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Abstract: Considering that the movements of complex system entities take place
on continuous, but non-differentiable, curves, concepts, like non-differentiable entropy,
informational non-differentiable entropy and informational non-differentiable energy, are
introduced. First of all, the dynamics equations of the complex system entities
(Schrödinger-type or fractal hydrodynamic-type) are obtained. The last one gives a specific
fractal potential, which generates uncertainty relations through non-differentiable entropy.
Next, the correlation between informational non-differentiable entropy and informational
non-differentiable energy implies specific uncertainty relations through a maximization
principle of the informational non-differentiable entropy and for a constant value of the
informational non-differentiable energy. Finally, for a harmonic oscillator, the constant value
of the informational non-differentiable energy is equivalent to a quantification condition.
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1. Introduction

Complex systems are large interdisciplinary research topics that have been studied by means of a
mixed basic theory that mainly derives from physics and computer simulation. Such systems are made
of many interacting elementary units that are called “agents”.

The way in which such a system manifests itself cannot be exclusively predicted only by the behavior
of individual elements. Its manifestation is also induced by the manner in which the elements relate in
order to influence global behavior. The most significant properties of complex systems are emergence,
self-organization, adaptability, etc. [1–4].

Examples of complex systems can be found in human societies, brains, the Internet, ecosystems,
biological evolution, stock markets, economies and many others [1,2]. Particularly, polymers are
examples of such complex systems. Their forms include a multitude of organizations starting from
simple, linear chains of identical structural units and ending with very complex chains consisting of
sequences of amino acids that form the building blocks of living fields. One of the most intriguing
polymers in nature is DNA, which creates cells by means of a simple, but very elegant language. It is
responsible for the remarkable way in which individual cells organize into complex systems, such as
organs, which, in turn, form even more complex systems, such as organisms. The study of complex
systems can offer a glimpse into the realistic dynamics of polymers and solve certain difficult problems
(protein folding) [1–4].

Correspondingly, theoretical models that describe the dynamics of complex systems are
sophisticated [1–4]. However, the situation can be standardized taking into account that the complexity
of interaction processes imposes various temporal resolution scales, while pattern evolution implies
different freedom degrees [5].

In order to develop new theoretical models, we must admit that complex systems displaying chaotic
behavior acquire self-similarity (space-time structures seem to appear) in association with strong
fluctuations at all possible space-time scales [1–4]. Then, in the case of temporal scales that are large
with respect to the inverse of the highest Lyapunov exponent, the deterministic trajectories are replaced
by a collection of potential trajectories, while the concept of definite positions by that of probability
density. One of the most interesting examples is the collision process in complex systems, a case in
which the dynamics of the particles can be described by non-differentiable curves.

Since non-differentiability appears as the universal property of complex systems, it is necessary to
construct a non-differentiable physics. Thus, the complexity of the interaction processes is replaced
by non-differentiability; accordingly, it is no longer necessary to use the whole classical “arsenal” of
quantities from standard physics (differentiable physics).

This topic was developed within scale relativity theory (SRT) [6,7] and non-standard scale relativity
theory (NSSRT) [8–22]. In this case, we assume that the movements of complex system entities take
place on continuous, but non-differentiable, curves (fractal curves), so that all physical phenomena
involved in the dynamics depend not only on space-time coordinates, but also on space-time scale
resolution. From such a perspective, physical quantities describing the dynamics of complex systems
may be considered fractal functions [6,7]. Moreover, the entities of the complex system may be reduced
to and identified with their own trajectories, so that the complex system will behave as a special fluid
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lacking interaction (via their geodesics in a non-differentiable (fractal) space). We have called such fluid
a “fractal fluid” [8–22].

In the present paper, we shall introduce new concepts, like non-differentiable entropy, informational
non-differentiable entropy, informational non-differentiable energy, etc., in the NSSRT approach (the
scale relativity theory with an arbitrary constant fractal dimension). Based on a fractal potential, which
is the “source” of the non-differentiability of trajectories of the complex system entities, we establish
the relationships among non-differentiable entropy. The correlation fractal potential-non-differentiable
entropy implies uncertainty relations in the hydrodynamic representation, while the correlation
of informational non-differentiable entropy/informational non-differentiable energy implies specific
uncertainty relations through a maximization principle of the informational non-differentiable entropy
and for a constant value of the informational non-differentiable energy. The constant value of the
informational non-differentiable energy made explicit for the harmonic oscillator induces a quantification
condition. We note that there exists a large class of complex systems that take smooth trajectories.
However, the analysis of the dynamics of these classes is reducible to the above-mentioned statements
by neglecting their fractality.

2. Hallmarks of Non-Differentiability

Let us assume that the motion of complex system entities takes place on fractal curves (continuous,
but non-differentiable). A manifold that is compatible with such movement defines a fractal space. The
fractal nature of space generates the breaking of differential time reflection invariance. In such a context,
the usual definitions of the derivative of a given function with respect to time [6,7],

dF

dt
= lim

∆t→0+

F (t+ ∆t)− F (t)

∆t
= lim

∆t→0−

F (t)− F (t−∆t)

∆t
(1)

are equivalent in the differentiable case. The passage from one to the other is performed via ∆t→ −∆t

transformation (time reflection invariance at the infinitesimal level). In the non-differentiable case, (dQ+

dt
)

and (dQ−
dt

) are defined as explicit functions of t and dt,

dQ+

dt
= lim

∆t→0+

Q(t, t+ ∆t)−Q(t,∆t)

∆t

and:
dQ−
dt

= lim
∆t→0−

Q(t,∆t)−Q(t, t−∆t)

∆t
(2)

The sign (+) corresponds to the forward process, while (−) corresponds to the backward process.
Then, in space coordinates dX, we can write [6,7]:

dX± = dx± + dξ± = ν±dt+ dξ± (3)

with ν± the forward and backward mean speeds,

ν+ =
dx+

dt
= lim

∆t→0+

〈
X(t+ ∆t)−X(t)

∆t

〉
ν− =

dx−
dt

= lim
∆t→0−

〈
X(t)−X(t−∆t)

∆t

〉 (4)
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and dξ± a measure of non-differentiability (a fluctuation induced by the fractal properties of trajectory)
having the average:

〈dξ±〉 = 0, (5)

where the symbol 〈 〉 defines the mean value.
While the speed-concept is classically a single concept, if space is a fractal, then we must introduce

two speeds (ν+ and ν−), instead of one. These “two-values” of the speed vector represent a specific
consequence of non-differentiability that has no standard counterpart (according to differential physics).

However, we cannot favor ν+ as compared to ν−. The only solution is to consider both the forward
(dt > 0) and backward (dt < 0) processes. Then, it is necessary to introduce the complex speed [6,7]:

V̂ =
ν+ + ν−

2
− iν+ − ν−

2
=
dx+ + dx−

2dt
− idx+ − dx−

2dt

= VD − iVF ,VD =
ν+ + ν−

2
,VF =

ν+ − ν−
2

(6)

If VD is differentiable and resolution scale (dt) speed independent, then VF is non-differentiable and
resolution scale (dt) speed dependent.

Using the notations dx± = d±x, Equation (6) becomes:

V̂ =

(
d+ + d−

2dt
− id+ − d−

2dt

)
x (7)

This enables us to define the operator:

d̂

dt
=
d+ + d−

2dt
− id+ − d−

2dt
(8)

Let us now assume that the fractal curve is immersed in a three-dimensional space and that X of
components X i (i = 1, 2, 3) is the position vector of a point on the curve. Let us also consider a function
f(X, t) and the following series expansion up to the second order:

df = f(X i + dX i, t+ dt)− f(X i, dt)

=

(
∂

∂X i
dX i +

∂

∂t
dt

)
f(X i, t) +

1

2

(
∂

∂X i
dX i +

∂

∂t
dt

)2

f(X i, t)
(9)

Using notations, dX i
± = d±X

i, the forward and backward average values of this relation take
the form:

〈d±f〉 =

〈
∂f

∂t
dt

〉
+ 〈∇f · d±X〉+

1

2

〈
∂2f

∂t2
(dt)2

〉
+

+

〈
∂2f

∂X i∂t
d±X

idt

〉
+

1

2

〈
∂2f

∂X i∂X l
d±X

id±X
l

〉 (10)

We shall stipulate the following: the mean values of function f and its derivatives coincide with
themselves, and the differentials d±X i and dt are independent. Therefore, the averages of their products
coincide with the product of averages. Thus, Equation (10) becomes:

d±f =
∂f

∂t
dt+∇f 〈d±X〉+

1

2

∂2f

∂t2
〈(dt)2〉+

+
∂2f

∂X i∂t
〈d±X idt〉+

1

2

∂2f

∂X i∂X l

〈
d±X

id±X
l
〉 (11)
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or more, using Equation (3),

d±f =
∂f

∂t
dt+∇fd±x +

1

2

∂2f

∂t2
(dt)2 +

∂2f

∂X i∂t
d±xidt+

+
1

2

∂2f

∂X i∂X l
(d±xid±xl +

〈
dξi±dξ

l
±
〉
), i, l = 1, 2, 3,

(12)

where the quantities 〈d±xid±ξ
l〉, 〈d±ξid±xl〉 are null based on the Relation (5) and also on the above

property referring to a product mean.
Since dξ± describes the fractal properties of the trajectory with the fractal dimension DF [23], it is

natural to impose that (dξ±)DF is proportional with resolution scale dt [6,7],

(dξ±)DF =
√

2Ddt (13)

where D is a coefficient of proportionality (for details, see [6,7]). In Nottale’s theory [6,7], D is a
coefficient associated with the transition fractal-non-fractal.

Let us focus now on the mean
〈
dξi±dξ

l
±
〉
, which has statistical significance [6,7]. If i 6= l, this average

is zero, due to the independence of dξi and dξl. Therefore, using Equation (13), we can write:〈
dξi±dξ

l
±
〉

= ±δil2D(dt)
2

DF
−1
dt (14)

with:

δil =

{
1, if i = l

0, if i 6= l

and considering that: { 〈
dξi+dξ

l
+

〉
> 0 and dt > 0〈

dξi−dξ
l
−
〉
> 0 and dt < 0

are equivalent in differentiable case.
Then, Equation (12) may be written under the form:

d±f =
∂f

∂t
dt+∇fd±x +

1

2

∂2f

∂t2
(dt)2 +

∂2f

∂X i∂t
d±xidt+

+
1

2

∂2f

∂X i∂X l
d±xid±xl ± ∂2f

∂X i∂X l
δilD(dt)

2
DF
−1
dt

(15)

If we divide by dt and neglect the terms that contain differential factors, Equation (15) is reduced to:

d±f

dt
=
∂f

∂t
+ ν±∇f± ±D(dt)

2
DF
−14f (16)

(for the details on the calculus, see p. 167 and pp. 193–195 in [7] ; since dxi and dt are
standard infinitesimals of order one, while dξi is an infinitesimal of order 1/DF , the terms
dxidxl/dt, dt2/dt, dxidt/dt are infinitesimals of order one and are null; the last term is finite by means
of Relation (14)).
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Under these circumstances, let us calculate d̂f
dt
. In accordance with Equation (8) and taking into

account Equation (16), we obtain:

d̂f

dt
=

1

2

[
d+f

dt
+
d−f

dt
− i
(
d+f

dt
− d−f

dt

)]
=

1

2

[(
∂f

∂t
+ ν+∇f +D(dt)

2
DF
−14f

)
+

(
∂f

∂t
+ ν−∇f −D(dt)

2
DF
−14f

)]
−

− i
2

[(
∂f

∂t
+ ν+∇f +D(dt)

2
DF
−14f

)
−
(
∂f

∂t
+ ν−∇f −D(dt)

2
DF
−14f

)]
=
∂f

∂t
+

(
ν+ + ν−

2
− iν+ − ν−

2

)
∇f − iD(dt)

2
DF
−14f

=
∂f

∂t
+ (VD − iVF )∇f − iD(dt)

2
DF
−14f

(17)

or, using the first Equation (6):

d̂f

dt
=
∂f

∂t
+ V̂ · ∇f − iD(dt)

2
DF
−14f (18)

This relation also allows us to give the definition of the fractal operator [8,13]:

d̂

dt
=

∂

∂t
+ V̂ · ∇ − iD(dt)

2
DF
−14 (19)

We note that in Nottale’s works [6,7], the fractal operator (19) for DF = 2 plays the role
of the “covariant derivative operator”. We shall call the operator (19) the “generalized covariant
derivative operator”.

3. Geodesics Equation

Let us consider that the transition from classical (differentiable) physics to the “fractal”
(non-differentiable) one (as it is approached here) can be implemented by replacing the standard time
derivative d

dt
with the “generalized covariant derivative operator” d̂

dt
.

As a consequence, we are now able to write the equation of geodesics (we shall call it the “principle of
scale covariance”, i.e., a generalization of Newton’s first principle) in a fractal space under its covariant
form. Applying the “generalized covariant derivative operator” d̂

dt
to the complex field of velocities V̂

(the first Relation (6)), we obtain:

d̂V̂

dt
=
∂V̂

∂t
+ V̂ · ∇V̂ − iD(dt)

2
DF
−14V̂ = 0 (20)

This means that at any point on a fractal path, the local acceleration, ∂tV̂, the non-linearly (convective)
term, (V̂ · ∇)V̂, and the dissipative one, D(dt)

2
DF
−1

∆V̂, are in balance. Therefore, the complex system
dynamics can be assimilated with a “rheological” fluid dynamics. Such a dynamics is described by
the complex velocity field V̂, by the complex acceleration field d̂V̂

dt
, etc., as well as by the imaginary

viscosity type coefficient iD(dt)
2

DF
−1
.

For irrotational motions of the complex system entities:

∇× V̂ = 0,∇×VD = 0,∇×VF = 0 (21)



Entropy 2014, 16 6048

V̂ can be chosen with the form:
V̂ = −2iD(dt)

2
DF
−1∇ lnψ (22)

where φ = lnψ is the velocity scalar potential. Substituting (22) in (20), we obtain:

d̂V̂

dt
= −2iD(dt)

( 2
DF

)−1

[
∂

∂t
− 2iD(dt)

( 2
DF

)−1
(∇ lnψ) · ∇ − iD(dt)

( 2
DF

)−1
∆

]
(∇ lnψ) = 0

or more:

d̂V̂

dt
= −2iD(dt)

( 2
DF

)−1

{
∂

∂t
(∇ lnψ)

−i
[
2D(dt)

( 2
DF

)−1
(∇ lnψ · ∇)(∇ lnψ) +D(dt)

( 2
DF

)−1
∆(∇ lnψ)

]}
= 0

(23)

Using the identities [7]:

(∇ lnψ)2 + ∆ lnψ =
∆ψ

ψ

∇
(

∆ψ

ψ

)
= 2(∇ lnψ · ∇)(∇ lnψ) + ∆(∇ lnψ)

the Equation (23) becomes:

d̂V̂

dt
= −2iD(dt)

( 2
DF

)−1∇
[
∂

∂t
lnψ − iD(dt)

( 2
DF

)−1 ∆ψ

ψ

]
.

This equation can be integrated up to an arbitrary phase factor, which may be set to zero by a suitable
choice of phase of ψ and this yields:

D2(dt)
( 4
DF

)−2
∆ψ + iD(dt)(2/DF )−1∂ψ

∂t
= 0. (24)

Relation (24) is a Schrödinger-type equation. For motions of complex system entities on Peano’s
curves, DF = 2, Equation (24) takes the Nottale’s form [6,7]. Moreover, for motions of complex system
entities on Peano’s curves at the Compton scale, D = ~

2m0
(for details, see [6,7]), with ~ the reduced

Planck constant andm0 the rest mass of the complex system entities, Relation (24) becomes the standard
Schrödinger equation.

If ψ =
√
ρeiS , with

√
ρ the amplitude and S the phase of ψ, the complex velocity field (22) takes the

explicit form:
V̂ = 2D(dt)

2
DF
−1∇S − iD(dt)

2
DF
−1∇ ln ρ

VD = 2D(dt)
2

DF
−1∇S

VF = D(dt)
2

DF
−1∇ ln ρ

(25)

Substituting (25) into (20) and separating the real and the imaginary parts, up to an arbitrary phase
factor, which may be set to zero by a suitable choice of the phase of ψ, we obtain:

∂VD
∂t

+ (VD · ∇)VD = −∇Q

∂ρ

∂t
+∇ · (ρVD) = 0

(26)



Entropy 2014, 16 6049

with Q the specific fractal potential (specific non-differentiable potential):

Q = −2D2(dt)
4

DF
−2 ∆
√
ρ

√
ρ

= −V
2
F

2
−D(dt)

2
DF
−1∇ · VF (27)

The specific fractal potential can simultaneously work with the standard potentials (for instance, an
external scalar potential).

The first Equation (26) represents the specific momentum conservation law, while the second
Equation (26) exhibits the state density conservation law. Equations (26) and (27) define the fractal
hydrodynamics model (FHM).

The following conclusions are obvious:
(i) Any entity of the complex system is in permanent interaction with the fractal medium through a

specific fractal potential.
(ii) The fractal medium is identified with a non-relativistic fractal fluid described by the specific

momentum and state density conservation laws (probability density conservation law [6,7]). For motions
of complex system entities on Peano’s curves at the Compton scale, the fractal medium is identified with
Bohm’s “subquantum level” [7].

(iii) Fractal speed VF does not represent an actual mechanical motion, but contributes to the transfer
of specific momentum and the energy concentration. This may be clearly noticed from the absence of
VF in the state density conservation law and from its role in the variation principle [6,7].

(iv) Any interpretation of Q should take cognizance of the “self” or the internal nature of the specific
momentum transfer. While the energy is stored in the form of mass motion and potential energy (as it
actually is), some is available elsewhere, and only the total one is conserved. It is the conservation of
energy and specific momentum that ensures the reversibility and existence of eigenstates, but denies a
Brownian motion-type form of interaction with an external medium.

(v) The specific fractal potential (27) generates the viscosity stress tensor [8,13]:

σ̂il = D2(dt)
4

DF
−2

(
∇i∇lρ−

∇iρ∇lρ

ρ

)
= η

(
∂VFi
∂xl

+
∂VFl
∂xi

)
(28)

with η = ρ
2
D(dt)

2
DF
−1 a viscosity-type coefficient. The divergence of this tensor is equal to the usual

force density associated with Q:
∇iσ̂il = −ρ∇lQ (29)

(vi) For motions of complex system entities on Peano’s curves, at spatial scales higher than the
mean free path and at temporal scales higher than the oscillation periods of the pulsating velocities,
which overlaps the average velocity of the complex system motion, FHM reduces to the standard
hydrodynamics model [24].

(vii) Since the position vector of the complex system entity is assimilated to a Wiener-type
stochastic process [6,7,23], ψ is not only the scalar potential of complex velocity (through lnψ) in
the fractal hydrodynamics, but also the density of probability (through |ψ|2) in the Schrödinger-type
theory. Then, the equivalence between the fractal hydrodynamics formalism and the Schrödinger one
results. Moreover, chaoticity, either through turbulence in the fractal hydrodynamics approach [24]
or by means of stochasticization in the Schrödinger-type approach, is exclusively generated by the
non-differentiability of the movement trajectories in a fractal space.
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4. Non-Differentiable Entropy, Uncertainty Relations

We can rewrite the specific non-differentiable potential in the form:

Q(r, t) = −D2(dt)
( 4
DF

)−2

[
∇2ρ

ρ
− 1

2

(
∇ρ
ρ

)2
]

= −D2(dt)
( 4
DF

)−2

[
1

2
(∇ ln ρ)2 +∇∇ ln ρ

] (30)

Let us define a logarithmic function:

SQ(r,p, t) = ln ρ(r,p, t) (31)

that will be called later non-differentiable entropy. It resembles Boltzmann entropy. However, if
Boltzmann entropy characterizes the disorder degree of a classical system, the non-differentiable entropy
evaluates the analogous quality of the non-differentiable system mentioned above.

Substituting (31) into Equation (30), we find that the specific non-differentiable potential can be
expressed in terms of this function:

Q(r,p, t) = −1

2
D2(dt)

( 4
DF

)−2
(∇SQ)2 −D2(dt)

( 4
DF

)−2∇2SQ (32)

In this equation, the term−1
2
D2(dt)

( 4
DF

)−2
(∇SQ)2 relates to the kinetic energy of the complex system

entity, while the term −D2(dt)
( 4
DF

)−2∇2SQ relates to its potential energy.
The FHM uncertainty relations result quite naturally from the momentum perturbations associated

with the non-differentiable stresses, i.e., by means of non-differentiable entropy. The specific
non-differentiable potential Q affects the complex system entity similar to a hydrodynamic pressure
with a driving specific non-differentiable force, −∇Q. Introducing the identity:

−ρ∇Q = ∇ · [ρD2(dt)
4

DF
−2∇∇SQ], (33)

Equation (27) and the momentum conservation law give:

∇ · [ρ(m0VDm0VD)] = ∇ · [ρm2
0D

2(dt)
4

DF
−2∇∇SQ] + ..., (34)

where m0 is the rest mass of the complex system entity. Accordingly, non-differentiable stresses are, in
their possible effects, potentially equivalent to momentum stresses pipj = −m0VDim0VDj imparted to
the fractal hydrodynamic fluid associated with the entity:

pp = −m2
0D

2(dt)
4

DF
−2

[
∇∇(expSQ)

expSQ
−∇SQ · ∇SQ

]
(35)

The expectation values (average values) of the momentum stresses 〈pipj〉 represent the observable
momentum stresses of the complex system entity. According to Equation (35),

〈pp〉 = m2
0D

2(dt)
4

DF
−2
∫∫∫

ρ∇SQ∇SQdr (36)

since: ∫∫∫
∇∇(expSQ)dr =

∮
∇(expSQ)dl = 0. (37)
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According to Nottale’s works [6,7] and the previous Relations (36) and (37), the momentum
stresses pipj , Equation (35), are generated by unobservable (first term) and observable (second term)
stresses. The observable momentum stresses are given by the dyad:

qq = m2
0D

2(dt)
4

DF
−2∇SQ∇SQ, 〈qq〉 6= 0. (38)

They determine the observable uncertainties (variances) 4xij of the conjugated components of the
position tensor rr of the complex system entity. Thus, one finds from Equation (38) the relation:

〈qiqj〉 (4xij)2 = m2
0D

2(dt)
4

DF
−2
ε2
ij(s) (39)

where:
〈qiqj〉 = m2

0D
2(dt)

4
DF
−2
∫∫∫

ρ∇iSQ∇jSQdr, (40)

(∆xij)
2 = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 (41)

εij(s) is a function of the set of quantum numbers specifying the state of the complex system, as we shall
establish in the following.

For complex systems with a separable distribution function ρ(r, t) = ρ1(x1, t)ρ2(x2, t)ρ3(x3, t), the
non-diagonal variances vanish: ∆xij = 0 for i 6= j. In this case, Equations (39)–(41) give:

〈
q2
i

〉1

2 ∆xi = m0D(dt)

2

DF − 1εi(s) (42)

where: 〈
q2
i

〉
= m2

0D
2(dt)

4
DF
−2
∫∫∫

ρ(∇iSQ)2dr, (43)

(∆xi)
2 =

〈
(xi − 〈xi〉)2

〉
(44)

Equation (39) is the tensorial formulation of the uncertainty relations.
For motions of complex system entities on Peano’s curves at the Compton scale, the uncertainty

relations for the diagonal components, Equation (42), are formally similar to those of wave mechanics
for the conjugate variables of momentum and position.

The application of the (fractal hydrodynamic) uncertainty relations to concrete complex systems and
the evaluation of the state function are demonstrated in the following example. Using the solution for the
test particle in the spherically symmetric Coulomb or Newton fields together with the method from [25],
one verifies that:

〈
q2
r

〉
=

(
m0D(dt)

2
DF
−1

na

)2 [
1− 2

l

n

l + 1

2l + 1

]
(45)

and: 〈
(r − 〈r〉)2

〉
=

(
1

2
a

)2

[n2(n2 + 2)− l2(l + 1)2], (46)

where a are specific Coulomb’s or Newton’s lengths and n, l are the standard quantum numbers (n is the
principal quantum number and l is the orbital quantum numbers).
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According to our previous relations, for the r components of the dynamical variables of the test
particle in the spherically symmetric Coulomb or Newton fields, Equation (42) becomes:〈

q2
r

〉 1
2 ∆r =

(
m0D(dt)

2
DF
−1
)
εr(n, l), n = 1, 2, ..., l ≤ n− 1 (47)

where:

εr(n, l) =

{(
1− 2

l

n

l + 1

2l + 1

)[
(n2 + 2)− l2

n2
(l + 1)2

]} 1
2

(48)

The function of states for this case is εr(n, l) ≥
√

3; in particular,

εr(n, l) = (2 + n2)
1
2 , l = lmin. = 0 (49)

εr(n, l) = (
2n+ 1

2n− 1
)
1
2 , l = lmax. = n− 1 (50)

Equation (38) indicates that the momentum transfer responsible for the indeterminacy phenomenon
is given by the fractal momentum:

q = m0D(dt)
( 2
DF

)−1∇ ln ρ.

According to (FHM), the minimum uncertainty products result from the stresses, i.e.,
non-differentiable entropy of the complex system.

5. Informational Non-Differentiable Entropy

Now, the mean value of the non-differentiable potential (the imaginary part of the scalar potential
of the complex speed, φN = ImΦ = D(dt)

( 2
DF

)−1
SQ) can be identified, without a constant factor,

with the informational non-differentiable entropy (defined by analogy with the Shannon informational
entropy [26–31]):

IN = 〈φN〉 =

∫
expSQ · SQdr (51)

Accepting a maximization principle for the informational non-differentiable entropy as follows:

δIN = δ

∫
expSQ · SQdr = 0 (52)

for constraints with radial symmetry, we get expSQ = exp(− r
r0

), with r0 = const. In a fractal space,
substituting this value in the expression −∇Q, with Q given by (27), the force is found:

F (r) = −∇Q(r) = −4m0D
2(dt)

( 4
DF

)−2

r0

1

r2
(53)

Therefore, the informational non-differentiable entropy through a maximization principle stores and
transmits interactions in the form of forces.
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Let us consider the probability density in the phase space, expSQ(p, q) with the constraints:∫∫
q expSQ(p, q)dpdq = q

∫∫
p expSQ(p, q)dpdq = p

∫∫
(q − q) expSQ(p, q)dpdq = (δq)2

∫∫
(p− p) expSQ(p, q)dpdq = (δp)2

∫∫
(q − q)(p− p) expSQ(p, q)dpdq = cov(p, q)

(54)

where q is the mean value of the position, p is the mean value of the momentum, δq is the position
standard deviation, δp is the momentum standard deviation and cov(p, q) is the covariance of the random
variables (p, q).

We now introduce informational non-differentiable entropy:

IN =

∫∫
expSQ(p, q)SQdpdq. (55)

Using the principle of maximum informational non-differentiable entropy (52) with constraints (54),
we obtain the normalized Gaussian distribution:

expSQ(p− p, q − q) =

√
ac− b2

2π
exp[−H(p− p, q − q)] (56)

with:
H(p− p, q − q) =

1

2
[a(p− p)2 + 2b(p− p)(q − q) + c(q − q)2]

a =
(δq)2

∆
, b = −cov(p, q)

∆
, c =

(δp)2

∆

∆ = (δp)2(δq)2 − cov2(p, q).

(57)

We notice that the set of parameters (a, b, c) has statistical significance given by Relations (57).

6. Informational Non-Differentiable Energy and Uncertainty Relations

For the informational non-differentiable energy, we shall use a generalization of Onicescu’s
relation [32,33]:

E =

∞∫∫
−∞

exp 2SQ(p, q)dpdq (58)

In such a context, the informational non-differentiable energy corresponding to the normalized
Gaussians distribution in Equation (56) becomes:

E(a, b, c) =

∞∫∫
−∞

exp 2SQ(p, q)dpdq (59)
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where H(p, q) > 0 is a condition imposed by integral (58).
We thus get:

E(a, b, c) =

√
a c− b2

2π
(60)

Therefore, if H has energetic significance, it results that:
(i) The informational non-differentiable energy is an indication of the dispersion distribution (56),

since the quantity:

A =
2π√
a c− b2

(61)

is a measure of ellipse areas of equal probability (or of equal non-differentiable entropy)
expSQ = const. Then, the normalized Gaussian becomes even more clustered, so that their
informational non-differentiable energy will be higher.

(ii) The class of statistical hypotheses is specific to the Gaussians having the same mean given by the
constant value of the informational non-differentiable energy.

(iii) If the informational non-differentiable energy is constant, then Relations (57) and (58) give the
egalitarian uncertainty relation:

(δp)2(δq)2 =
1

4π2E2(a, b, c)
+ cov2(p, q) (62)

or the non-egalitarian one:

δpδq ≥ 1

2πE(a, b, c)
(63)

Let us exemplify the above results for the linear oscillator. In the phase space (p, q), the energy
H(p, q),

H(p, q) =
p2

2m
+
m4π2ν2q2

2
(64)

with the oscillator’s mass m and its frequency ν representing the ellipse:

p2

a0
2

+
q2

b0
2

= 1 (65)

of semiaxes:

a0 =
√

2mH, b0 =

√
2H

4π2ν2m
(66)

The correspondences:

a =
1

mH
, b = 0, c =

4π2ν2m

H
(67)

result, in which case, the informational non-differentiable energy (60) becomes:

E =
ν

H
. (68)

If E(a, b, c) = const., then:
H

ν
= const. (69)

However, H/ν satisfies the quantification condition

H

ν
= nh, n = 1, 2, ... (70)



Entropy 2014, 16 6055

We get:
(i) The informational non-differentiable energy is quantified:

E(a, b, c) =
1

nh
(71)

(ii) (63) implies the uncertainty relation:

δpδq ≥ n~ (72)

or, for n = 1, the standard relation:
δpδq ≥ ~ (73)

7. Conclusions

The main conclusions of the present paper are the following:
(i) Any complex structure implies test particles, field sources, etc., correlated with various types

of forces, together with the non-differentiable medium in which they evolve. The non-differentiable
(fractal) medium is assimilated to a fractal fluid, whose particles are moving on continuous, but
non-differentiable, curves. Moreover, the non-differentiable medium that cannot be separated from test
particles and field sources is described either by a Schrödinger-type equation or by non-differentiable
hydrodynamics with non-differentiable potential, which works simultaneously with standard potentials.
The non-differentiable potential is induced by the non-differentiability of the movement curves of fractal
fluid entities.

(ii) The dynamics of a complex system is described by motion equations for a complex speed field
and exhibit rheological properties (memory).

(iii) Separation movements on the interaction scales imply non-differentiable hydrodynamics, which,
at the differentiable scale, contains the law of momentum conservation and, at the non-differentiable
scale, the law of probability density (states density) conservation.

(iv) The correlation fractal potential-non-differentiable entropy provides uncertainty relations in the
fractal hydrodynamic approach. These relations are explained for the case of a test particle motion in
spherically symmetric Coulomb or Newton fields.

(v) The correlation informational non-differentiable entropy-informational non-differentiable energy
provides specific uncertainty relations through a maximization principle of the informational
non-differentiable entropy and for a constant value of the informational non-differentiable energy. For a
linear harmonic oscillator, the constant value of the informational non-differentiable energy is equivalent
to a quantification condition.

Concepts, such as non-differentiable entropy, informational non-differentiable entropy, informational
non-differentiable energy, etc., can prove to be essential in defining wave-corpuscle duality and,
moreover, in the formulation of some fundamental equations in physics, such as the Klein–Gordon
equation, the Dirac equation, etc.
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