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Abstract: In this paper, the parameters identification and synchronization problem of

fractional-order neural networks with time delays are investigated. Based on some analytical

techniques and an adaptive control method, a simple adaptive synchronization controller and

parameter update laws are designed to synchronize two uncertain complex networks with

time delays. Besides, the system parameters in the uncertain network can be identified in

the process of synchronization. To demonstrate the validity of the proposed method, several

illustrative examples are presented.
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1. Introduction

Since the pioneering work on Hopfield neural networks was reported in [1], the investigation of

the dynamics of neurons has been receiving a lot of attention. In cellular neural networks [2], Petráš

pointed out that fractional derivatives instead of the integer order one were a natural choice. Recently,

the utilities of fractional-order neural networks have been extensively studied, since the networks

provide neurons with a fundamental and general computation ability that can contribute to efficient

information processing, stimulus anticipation and frequency-independent phase shifts of oscillatory

neuronal firing [3]. It is well known that the uncertainty and time delay are unavoidable in many practical

situations. For example, due to the finite switching speed of amplifier circuits in neural networks or

dealing with motion-related problems, time delays exist in the information processing of neurons [4].

On the other hand, most studies have been available under the assumption that the system parameters

are assumed to be known in advance. However, under some circumstances, it is difficult to determine

the values of parameters. Therefore, the fractional neural networks with unknown parameters and time

delay are more general and reasonable in the real world.

If the parameters and time delays are appropriately chosen, the neural networks can exhibit

complicated behaviors even with strange chaotic attractors. Meanwhile, synchronization of coupled

neural networks has been investigated due to its potential applications in various engineering, including

chaos generators design, secure communications, chemical and biological systems, information

processing, distributed computation, optics, social science, harmonic oscillation generation, human

heartbeat regulation and power system protection (see, e.g., [4–11] and the references therein). However,

there are very limited results on the synchronization of fractional-order neural networks.

In this paper, an identification method based on fractional adaptive synchronization is applied to

parameter identification of fractional-order neural networks with time delays. Fractional adaptive

synchronization was a generalization of the integer case [12,13]. The main contributions of this paper

mainly include three aspects: (i) An adaptive controller is first proposed, which is more general than the

nonlinear controller [14–16]. Furthermore, the adaptive controller can be used to identify the unknown

parameters of nonlinear part, but the nonlinear one may not. (ii) Our model of fractional neural networks

with time delays and unknown parameters is more general. (iii) Based on a novel Lyapunov-like function

and the Gronwall–Bellman integral inequality, we derive synchronization criteria analytically.

As mentioned above, fractional-order neural networks are very effective at applications due to their

infinite memory. Besides, the fractional-order parameter and time delays enrich the system performance

by increasing freedom. Synchronization of fractional neural networks with time delays may be more

useful in many applications, such as information, pattern recognition and image processing. Therefore,

it is necessary and interesting to study time-delayed fractional neural networks both in theory and in

applications. The outline of the paper is organized as follows: some preliminaries and fractional-order

neural networks are introduced in Section 2. The adaptive controller is proposed for two coupling

networks, such that they can be synchronized in the following section. Numerical experiments are

presented to support the theoretical analysis in Section 4. The conclusions are given in the last section.
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2. Preliminaries and Model Description

In the following, we introduce some basic definitions and the corresponding results, which will be

used later on.

Definition 1 ([17]). The fractional integral of order α for function f is defined as:

D−α
t0,t

f(t) =
1

Γ(α)

∫ t

t0

(t− τ)α−1f(τ)dτ, (1)

where t ≥ t0, α > 0 and Γ(·) is the Gamma function.

Definition 2 ([17]). The α-th-order Caputo fractional derivative of the given function f(t) is defined as:

CD
α
t0,t

f(t) =
1

Γ(m− α)

∫ t

t0

(t− τ)m−α−1f (m)(τ)dτ, m− 1 < α < m ∈ Z
+. (2)

In most situations, the initial time t0 is often set to zero. Throughout the paper, t0 = 0 and D−α
0,t is

simply denoted by Iα and CD
α
0,t by Dα for brevity.

Lemma 1 ([18]). If x(t) ∈ C1[0, b] and 0 < α < 1, then:

(1) DαIαx(t) = x(t), 0 < t < b; (3)

(2) IαDαx(t) = x(t)− x(0), 0 < t < b. (4)

Lemma 2 ([19]). Assume that x(t) ∈ C1[0, b] and satisfies:

Dαx(t) = f(t, x(t)) ≥ 0, 0 < α < 1

for all t ∈ [0, b], then x(t) is monotonously non-decreasing. If

Dαx(t) = f(t, x(t)) ≤ 0, 0 < α < 1

then x(t) is monotonously non-increasing.

Lemma 3 ([20]). Let x(t) ∈ R be a continuous and differentiable function. Then, for any time instant

t ≥ 0:
1

2
Dα[x2(t)] ≤ x(t)Dαx(t), 0 < α < 1.

Lemma 4 ([21]). For the given vectors x, y and a positive definite matrix Q > 0 with compatible

dimensions, the following inequality holds,

2xTy ≤ xTQx+ yTQ−1y.

Lemma 5 (Gronwall–Bellman integral inequality [22]). If z(t) satisfies z(t) ≤
∫ t

0
a(τ)z(τ)dτ + b(t)

with a(t) and b(t) being known real functions, then

z(t) ≤

∫ t

0

a(τ)b(τ) exp

(
∫ t

τ

a(r)dr

)

dτ + b(t).
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If b(t) is differentiable, then

z(t) ≤ b(0) exp

(
∫ t

0

a(τ)dτ

)

+

∫ t

0

ḃ(τ) exp

(
∫ t

τ

a(r)dr

)

dτ.

In particular, if b(t) is a constant, it immediately follows that

z(t) ≤ b(0) exp

(
∫ t

0

a(τ)dτ

)

.

We study the following drive and response fractional neural networks with time delays:

Dαxi(t) = −cixi(t) +
m
∑

j=1

aijfj(xj(t)) +
m
∑

j=1

bijgj(xj(t− τ)) + Ii, (5)

Dαyi(t) = −ciyi(t) +

m
∑

j=1

âijfj(yj(t)) +

m
∑

j=1

b̂ijgj(yj(t− τ)) + Ii + ui(t). (6)

Here, 0 < α < 1, i = 1, 2, · · · , m; xi(t) denotes the state variable of the i-th neuron at time t; aij and bij

denote the connection strengths and the time delay connection strengths, respectively; âij and b̂ij are the

estimations for the unknown connection strengths aij and bij ; fj(xj(t)), gj(xj(t)) denote the activation

functions of neurons; τ is the time delay; Ii is the input; ui(t) is a controller.

Hereafter, suppose that the activation functions fi(u) and gi(u) satisfy the Lipschitz conditions; that

is, there exist constants Fi > 0, Gi > 0, such that:

|fi(u)− fi(v)| ≤ Fi|u− v|, |gi(u)− gi(v)| ≤ Gi|u− v| (7)

for u, v ∈ R and i = 1, 2, · · · , m.

3. Adaptive Controller for Uncertain Fractional-Order Neural Networks

In this section, we study the adaptive synchronization of two coupled fractional neural networks with

unknown parameters. By the adaptive control theory, a simple controller for synchronization is designed

and parameters identification is realized.

Let ei(t) = yi(t) − xi(t) and e(t) = y(t) − x(t) = (e1(t), e2(t), · · · , em(t))
T . Our goal is to

design controller u, such that the trajectory of the response system (6) with initial condition y0 can

asymptotically approach that of the drive system (5) with initial condition x0 and, finally, implement

synchronization, in the sense that:

lim
t−→∞

‖e‖ = lim
t−→∞

‖y(t)− x(t)‖ = 0, (8)

where ‖ · ‖ is the Euclidean norm.

Theorem 1. The drive and response complex networks (5) and (6) can achieve synchronization, if the

controller and the adaptive laws of parameters are taken as:











ui(t) = −ki(t)ei(t),

Dαâij = −qijei(t)fj(yj(t)),

Dαb̂ij = −rijei(t)gj(yj(t− τ)),

(9)
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where qij , rij, λi are arbitrary positive constants and the feedback strength ki(t) is adapted according to

the following update law:

Dαki(t) = λie
2
i (t). (10)

Proof. From networks (5) and (6), one can get the following error system:

Dαei(t) = −ciei(t) +

m
∑

j=1

âijfj(yj(t))−

m
∑

j=1

aijfj(xj(t))

+
m
∑

j=1

b̂ijgj(yj(t− τ))−
m
∑

j=1

bijgj(xj(t− τ)) + ui(t)

= −ciei(t) +

m
∑

j=1

aij [fj(yj(t))− fj(xj(t))] +

m
∑

j=1

bij [gj(yj(t− τ))− gj(xj(t− τ))]

+
m
∑

j=1

(âij − aij)fj(yj(t)) +
m
∑

j=1

(b̂ij − bij)gj(yj(t− τ)) + ui(t). (11)

Now, we introduce the following Lyapunov-like function for system (11):

V (t) =
1

2

m
∑

i=1

e2i (t) +
1

2

m
∑

i=1

[

1

λi

(ki(t)− ρi)
2 +

m
∑

j=1

1

qij
(âij − aij)

2 +
m
∑

j=1

1

rij
(b̂ij − bij)

2

]

+
1

Γ(α)

∫ t

0

(t− ξ)α−1eT (ξ)Pe(ξ)dξ −
1

Γ(α)

∫ t−τ

0

(t− τ − ξ)α−1eT (ξ)Pe(ξ)dξ, (12)

where ρi > 0, i = 1, 2, · · · , m and P is a semi-positive definite matrix under determination.

Define:

w(t) =
1

Γ(α)

∫ t

0

(t− ξ)α−1eT (ξ)Pe(ξ)dξ. (13)

Applying Equation (3) to (13) yields:

Dαw(t) = eT (t)Pe(t) ≥ 0.

By Lemma 2, we have that w(t) is monotonously non-decreasing, i.e., w(t) ≥ w(t − τ). Therefore,

V (t) ≥ 0.

From Lemma 3, Equations (9)–(11), the fractional derivatives of V (t) along the solution can be

derived as:

DαV (t) ≤

m
∑

i=1

ei(t)D
αei(t) +

m
∑

i=1

1

λi

(ki(t)− ρi)D
αki(t) +

m
∑

i=1

m
∑

j=1

1

qij
(âij − aij)D

αâij

+
m
∑

i=1

m
∑

j=1

1

rij
(b̂ij − bij)D

αb̂ij + eT (t)Pe(t)− eT (t− τ)Pe(t− τ)

= −

m
∑

i=1

(ci + ρi)e
2
i (t) +

m
∑

i=1

m
∑

j=1

aijei(t)[fj(yj(t))− fj(xj(t))]

+
m
∑

i=1

m
∑

j=1

bijei(t)[gj(yj(t− τ))− gj(xj(t− τ))]

+eT (t)Pe(t)− eT (t− τ)Pe(t− τ). (14)
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It immediately follows from (14) that:

DαV (t) ≤ −eT (t)(C + ρ)e(t) + eT (t)A[f(y(t))− f(x(t))] + eT (t)Pe(t)

+eT (t)B[g(y(t− τ))− g(x(t− τ))]− eT (t− τ)Pe(t− τ). (15)

Here, C = diag(c1, c2, · · · , cm) and ρ = diag(ρ1, ρ2, · · · , ρm) are diagonal matrices; A = (aij)n×n,

B = (bij)n×n are the connection matrices, and:

f(x(t)) = [f1(x1(t)), f2(x2(t)), · · · , fm(xm(t))]
T ,

g(x(t− τ)) = [g1(x1(t− τ)), g2(x2(t− τ)), · · · , gm(xm(t− τ))]T .

From Lemma 4 and assumption (7), we can get the following two inequalities:

eT (t)A[f(y(t))− f(x(t))]

≤
1

2
eT (t)AAT e(t) +

1

2
[f(y(t))− f(x(t))]T [f(y(t))− f(x(t))]

≤
1

2
eT (t)AAT e(t) +

1

2

m
∑

i=1

Fie
2
i (t)

=
1

2
eT (t)AAT e(t) +

1

2
eT (t)Fe(t), (16)

and:

eT (t)B[g(y(t− τ))− g(x(t− τ))]

≤
1

2
eT (t)BBT e(t) +

1

2
eT (t− τ)Ge(t− τ), (17)

where F = diag(F1, F2, · · · , Fm) and G = diag(G1, G2, · · · , Gm).

It follows from Equations (16) and (17) that:

DαV (t) ≤ eT (t)[−(C + ρ) +
1

2
(AAT +BBT + F ) + P ]e(t)

+eT (t− τ)(
1

2
G− P )e(t− τ).

Let:

P =
1

2
G,

ρ = −C + [
1

2
λmax(AA

T +BBT + F ) + λmax(P ) + 1]I.

Then, one has:

DαV (t) ≤ −eT (t)e(t). (18)

After fractional integration on both sides of the inequality (18), we have:

IαDαV (t) ≤ −Iα[eT (t)e(t)].

Using Equation (4) leads to:

V (t) ≤ V (0)−
1

Γ(α)

∫ t

0

(t− τ)α−1eT (τ)e(τ)dτ.
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Additionally, eT (t)e(t) ≤ V (t) gives:

eT (t)e(t) ≤ V (0)−
1

Γ(α)

∫ t

0

(t− τ)α−1eT (τ)e(τ)dτ.

By Lemma 5, one has:

eT (t)e(t) ≤ V (0) exp(−
1

Γ(α)

∫ t

0

(t− τ)α−1dτ)

= V (0) exp(−
tα

Γ(α + 1)
).

Therefore, e(t) → 0 as t → ∞.

Remark 1. It should be noted that Theorem 1 only derives the local stability of the fractional error

system (11). In order to successfully identify the unknown parameters, other conditions must be satisfied.

When achieving the synchronization, i.e., yi(t) = xi(t), as t → ∞, error system (11) can be simplified

as follows:

m
∑

j=1

(âij − aij)fj(xj(t)) +

m
∑

j=1

(b̂ij − bij)gj(xj(t− τ)) = 0, i = 1, 2, · · · , m.

According to the linear independence [23], the correct identification of the unknown parameters âij , b̂ij

is equivalent to the fact that the function elements {fj(xj(t)), gj(xj(t−τ)), j = 1, 2, · · · , m} are linearly

independent.

Remark 2. Assume âij = aij , b̂ij = bij . The system (5) and (6) can be asymptotically synchronized

under the following control strategy:

{

ui(t) = −ki(t)ei(t),

Dαki(t) = λie
2
i (t),

where λi > 0.

Remark 3. Assume bij = b̂ij = 0. The complete synchronization between system (5) and system (6) can

be realized via the following control strategy:











ui(t) = −ki(t)ei(t),

Dαâij = −qijei(t)fj(yj(t)),

Dαki(t) = λie
2
i (t),

where qij , λi are positive.
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4. Numerical Simulation

4.1. Synchronization and Parameter Identification

In this section, numerical experiments are displayed to illustrate the effectiveness of the proposed

method.

A group of fractional-order neural networks with time delay is considered, whose integer-order case

was reported in [10],

Dαx(t) = −Cx(t) + Af(x(t)) +Bg(x(t− τ)), (19)

where:

α = 0.995, C = I, x(t) = (x1(t), x2(t))
T , τ = 1,

f(x(t)) = g(x(t)) = h(x(t)) = (tanh(x1), tanh(x2))
T .

The initial conditions for fractional neural networks (19) are given as follows:

x1(s) = −0.4, x2(s) = −2, for all s ∈ [−1, 0].

When we choose:

B =

(

−2 0.2

0.3 −2.5

)

, (20)

and A in the following three forms:

A1 =

(

2 0.3

5 3

)

, A2 =

(

2 0.5

5 3

)

, A3 =

(

2 0.45

5 3

)

, (21)

fractional system (19) is chaotic (corresponding to A1, see Figure 1), has asymptotically stable

equilibrium (corresponding to A2, see Figure 2), and has stable periodic solution (corresponding to A3,

see Figure 3), respectively.

Figure 1. Chaotic attractor of the system (19).

−1.5 −1 −0.5 0 0.5 1 1.5
−5

0

5

x
1
(t)

x 2(t)
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Figure 2. Asymptotically stable equilibrium of the system (19).
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Figure 3. Asymptotically stable periodic solution of the system (19).
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In the numerical simulations, the initial conditions and parameter values are given in the following:



















x(0) = (0.4, 0.6)T , y(0) = (1, 1)T ,

â11(0) = 1, â12(0) = 1, â21(0) = 1, â22(0) = 1,

b̂11(0) = 1, b̂12(0) = 1, b̂21(0) = 1, b̂22(0) = 1,

k1(0) = 1, k2(0) = 1.

(22)

Now, we choose A = A1, qij = 5, rij = 5 and λ1 = λ2 = 5 for the synchronization test.

In the following, the adaptive control strategy (9) and (10) is used to identify the uncertain system

parameters. From Figures 4 and 5, it can be clearly seen that all the unknown system parameters

âij and b̂ij are successfully identified, respectively. Figure 6 shows that the synchronization error

converges to zero asymptotically. From Figure 7, we can see that the adaptive control gains ki(t), i = 1, 2

tend to some positive constants when system (5) and system (6) are synchronized.
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Figure 4. Identification of uncertain parameters Â.
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Figure 5. Identification of uncertain parameters B̂.
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Figure 6. The time evolution of synchronization errors e1(t), e2(t).
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Figure 7. Time evolution of the controlling strength k1(t), k2(t).
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4.2. The Impact of Fractional Order on the Identification Process

The fractional order αi has a direct effect on the chaotic behavior of the nonlinear dynamical systems.

As a result, it also affects the synchronization behavior of fractional system. Bhalekar et al. observed that

the synchronization error decreases as the order α increases [12,24]. However, the opposite phenomenon

is also observed in [25]. In this section, a more visible method is used to examine its impact on the

fractional order neural networks with unknown parameters and time delays.

In order to numerically examine and avoid the linear dependence of the related functions [12,26],

we let α1 = 0.6, α2 = 0.8, α3 = 0.99. All of the other settings remain unchanged as stated in

Section 4.1. From Figures 8–10, we can obtain that the small value of the fractional order αi would

be harmful not only for synchronization state, but also for identification of unknown parameters for

fractional neural networks.
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Figure 8. The system errors of different fractional.
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Figure 9. The error norms ‖A− Â‖ of different fractional.
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Figure 10. The error norms ‖B − B̂‖ of different fractional.
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5. Conclusions

In this paper, the identification of parameters and synchronization of fractional-order neural networks

with time delays were studied. Especially, our designed adaptive controllers for network synchronization

are rather simple in form. Moreover, the method discussed in this work can be well applied to other

fractional-order complex networks with time delays.
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