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Abstract: This article proposes a ∆−1− TV0 energy function to fuse a multi-spectral image
with a panchromatic image. The proposed energy function consists of two components,
a TV0 component and a ∆−1 component. The TV0 term uses the sparse priority to
increase the detailed spatial information; while the ∆−1 term removes the block effect of
the multi-spectral image. Furthermore, as the proposed energy function is non-convex, we
also adopt an alternative minimization algorithm and the L0 gradient minimization to solve
it. Experimental results demonstrate the improved performance of the proposed method over
existing methods.

Keywords: image fusion; inverse transform of the Laplace operator (∆−1); sparse norm;
total variation

1. Introduction

With the application of multi-source imaging in many areas, such as remote sensing [1,2], medical
imaging [3] and quality and defect detection [4], image fusion has become an attractive and important
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research area in image processing. More specifically, in remote sensing, there is a significant interest
in the fusion of high spatial and high spectral resolution images to provide a better description and
visual representation of a scene. However, typically, both high spatial and spectral resolution images
are not simultaneously presented in a single image, due to commercial constraints. More specifically,
panchromatic images contain high spatial resolution with limited spectral resolution, while multi-spectral
images contain high spectral resolution with low spatial resolution.

Consequently, many researchers have expressed interest in the fusion of multi-spectral images and
panchromatic images. The most common methods are based on the intensity-hue-saturation (IHS)
transform [5,6]. However, using the IHS method results in spectral degradation. To solve this problem,
some algorithms based on the wavelet transform are proposed. Wavelet transform is an important tool
in signal processing [7] and image processing [8,9], especially for image fusion. Núñez et al. [10] fused
a high spatial resolution panchromatic image (Satellite pour l’ observation de la Terre (SPOT)) with a
low spatial resolution multi-spectral image (Landsat Thematic Mapper (TM)) using the additive wavelet
algorithm (AW). The Atrous wavelet approximation of the SPOT panchromatic image is substituted by
the bands of TM image. Li et al. [11] proposed a choose-max wavelet fusion algorithm (CMW) based
on the wavelet transform. An algorithm based on the multi-scale first fundamental form (MFF) was
presented by Scheunders [12], which used a multi-valued image wavelet representation method to fuse
images. However, this method is prone to large wavelet coefficients. Chen et al. [13] addressed this issue
by proposing a weighted multi-scale first fundamental form method (WMFF). The image fusion methods
based on wavelet transform, while reporting good results, have three limitations: empirical selection of
the predefined basis; selection of the decomposition level; the wavelet method focuses on preserving
spectral information. In order to solve these issues, techniques, such as the TV (total variation)−L1

model [14–16], were proposed as a balanced spatial and spectral information model, which use the
primal-dual algorithm and Bregman-splitting algorithm to maximize the matching measurement. In
the TV − L1 model, the TV regularization preserves the discontinuity of the magnitudes of gradient
difference; and the L1 data term tends to measure the low frequency information by calculating
the difference between the result and the multi-spectral image. Another class of literature utilizes
population-based optimization to fuse multiple images. Saeedi [17] utilized the population-based
optimization to select the weights of the low-frequency wavelet coefficients to improve the infrared and
visible image fusion. Saeedi [18] found the optimal pan-sharpened image by applying the multi-objective
particle swarm optimization algorithm and using the two initial pan-sharpened results generated by two
different fusion rules. Finally, Lacewell [19] used genetic algorithms to get a more optimized combined
image for visual and thermal satellite image fusion. While the reported literature produces good results,
the multi-spectral images are prone to the block effect, and the existing literature does not address this
problem. In this article, we propose to address the block effect within the multi-spectral images by using
the TV0 −∆−1 energy function. The ∆−1 component not only deletes the block effect, but also retains
the spectral information. Additionally, the L0 gradient term of the proposed energy function increases
the spatial resolution within the final fused result.

The contributions of our paper in image fusion can be summarized as follows:
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(1) The ∆−1 term within the fusion energy function is proposed to remove the block effect in
multi-spectral images without affecting the spatial information.

(2) To improve the image fusion accuracy, an alternative minimization algorithm using a non-convex
L0 regularization term is proposed.

The rest of the paper is organized as follows: Section 2 presents a detailed description of the
proposed fusion algorithm. Section 3 provides experimental results and discussions on IKONOS and
QUICKBIRD images. Finally, in Section 4, our conclusions are discussed.

2. Computational Method

2.1. Flowchart of the Proposed Algorithm

The flowchart of the proposed algorithm is presented in Figure 1. In the proposed algorithm, the color
multi-spectral image is transformed into the IHS color model [20]. The intensity component is selected
as the primary fusion variable. The method uses an energy minimization process solved by an iterative
process, which is based on the inverse Laplace transform and sparse norm of the gradient term.

Figure 1. The flowchart of the fusion process.
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2.2. Inverse Laplace Transform ∆−1

The ∆−1 operator is proposed by [21,22] and also applied to image fusion quality assessment [16,23].
Additionally, [22] computes ∆−1 by discrete Fourier transform. The discrete ∆ operator is given by:

∆f(m,n) = f(m+ 1, n) + f(m− 1, n) + f(m,n+ 1) + f(m,n− 1)− 4f(m,n), (1)

where m and n are the pixel position of image f with size [M,N ]. Applying the discrete Fourier
transform on (1), we obtain:

F (∆f)(p, q) = 2

(
cos

(
2π

M
p

)
+ cos

(
2π

N
p

)
− 2

)
F (f)(p, q), (2)

where p and q are discrete Fourier sample points and F presents the discrete Fourier transform. In order
to avoid singularity, we input a small constant ε and obtain the ∆−1 as follows:

∆−1(f) = F−1

(
F (f)

2
(
cos
(
2π
M
p
)

+ cos
(
2π
N
q
)
− 2− ε

)) . (3)

As shown in Figure 2, the weighting function
(

1

2(cos( 2π
M
p)+cos( 2π

N
q)−2−ε)

)
of Equation (3) focuses on

the low frequency component of the image f . An example of the application ∆−1 on the IKONOS’s
image is shown in Figure 3. It can be seen that ∆−1 removes the block effect, while preserving the
general information.

Figure 2. The weighted function: 1

2(cos( 2π
M
p)+cos( 2π

N
q)−2−ε)

.
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Figure 3. (Top) One channel of multi-spectral image S (left) and −∆−1 (right); (bottom)
an enlarged portion from the above images.

( )

remove the block effect 
while preserving the 
general information

2.3. Functional Form

Xie et al. [14] proposed a TV − L1 fusion method as follows:

min
R
J(R) = min

R
‖R− T‖1 + λ‖∇(R−G)‖1, (4)

where J is an energy function about the fusion result R, G is a panchromatic image, T is the intensity
part of IHS transformation of a multi-spectral image, λ is a weighted parameter and ‖∇·‖1 stands for a
discrete total variation norm. If we use the anisotropic total variation form, we can transform Equation (4)
as follows:

min
R
J(R) = min

R
‖R− T‖1 + λ‖Rx −Gx‖1 + λ‖Ry −Gy‖1, (5)

where Rx is the partial derivative of R with respect to x, Ry is the partial derivative of R with respect
to y, Gx is the partial derivative of G with respect to x and Gy is the partial derivative of G with respect
to y.

In recent years, many studies have empirically demonstrated through experiments that non-convex
potential functions are suitable for optimization-based computer vision problems. Krishnan [24] used a
normalized sparsity measure similar to L0 for the image blind deconvolution model. A Lp norm [25] is
proposed to solve the optical flow and image denoising model. Fu and Zhang [26] proposed an adaptive
non-convex model to solve the image restoration model. Consequently, in our article, we investigate
the use of a sparse L0 norm to increase the image details of the fused result. A non-convex L0 norm is
substituted for the L1 norm of anisotropic total variation of the TV − L1 model as follows:

min
R
J(R) = min

R
‖R− T‖1 + λ‖Rx −Gx‖0 + λ‖Ry −Gy‖0, (6)
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where ‖Ry−Gy‖0 = ⊕〈p, |Ry,p −Gy,p| 6= 0〉, p is the pixels and⊕ is the counting operator. We use the
L0 norm of the gradient to transform the spatial information, which can retain the spectral information,
whose tendency is inconsistent with the spatial information.

While the TV −L1 model demonstrates good results for multi-spectral fusion, the final fused images
contain the block effect, as discussed earlier. To address this issue, we apply ∆−1 on the data fitting term
and substitute ‖R− T‖1 with ‖∆−1R−∆−1T‖1 as:

min
R
J(R) = min

R
‖∆−1R−∆−1T‖22 + λ‖Rx −Gx‖0 + λ‖Ry −Gy‖0, (7)

whereR is the fused result, which retains the spatial information and the spectral information. Moreover,
we employ the ∆−1 operator, within ‖TV −L1‖ as ‖∆−1R−∆−1T‖1, resulting in the function focusing
on the low frequency information of R− T and neglecting the high frequency information.

Finally, as Model (7) is a non-convex model, we solve the problem using an alternative minimization
algorithm, as detailed in the next subsection.

2.4. Alternative Minimization Algorithm

We use the splitting scheme similar to [20,27] to solve Equation (7). It is well-known that the L0

problem is strongly NP-hard to solve, but we solve it based on the conclusion reported in [26]. Firstly,
we introduce two auxiliary variables p1 and p2 to transform Model (7) as follows:

min
R,p1,p2

J(R, p1, p2) = min
R,p1,p2

‖∆−1R−∆−1T‖22 + β‖Rx −Gx − p1‖22+

β‖Ry −Gy − p2‖22 + λ‖p1‖0 + λ‖p2‖0.
(8)

The alternative minimization algorithm [28] is employed to solve Model (8). The most important part of
the alternative minimization is to solve:

minp1J1(p1) = β‖Rx −Gx − p1‖2 + λ‖p1‖0
minp2J1(p2) = β‖Ry −Gy − p2‖2 + λ‖p2‖0.

(9)

It is well known that Model (9) is strongly NP-hard. We use the technique of [27] to decompose it into
the following model: ∑

i

minp1,i
{
β(Rx,i −Gx,i − p1,i)2 + λH(|p1,i|)

}
∑
i

minp2,i
{
β(Ry,i −Gy,i − p2,i)2 + λH(|p2,i|)

}
,

(10)

where i is the pixel position of the image and H is defined as:

H (|x|) =

{
1, if |x| 6= 0;

0, otherwise.
(11)

Next, Model (9) is rewritten by Model (10). Additionally, solve Model (10) by computing each term
as follows:

minp1,i

{
(Rx,i −Gx,i − p1,i)2 + λ

β
H(|p1,i|)

}
minp2,i

{
(Ry,i −Gy,i − p2,i)2 + λ

β
H(|p2,i|)

}
.

(12)

To solve Model (12), we need Proposition 1.
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Proposition 1. Model (12) obtains the minimum under the conditions:

p1,i =

{
0, (Rx,i −Gx,i)

2 ≤ λ
β
;

Rx,i −Gx,i, otherwise.

p2,i =

{
0, (Ry,i −Gy,i)

2 ≤ λ
β
;

Ry,i −Gy,i, otherwise.

(13)

The proof is similar to [27]. In order for this paper to be self-contained, we present the proof of
Proposition 1 as follows.

Proof. If (Rx,i −Gx,i)
2 ≤ λ

β
and p1,i 6= 0, we have:

(Rx,i −Gx,i − p1,i)2 +
λ

β
H(|p1,i|) = (Rx,i −Gx,i − p1,i)2 +

λ

β

≥ λ

β

≥ (Rx,i −Gx,i)
2.

(14)

If (Rx,i −Gx,i)
2 ≤ λ

β
and p1,i = 0, we have:

(Rx,i −Gx,i − p1,i)2 +
λ

β
H(|p1,i|) = (Rx,i −Gx,i)

2. (15)

Combining (14) and (15), we conclude that if (Rx,i −Gx,i)
2 ≤ λ

β
and p1,i = 0, Model (12) obtains the

minimum (Rx,i −Gx,i)
2.

If (Rx,i −Gx,i)
2 > λ

β
and p1,i ≤ 0, we have:

(Rx,i −Gx,i − p1,i)2 +
λ

β
H(|p1,i|) = (Rx,i −Gx,i − p1,i)2 +

λ

β

≥ λ

β
. (If p1,i = Rx,i −Gx,i, the equality holds.)

(16)

If (Rx,i −Gx,i)
2 > λ

β
and p1,i = 0, we obtain:

(Rx,i −Gx,i − p1,i)2 +
λ

β
H(|p1,i|) = (Rx,i −Gx,i)

2. (17)

Combining (16) and (17), we conclude that if (Rx,i −Gx,i)
2 > λ

β
and p1,i = Rx,i − Gx,i, Model (12)

obtains the minimum λ
β

. Thus, we complete the proof of Proposition 1.

Because every point is considered to be a single point individual, we simplify Equation (13) as
follows:

p1 =

{
0, (Rx −Gx)

2 ≤ λ
β
;

Rx −Gx, otherwise.

p2 =

{
0, (Ry −Gy)

2 ≤ λ
β
;

Ry −Gy, otherwise.

(18)

Although Proposition 1 can solve the L0 approximately, another sub-problem of the alternate
minimization is to solve as follows:

min
R
J2(R) = min

R
‖∆−1R−∆−1T‖22 + β‖Rx −Gx − p1‖22 + β‖Ry −Gy − p2‖22. (19)
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Based on the definition of ∆−1 and the discrete Fourier transform, we transform (19) as follows:

min
F (R)

J2(F (R)) = min
R
‖F (∆−1R)− F (∆−1T )‖22 + β‖F (∂x)

◦F (R)− F (∂x)
◦F (G)− F (p1)‖22

+β‖F (∂y)
◦F (R)− F (∂y)

◦F (G)− F (p2)‖22,
(20)

where ◦ represents the element-wise multiplication. Based on (3), Equation (20) can be transformed as
follows:

min
F (R)

J2(F (R))=

∥∥∥∥ F (R)−F (T )

2(cos( 2π
M
p)+cos( 2π

N
q)−2−ε)

∥∥∥∥2
2

+ β‖F (∂x)
◦F (R)− F (∂x)

◦F (G)− F (p1)‖22

+β‖F (∂y)
◦F (R)− F (∂y)

◦F (G)− F (p2)‖22.
(21)

Then, we obtain the solution:

W0 = 1

2(cos( 2π
M
p)+cos( 2π

N
q)−2−ε)

W1 = W †
0 ◦ F (T ) + βF (∂x)

† ◦ F (∂x) ◦ F (G) ◦ F (p1) + βF (∂y)
† ◦ F (∂y) ◦ F (G) ◦ F (p2)

W2 = W †
0 ◦W0 + βF (∂x)

† ◦ F (∂x) + βF (∂y)
† ◦ F (∂y)

R = F−1 (W1./W2) ,

(22)

where † represents the conjugate transpose operator, ./ is the element-wise division, F−1 is the inverse
Fourier transform and (∂x, ∂y) are differentiated operators.

After we solve the above important sub-optimization, we present our framework by Algorithms 1 and
2 as follows:

Algorithm 1 Image fusion algorithm
Input: a multispectral image M , a panchromatic image G, parameters λ, β0, βmax and v
Initialization: β ← β0, p1 ← 0, p2 ← 0, [T,H, S] = rgb2ihs(M)

While β ≤ βmax

Run Algorithm 2
β ← β · v

End
Output: MR = ihs2rgb(R,H, S)

Algorithm 2 Kernel algorithm
Input: a multispectral image M , a panchromatic image G, parameters λ, β
While 1

Update Rn+1 with Equation (22)
Update pn+1

1 , pn+1
2 with Equation (13)

if ‖Rn+1 −Rn‖ ≤ ι

break
end

End
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Remark 1. (1). rgb2ihs indicates the transformation from RGB (red, green, blue) space to IHS
(intensity, hue, saturation) space.
(2). ihs2rgb indicates the transformation from IHS space to RGB space.
(3). ι is a small positive constant.

To give convergence results for the generated sequence {J(Ri, pi1, p
i
2)}i∈N generated by Algorithm 2,

we give Proposition 2 as follows.

Proposition 2. If ε > 0, the sequence J(Rn, pn1 , p
n
2 ) generated by Algorithm 2 converges monotonically.

Proof. Based on the Plancherel theorem, the energy of (20) is equal to the energy of (19). As
Equation (22) presents, the solver of the energy Equation (19) is:

Rn = F−1 (W n
1 ./W

n
2 ) , (23)

where W n
1 = W †

0 ◦ F (T ) + βF (∂x)
† ◦ F (∂x) ◦ F (G)◦F (pn1 ) + βF (∂y)

† ◦ F (∂y) ◦ F (G) ◦ F (pn2 ) and
W n

2 = W †
0 ◦W0 + βF (∂x)

† ◦ F (∂x) + βF (∂y)
† ◦ F (∂y). If ∀i, j, W n

2 (i, j) 6= 0, the solver Rn+1 can be
obtained by the Equation (23).

If ε > 0, the equation 2
(
cos
(
2π
M
p
)

+ cos
(
2π
N
q
)
− 2− ε

)
< 0 is generated. Therefore,

W n
2 = W †

0 ◦W0︸ ︷︷ ︸
>0

+ βF (∂x)
† ◦ F (∂x)︸ ︷︷ ︸
≥0

+ βF (∂y)
† ◦ F (∂y)︸ ︷︷ ︸
≥0

> 0.

(24)

Accordingly, the optimization problem (19) can be solved. Then, we obtain that J(Rn+1, pn1 , p
n
2 ) ≤

J(Rn, pn1 , p
n
2 ). Based on Proposition 1, we obtain that J(Rn+1, pn+1

1 , pn+1
2 ) ≤ J(Rn+1, pn1 , p

n
2 ). From the

above discussion, we obtain that:

J(Rn+1, pn+1
1 , pn+1

2 ) ≤ J(Rn, pn1 , p
n
2 ). (25)

It is trivial to obtain that J(·, ·, ·) is bounded from below. With the monotone convergence theorem, the
sequence {J(Ri, pi1, p

i
2)}i∈N converges to a limit vector a.

2.5. The Selection of the Key Parameter λ

Parameter λ is very important for our fusion energy function. It determines the level of detail of
information from the panchromatic image and the level of spectral information from the multi-spectral
image present in the final fused image. In this paper, we do not assign a fixed value to λ, but an image A.
Image A is constructed of two parts: one is a constant value matrix A1 corresponding to the previous
constant parameter, and the other is the logical matrix A2 derived from the dilation operator of the
mathematical morphology on the edge image of the panchromatic image. That means if A2(i) is larger,
the object function focuses on the panchromatic image; otherwise, the multi-spectral information is
considered. An example of image A is shown in Figure 4. Because Equation (13) is the point-wise
operator, we can substitute the value λ with matrix A. Thus, we extend Equation (13) as follows:

p1,i =

{
0, (Rx,i −Gx,i)

2 ≤ A(i)
β

;

Rx,i −Gx,i, otherwise.

p2,i =

{
0, (Ry,i −Gy,i)

2 ≤ A(i)
β

;

Ry,i −Gy,i, otherwise.

(26)
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where i is the pixel position of the image.

Figure 4. Generation of the parameter λ = A.

Dilation

A1

+

A

A2

3. Experimental Results

Some experiments on IKONOS and QUICKBIRD images are used to validate the proposed algorithm.
We use two metrics to quantify the performance. The correlation measure (CM) [10] is defined as
follows:

CM(A,B) =
(A− Ā)(B − B̄)∥∥A− Ā∥∥

2

∥∥B − B̄∥∥
2

, (27)

where A and B are the images in the lexicographic order. CM computes correlation coefficients of
the red, the green and the blue channels between the multispectral image and the fused result; this
computation can be used to assess the preservation of the spectral information of the result.

A feature-based metric QAB/F [29] is adopted. The QAB/F metric is defined as follows:

gA(m,n) =

√
sxA(m,n)2 + syA(m,n)2, αA(m,n) = tan−1(

syA(m,n)

sxA(m,n)
), (28)

where sxA(m,n) and syA(m,n) are the outputs of the horizontal and vertical Sobel templates centered on
pixel (m,n) and convolved with the corresponding pixels of image A. Similarly, gB(m,n) and gF (m,n)
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can also be obtained by the above definition. The relative strength and orientation values of GAF and
AAF of image A with respect to F are defined as:

GAF (m,n) =

{
gF (m,n)
gA(m,n)

, ifgA(m,n) > gF (m,n);
gF (m,n)
gA(m,n)

, otherwise.
(29)

AAF (m,n) =
||αA(m,n)− αA(m,n)| − π/2|

π/2
. (30)

Then, the edge strength and orientation preservation values are derived as:

QAF
g =

Γg
1 + eKg(GAF (m,n)−σg)

, (31)

QAF
α =

Γα
1 + eKα(AAF (m,n)−σα)

, (32)

where Γg, Kg, σg,Γα, Kα and σα are constants and determine the exact shape of the sigmoid functions
used to form the edge strength and orientation preservation values. Edge information preservation values
are then defined as:

QAF = QAF
g QAF

α . (33)

Therefore, QAB/F is obtained as:

QAB/F =

M∑
m=1

N∑
n=1

QAF (m,n)wA(m,n) +QBF (m,n)wB(m,n)

M∑
i=1

N∑
j=1

(wA(i, j) + wB(i, j))

, (34)

where wA(m,n) = (gA(m,n))L, wB(m,n) = (gB(m,n))L and L is a constant. QAB/F considers the
amount of edge information transferred from the input images to the fused image. The larger QAB/F

value indicates that the fused result contains more information from the input images.
Spatial frequency (SF) measurement [30,31] is about the overall activity level in an image. The spatial

frequency is defined as follows:

RF =

√√√√ 1

M ×N

M∑
i=1

N∑
j=2

(I(i, j)− I(i, j − 1))2 (35)

CF =

√√√√ 1

M ×N

M∑
i=2

N∑
j=1

(I(i, j)− I(i− 1, j))2 (36)

SF =

√
(RF )2 + (CF )2, (37)

where SF is defined on an M ×N image I , RF is row frequency, CF is column frequency and I(i, j)

denotes the samples of image. The large value of SF means that the image contains components in a
high frequency area. The spatial frequent measurement can be used to reflect the clarity of the result.

The proposed method is compared to some wavelet-based methods, such as the additive wavelet
fusion method (AW) [10], the choose-max wavelet fusion method (CMW) [11], the multi-scale
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fundamental forms fusion method (MFF) [12] and the weighted multi-scale fundamental forms fusion
method (WMFF) [13]. In order to illustrate the superiority of the proposed L0 gradient minimization,
we perform a comparative experimentation with L1 gradient minimization-based methods [14,15], and
the results are shown in Tables 1 and 2.

From the enlarged portion of the fused result, Figure 5 shows that our proposed algorithm has removed
the block effect. We selected the parameter to make CM (r) metric, as close as possible, which means the
retained spectral information is as close as possible. We applied the above metric to quantify the results
in Table 1. In Table 1, CM (r), CM (g) and CM (b) correspond to the correlation measures of the red
channel, the green channel and the blue channel. This shows that our fused result preserves more spectral
information than the other methods. The fourth column of Table 1 illustrates that the image obtained by
the proposed method gets more feature information from the original image than other methods. The
sixth column of Table 1 obtained by the proposed method indicates that our method obtains clearer
results than the other methods.

Table 1. Quantitative comparison results of Figure 5. AW, additive wavelet fusion method;
CMW, choose-max wavelet fusion method; MFF, multi-scale fundamental forms fusion
method; WMFF, weighted multi-scale fundamental forms fusion method.

Fusion Method CM(Red channel) CM(Green channel) CM(Blue channel) QAB/F SF

AW 0.9341 0.9345 0.9402 0.4109 0.0642
CMW 0.9426 0.9443 0.9501 0.3491 0.0640
MFF 0.8281 0.8255 0.8497 0.3700 0.0810

WMFF 0.9268 0.9265 0.9353 0.4304 0.0738
Method [14] 0.9503 0.9528 0.9558 0.4311 0.0768
Method [15] 0.9502 0.9527 0.9555 0.4157 0.0776

Proposed method 0.9505 0.9534 0.9570 0.4485 0.0842

Table 2. Quantitative comparison results of Figure 6.

Fusion Method CM(Red channel) CM(Green channel) CM(Blue channel) QAB/F SF

CMW 0.8835 0.8704 0.8616 0.3576 0.1129
MFF 0.8321 0.8130 0.7980 0.3542 0.0959

WMFF 0.8920 0.8745 0.8704 0.4075 0.0941
Method [14] 0.8921 0.8850 0.8743 0.4105 0.1360
Method [15] 0.8921 0.8847 0.8746 0.4073 0.1372

Proposed method 0.8927 0.8849 0.8751 0.4260 0.1478
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Figure 5. Fused IKONOS images using AW, CMW, MFF, WMFF, method of [14], method
of [15] and the proposed method.

AW CMW MFF WMFF Method [14] Method [15] Proposed Method

Figure 6 shows the fused QUICKBIRD’s images that are obtained by CMW, MMF, WMMF, the
methods of [14,15] and the proposed method. The above metric is applied to quantify the results in
Table 2. In Table 2, CM (r), CM (g) and CM (b) correspond to the correlation measure of the red
channel, the green channel and the blue channel; this shows that our fused result preserves more spectral
information than other methods. The fourth column of Table 2 illustrates that the image obtained by the
proposed method gets more feature information from the original images than other methods. The sixth
column of Table 1 obtained by the proposed method indicates that our method obtains clearer results
than the other methods.
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Figure 6. Fused QUICKBIRD images using CMW, MFF, WMFF, method of [14], method
of [15] and the proposed method.
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4. Conclusion

The proposed algorithm removes the block effect efficiently by using the ∆−1 operator. In addition,
we use a non-convex functional form to improve our fusion result. Simultaneously, our proposed method
presents a new energy minimization algorithm to retain the spectral and high frequency information from
the original images. We conduct some experiments on the IKONOS and QUICKBIRD images, and the
proposed algorithm obtains a better fusion result than other fusion algorithms, in terms of not only visual
quality, but also some fusion indicators.
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10. Núñez, J.; Otazu, X.; Fors, O.; Prades, A.; Pala, V.; Arbiol, R. Multiresolution based image fusion
with additive wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 1999, 32, 1204–1211.

11. Li, H.; Manjunath, B.S.; Mitra, S.K. Multisensor image fusion using the wavelet transform.
Graph. Model. Image Process. 1995, 57, 235–245.

12. Scheunders, P. A multivalued image wavelet representation based on multiscale fundamental forms.
IEEE Trans. Image Process. 2002, 10, 568–575.

13. Chen, T.; Guo, R.S.; Peng, S.L. Image fusion using weighted multiscale fundamental form.
In Proceedings of IEEE International Conference on Image Processing, 24–27 October 2004,
pp. 3319–3322.

14. Xie, Q.W.; He, J.C.; Long, Q.; Mita, S.; Chen, X.; Jiang, A. Image fusion based on TV − L1

function. In Proceedings of the 2013 International Conference on Wavelet Analysis and Pattern
Recognition, Tianjin, China, 14–17 July 2013; pp. 173–177.

15. Xie, Q.W.; Long, Q.; Mita, S.; Chen, X.; Jiang, A. Image fusion based on TV − L1 − convex

constrained algorithm. In Proceedings of the 2013 International Conference on Wireless
Communications & Signal Processing, Hangzhou, China, 24–26 October 2013; pp. 1–5.

16. Xie, Q.W.; Long, Q.; Mita, S.; Guo, C.Z.; Jiang, A. Image fusion based on multi-objective
optimization. Int. J. Wavelets Multiresolut. Inf. Process. 2014, 12, 1450017.

17. Saeedi, J.; Faez, K. Infrared and visible image fusion using fuzzy logic and population-based
optimization. Appl. Soft Comput. 2012, 12, 1041–1054.

18. Saeedi, J.; Faez, K. A new pan-sharpening method using multi-objective particle swarm
optimization and the shiftable contourlet transform. ISPRS J. Photogramm. Remote Sens. 2011, 66,
365–381.

19. Lacewell, C.W.; Gebril, M.; Buaba, R.; Homaifar, A. Optimization of image fusion using genetic
algorithms and discrete wavelet transform. In Proceedings of IEEE conference on Aerospace and
Electronics, Fairborn, OH, USA, 14–16 July 2010; pp. 116–121.

20. Smith, A.R. Color gamut transform pairs. ACM Comput. Graph. (SIGGRAPH) 1978, 12, 12–19.
21. Osher, S.J.; Sole, A.; Vese, L.A. Image decomposition and restoration using total variation

minimization and the H−1 norm. Multiscale Model. Simul. 2003, 1, 349–370.
22. Aujol, J.; Gilboa, G. Constrained and SNR-based solutions for TV-Hilbert space image denoising.

J. Math. Imaging Vis. 2006, 26, 217–237.
23. Xie, Q.W.; Liu, Z.; Long, Q.; Mita, S.; Jiang, A. Remote sensing image fusion through kernel

estimation based on energy minimization. In Proceedings of International IEEE Conference on
Intelligent Transportation Systems, Qingdao, China, 8–11 October 2014.



Entropy 2014, 16 6115

24. Krishnan, D.; Tay, T.; Fergus, R. Blind deconvolution using a normalized sparsity measure. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI,
USA, 20–25 June 2011; pp. 233–240.

25. Ochs, P.; Dosovitskiy, A.; Brox, T.; Pock, T. An iterated l1 algorithm for non-smooth non-convex
optimization in computer vision. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 1759–1766.

26. Fu, S.; Zhang, C. Adaptive non-convex total variation regularisation for image restoration.
Electron. Lett. 2010, 46, 907–908.

27. Li, X.; Lu, C.W.; Xu, Y.; Jia, J.Y. Image smoothing via L0 gradient minimization.
ACM Trans. Graph. (SIGGRAPH Asia) 2011, 30, 174.

28. Wang, Y.; Yang, J.; Yin, W.; Zhang, Y. A new alternating minimization algorithm for total variation
image reconstruction. SIAM J. Imaging Sci. 2011, 1, 248–272.

29. Xydeas, C.S.; Petrovic, V. Objective image fusion performance measure. Electron. Lett. 2000, 36,
308–309.

30. Li, S.; Kwok, J.T.; Wang, Y. Combination of images with diverse focuses using the spatial
frequency. Inf. Fusion 2001, 2, 169–176.

31. Zheng, Y.; Essock, E.A.; Hansen, B.C.; Huan, A.M. A new metric based on extend spatial
frequency and its application to DWT based fusion algorithms. Inf. Fusion 2007, 8, 177–192.

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Computational Method
	Flowchart of the Proposed Algorithm
	Inverse Laplace Transform -1
	Functional Form
	Alternative Minimization Algorithm
	The Selection of the Key Parameter 

	Experimental Results
	Conclusion

