than or equal to the 

average relative load factor op , then we remove the node T  from the queue tQ . The migration won’t 

be finished until any queue is empty, and then we go back to Step 1; 
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Step 4. To schedule the new tasks, and form a server queue Q  sorted by the relative load factor ip  in 

ascending order, scanning this queue and finding out the node S  whose entropy increased and is the 

maximum after the scheduling. If it exists, then the task is scheduled to the node S  to finish the task 

scheduling, and then we return to Step 1. 

6. Experiments and Results 

In order to verify the effectiveness and feasibility of the algorithm proposed in this paper, we designed 

the following experiments to compare the Maximum Entropy Methods-based load balancing algorithm 

in homogeneous cluster (MEMBLB) with the Task Threshold Value-based load balancing algorithm 

(TTVBLB) and the Genetic Algorithm-based load balancing algorithm (GABLB). 

6.1. Environment of the Experiments 

The tools we used to create the environment of the experiments are as below: 

(1) OpenStack: OpenStack is an open source cloud management platform, which provides an easy 

way to create, manage, and release virtual machines. As is known to all, no two leaves are 

identical in the world, so it is difficult to create a completely homogeneous cluster. We solved 

this problem by using OpenStack to create some near-identical virtual machines with the same 

image. There are three servers with the same configuration of 2.4GHz CPU, 8G RAM and 

Ubuntu 12.04. 

(2) Haproxy: Haproxy is an open source traditional load balancing procedure. We have changed the 

procedure to use the above two load balancing algorithms and compare them in the experiments. 

(3) KVM: KVM is a virtualization platform, which provides some programmatic APIs to create, 

migrate and destroy virtual machines. In this experiment, OpenStack used KVM to create the 

virtual machines. 

6.2. Results of the Experiments 

Experiment 1. Comparison of MEMBLB and TTVBLB on the degree of load balancing and load 

migration for multiple tasks under the case of the same node number. 

In this experiment, the experiment object are fifty tasks selected randomly from the system, and the 

environment is a homogeneous cluster formed by five virtual machines, created by OpenStack with the 

same image. They had the same configuration and were indicated by the letters A, B, C, D and E. 

This experiment is divided into two steps: firstly, we adopt the traditional algorithm TTVBLB to 

schedule and load balance, and record the load amount of each of the system’s servers after reaching 

balance, and then calculate the corresponding entropy; secondly, we do the same task using the 

MEMBLB algorithm mentioned in this paper; finally, we compare the results of the two groups and 

analyze them.  

Among a large number of experiments, this paper selects the most representative one to explain. Table 1 

shows the load of each server after scheduling with the two algorithms, the MEMBLB algorithm and the 

traditional TTVBLB algorithm. For convenience this paper calculates the tasks instead of the load. 
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Table 1. The load of each node after scheduling with the two algorithms. 

Nodes 
The load after scheduling 
TTVBLB MEMBLB 

Node A 11 10 
Node B 11 13 
Node C 16 12 
Node D 15 15 
Node E 10 13 
Entropy  1.5914 1.6010 

By applying to the definition of entropy, that is ( ) ( )
1

ln 1/
n

i ii
H t p p

=
= ∗   , the current entropy of 

system can be calculated, and the entropy with the TTVBLB algorithm is 1.5914, while the entropy with 

the MEMBLB algorithm is 1.6010. According to the properties of the entropy, we know that the 

scheduling with the MEMBLB algorithm can make the system load more balanced than the one with the 

traditional algorithm, that is, the MEMBLB algorithm can make the system load tend to be balanceable 

faster than the TTVBLB algorithm. Table 2 shows the load of each server after migration with the  

two algorithms. 

Table 2. The load of each node after migration with the two algorithms. 

Nodes 
the load after migration 
TTVBLB MEMBLB 

Node A 13 12 
Node B 11 13 
Node C 13 12 
Node D 13 13 
Node E 13 13 
Entropy  1.6074 1.6087 

The current entropy of the system can be calculated, and the entropy with the TTVBLB algorithm is 

1.6074, while the entropy with the MEMBLB algorithm is 1.6087. By comparing with the above data, 

we see that both algorithms can make the system entropy increase after migration, which means that the 

system load is distributed more evenly after migration. Moreover, the entropy value with the MEMBLB 

algorithm is greater than the one with the TTVBLB algorithm, showing that the MEMBLB algorithm 

can make the system load balancing more effective than the TTVBLB algorithm. 

Experiment 2. Comparison of MEMBLB and TTVBLB on the executing time of the programs, the 

efficiency and the change of system entropy during an application's execution for the same large 

computing task under the case of different node number. 

The feature of the computing tasks is to start on one node in the cluster, and when the load is 

imbalanced, it would be decomposed into multiple small tasks, which will be transferred to other nodes 

to perform, so that it makes the system load balanced, and when the load is balanced, the tasks can be 

executed directly without decomposing. First, we compared the changing execution time with node 

number, which is 1–20. When there’s only one node, the program is carried out serially; and if there’s 
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more than one node, there is a node for scheduling and other nodes for computing. The results are shown 

in Figure 1: 

Figure 1. Executing time change with node number. 

 

As can be seen from Figure 1, that with the increasing number of nodes in the cluster, the program 

execution time is reduced. When there are two nodes, it means that there is only one computing node, 

and the program execution time is slightly longer than the serial program because of the cost of the load 

balancing algorithm. With an increasing number of nodes, there is more migration and the cost of load 

balancing increases, but the increasing number of nodes does not affect the program execution time 

much, which even does not rise and instead falls. When the node number is 16, the MEMBLB 

algorithm’s program execution time has reached its lowest point (10.4 ms), while the TTVBLB 

algorithm’s program execution time is 11.8 ms, so the MEMBLB algorithm will reduce the minimum 

execution time by approximately 11.9%. 

Figure 2. Efficiency change with node number. 

 

Secondly, Figure 2 shows how the efficiency of the two algorithms changes with node number. It is 

seen that the MEMBLB algorithm’s maximum efficiency is 0.83, while the TTVBLB algorithm’s is 

0.74, so the MEBLB algorithm raises the maximum efficiency by about 22.9%. 
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Then, we focus on how the system entropy value changes with time during the application’s execution. 

There is a cluster with 10 nodes, one node for scheduling and the other nine for computing. We record the 

change of system entropy of the scheduling node during system execution, which means recording the 

entropy value before and after each migration. The experimental results shown in Figure 3 as below: 

Figure 3. The entropy value change with time. 

 

As can be seen from Figure 3, at the beginning the system entropy is 0 because the task is on only one 

node, so there is no load migration. After the decomposition, the task will generate multiple sub-tasks 

running on multiple nodes, so the entropy value increases. What’s more, the entropy is further increased 

and close to the maximum value 9 2.197In =  after the migration, then the system entropy remains stable 

at about 2.17. When the program is coming to an end, the entropy value fell sharply because the tasks 

are completed, and the load on the node is very small, so there is no load migration at this moment.  

Experiment 3. Comparison of the three algorithms regarding the execution time of the programs and 

the efficiency under the case of different task number. 

At first, we compared how the execution time changes with task number, which is 20-200. The results 

are shown in Figure 4 

Figure 4. The execution time change with task number. 
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As can be seen from Figure 4, the TTVBLB algorithm’s program execution time is always the longest 

one, and the gap between them widens with task number. When there are fewer tasks, the MEMBLB 

algorithm’s program execution time is shorter than that of the GABLB algorithm. However, as the 

number of tasks increases, the MEMBLB algorithm’s program execution time is longer than that of the 

GABLB algorithm, but not that much more. Secondly, Figure 5 shows how the efficiency of the three 

algorithms changes with task number. It is seen that the MEMBLB algorithm’s efficiency is always the 

highest, which means that the MEMBLB algorithm can make the system load balancing more effectively 

than the other two algorithms. 

Figure 5. The efficiency change with task number. 

 

6.3. Analysis of the Results 

In order to better illustrate the effectiveness and feasibility of this algorithm proposed in this paper, 

we used the variance analysis method to analyse the experimental results. The variance is used to 

evaluate the random variable and its mathematical expectation (average) deviation. The greater the 

variance, the higher the degree of deviation; the smaller the variance, the lower the degree of deviation. 

Thus, we can use the variance to measure the degree of load balancing. Let’s define load variance as the 

variance of load amount among servers: 

( )2

0

p

ii
v l m

=
= −   (22) 

where p  is the number of servers, il  is the load amount of each server, and m  is average load: 

( )
0

1/
p

ii
m p l

=
=    (23) 

The smaller the load variance, the lower the degree deviation and the higher the degree of load 

balancing; while the greater the load variance, the higher the degree deviation, the lower the degree of 

load balancing. In the ideal situation, the load variance is zero when the load becomes totally balanced. 

Here we use load variance to validate the result of the experiments. 
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As revealed in Table 1, from the result of Experiment 1 can be concluded that the value of the load 

by using the TTVBLB algorithm is ( )
0

1/ 12.6
p

ii
m p l

=
= = , and the load variance is 

( )2

0
29.2

p

ii
v l m

=
= − = ; while the value of the load by using the MEMBLB algorithm is 

( )
0

1/ 12.6
p

ii
m p l

=
= = , and the load variance is ( )2

0
13.2

p

ii
v l m

=
= − = .  

By comparing these two results, we can conclude that the load variance obtained by using the 

MEMBLB algorithm is less than that of the TTVBLB algorithm, which can demonstrate that the degree 

of load balancing achievable using the MEMBLB algorithm is higher than that of the TTVBLB algorithm. 

As revealed in Table 2, we can calculate that the value of the load by using the TTVBLB algorithm 

is ( )
0

1/ 12.6
p

ii
m p l

=
= = , and the load variance is ( )2

0
3.2

p

ii
v l m

=
= − = ; while the value of the load 

by using the MEMBLB algorithm is ( )
0

1/ 12.6
p

ii
m p l

=
= = , and the load variance is 

( )2

0
1.2

p

ii
v l m

=
= − = .  

By comparing these two results, we can conclude that the load variance achieved using the MEMBLB 

algorithm is less than that of the TTVBLB algorithm, which can demonstrate that the degree of load 

balancing using the MEMBLB algorithm is higher than that of the TTVBLB algorithm. In addition, by 

comparing with the above data, both algorithms can make the load variance decrease after migration, 

which means that the system load is distributed more evenly after migration. 

Through the comparison and analysis above, we can draw the conclusion that it is feasible to use the 

entropy as a metric of the degree of load balancing, and the MEMBLB algorithm is an effective load 

balancing algorithm. As revealed in Figure 4, as the tasks increase, the MEMBLB algorithm’s program 

execution time is longer than that of the GABLB algorithm but not that much more, so we should apply 

the GA to the MEMBLB algorithm in a future version so that it can do better. Moreover, as this algorithm 

is executed on a homogeneous cluster without consideration of the heterogeneity of servers, fault 

detection and recovery and the design of network topology, it cannot satisfy well the demands of a 

practical application environment. Thus, the next step in the work is optimizing this algorithm in order 

to extend it to heterogeneous clusters. 

7. Conclusions 

By introducing the concept of entropy in thermodynamics into load balancing, this paper proposes a 

load balancing algorithm in homogeneous clusters based on the Maximum Entropy Method, gives the 

theoretical model and the basic properties of system entropy, uses the entropy as a measure for the degree 

of load balancing, and schedules and migrates in accordance with the entropy change to make the system 

achieve the goal of load balancing faster and better. Meanwhile, this paper compares the proposed 

algorithm with other traditional algorithms, showing that the new algorithm is better than the traditional 

algorithms on the time and degree of system load balancing, which indicates that the new algorithm is 

workable to a certain extent to balance the load in homogeneous clusters. However, since the algorithm is 

executed on homogeneous clusters without consideration of the heterogeneity of servers, fault detection 

and recovery, the design of network topology and so on, there are still many problems that have to be 

solved in practical application environments. Therefore, the next task of this work should focus on the 
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optimization of this algorithm to enable it to adapt to the situation of heterogeneous clusters and, as a result, 

achieve a load balancing algorithm with wide applicability. 
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