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Abstract: A numerical algorithm to compute the topological entropy of multimodal maps
is proposed. This algorithm results from a closed formula containing the so-called min-max
symbols, which are closely related to the kneading symbols. Furthermore, it simplifies a
previous algorithm, also based on min-max symbols, which was originally proposed for
twice differentiable multimodal maps. The new algorithm has been benchmarked against
the old one with a number of multimodal maps, the results being reported in the paper. The
comparison is favorable to the new algorithm, except in the unimodal case.
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1. Introduction

Let f be a continuous self-map of a compact interval, [a, b] ⊂ R, with a finite number of turning (or
critical) points. Such maps are generically called multimodal. Then, the topological entropy of f [1,2],
h(f), can be calculated (along with other possibilities) with the formula:

h(f) = lim
n→∞

1

n
log `n (1)

where `n is shorthand for the lap number of fn, i.e., the number of maximal monotonicity segments of
fn, the n-th iterate of f [3,4].

In [5] (Section 7), a numerical algorithm to compute the topological entropy of multimodal maps
was proposed. Let us point out that this algorithm generalizes and hence includes a previous one for
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unimodal maps published in [6]. The algorithm builds on Equation (1) by calculating `n with the help
of the min-max symbols of f [5–8], a generalization of the kneading symbols [9,10]. The min-max
symbols of a multimodal map not only locate the iterates of its critical values up to the precision set
by the partition defined by its critical points, as the kneading symbols do, but they also display their
minimum/maximum (or “critical”) character. The interesting point is that such an additional information
supposes virtually no extra computational cost. Indeed, it can be read recursively from a look-up table
once the min-max symbols of the critical values are known.

In this paper, we propose a related algorithm, which actually approximates the value of h(f) given
by a closed formula involving also the min-max symbols of f . The new algorithm eliminates a formal
restriction that, as it turns out, unnecessarily marred the applicability of the algorithm of [5]. At the same
time, it simplifies the computation scheme of the latter. We elaborate upon these two points briefly.

With regard to the formal restriction, the theoretical results of [5] refer to twice differentiable
multimodal maps only. However, numerical simulations with piecewise linear maps of constant slope
(and alternating sign) suggested that the algorithm of [5] could be applied as well to just continuous maps.
In this paper, we justify the extension of the results from smooth to just continuous maps. Although the
proof turns out to be straightforward, this generalization was not explored in the previous papers [5,6],
just because these followed the original approach in [7,8], which only considered twice differentiable
maps for simplicity.

As for the simplification of the computation scheme, this has to do with the boundary conditions
(or the lack of them). Indeed, the algorithm of [5] keeps track of the orbits of the boundary points,
thus calculating the exact value of the lap number, `n, in each computation loop. On the contrary, the
new algorithm dispenses with those orbits, because they do not affect the limit in Equation (1). In fact,
Theorem 3 below shows that, as far as the computation of h(f) is concerned, one may assume that f is
boundary-anchored, i.e., f({a, b}) ⊂ {a, b}. The result is a compact expression for the lap number, `n,
that makes possible a closed formula for h(f).

In sum, we fill a theoretical gap in the application of the algorithm in [5] by showing that the
continuity of the maps suffices. Moreover, we abridge the numerical scheme by approximating `n in
Equation (1) with a formula, which is exact only for boundary-anchored maps, but which provides the
correct limit in Equation (1) for h(f).

This paper is organized as follows. To make the paper self-contained, we review in Section 2 all the
basic concepts, especially the concept of min-max sequences, needed in the following sections. Most
importantly, we extend in Theorem 1 the transition rules for min-max symbols from twice differentiable
multimodal maps [5] to just continuous ones. In Section 3, we introduce some instrumental results,
which lead, in Section 4, together with Theorem 3, to a closed formula for h(f) containing the min-max
symbols of f (Theorem 4). A formal proof of Theorem 3 has been shifted to the Appendix in order not
to interrupt the flow of ideas. Section 5 contains the main result of the paper, namely, an algorithm for
the topological entropy of (not necessarily smooth) multimodal maps, which approximates the value of
h(f) given in Theorem 4. As a way of illustration, this algorithm is put to the test in Section 6. First,
the new, abridged algorithm is benchmarked in Sections 6.1 to 6.3 against the full-pledged one [5] using
smooth uni-, bi- and tri-modal maps, respectively, borrowed from [5,6]. Finally, in Section 6.4, we also
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compare both algorithms via piecewise linear, four- and five-modal maps of known topological entropy.
It turns out that, except in the unimodal case, the new algorithm outperforms the old one.

2. Min-Max Sequences

For the reader’s convenience, we use the same notation as in [5] throughout. Let I be a compact
interval, [a, b] ⊂ R, and f : I → I a piecewise monotone continuous map. Such a map is called l-modal
if f has precisely l turning points (i.e., points in (a, b), where f has a local extremum). Sometimes, we
speak also of multimodal maps, in general, or of unimodal maps in the particular case l = 1. Further-
more, assume henceforth that f has local extrema at c1 < ... < cl and is strictly monotone in each of the
l + 1 intervals:

I1 = [a, c1), I2 = (c1, c2), ..., Il = (cl−1, cl), Il+1 = (cl, b]

In this case, we write f ∈ Ml(I). When the interval, I , is clear from the context or unimportant for
the argument, we write justMl.

Since the results we obtain below for the calculation of the topological entropy do not depend on the
shape of f , i.e., on whether f(c1) is a maximum (positive shape) or a minimum (negative shape), we
assume, unless otherwise stated, that f has a positive shape. This implies that f(codd) are maxima,
whereas f(ceven) are minima, where here and hereafter “even” and “odd” stand for even and odd
subindices, respectively. Hence, f is strictly increasing on the intervals Iodd and strictly decreasing
on the intervals Ieven. The points, f(ci), 1 ≤ i ≤ l, are called the critical values of f , although no
differentiability of f at ci is assumed when so doing.

Theorem 1. Let f ∈Ml have a positive shape, and n ≥ 1. Then:

(a) If fn(x) = codd, then fn+1(x) is a maximum. If fn(x) = ceven, then fn+1(x) is a minimum.

(b) If fn(x) is a minimum, then:

fn+1(x) is a

{
minimum if fn(x) ∈ Iodd

maximum if fn(x) ∈ Ieven

(c) If fn(x) is a maximum, then:

fn+1(x) is a

{
maximum if fn(x) ∈ Iodd

minimum if fn(x) ∈ Ieven

Proof. (a) This is a trivial consequence of f having a positive shape.
(b) Suppose that fn(x0) is a minimum with fn(x0) ∈ Iodd. Therefore, there exists a neighborhood

of x0, U(x0), such that fn(x0) ≤ fn(x) for all x ∈ U(x0). Without restriction, we may assume that
U(x0) ⊂ f−n(Iodd). It follows that:

fn+1(x0) = f(fn(x0)) ≤ f(fn(x)) = fn+1(x)

for all x ∈ U(x0), because fn(U(x0)) ⊂ Iodd, an interval where f is increasing. We conclude that
fn+1(x0) is a minimum.
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If fn(x0) ∈ Ieven, then we derive from fn(x0) ≤ fn(x) that fn+1(x0) ≥ fn+1(x) for all x ∈ U(x0),
because this time, fn(U(x0)) ⊂ Ieven, an interval where f is decreasing.

(c) This case follows similarly to (b). �
The itinerary of x ∈ I under f is a symbolic sequence:

i(x) = (i0(x), i1(x), ..., in(x), ...) ∈ {I1, c1, I2, ..., cl, Il+1}N0

(N0 ≡ {0} ∪ N), defined as follows:

in(x) =

{
Ij if fn(x) ∈ Ij (1 ≤ j ≤ l + 1)

ck if fn(x) = ck (1 ≤ k ≤ l)

The itineraries of the critical values,

γi = (γi1, ..., γ
i
n, ...) = i(f(ci)), 1 ≤ i ≤ l

are called the kneading sequences [9,10] of f .

Definition 1 [5–8]. The min-max sequences of an l-modal map f ,

ωi = (ωi1, ω
i
2, ..., ω

i
n, ...), 1 ≤ i ≤ l

are defined as follows:

ωin =

{
mγin if fn(ci) is a minimum
Mγin if fn(ci) is a maximum

where γin are kneading symbols.
Thus, the min-max symbols ωin have an exponential-like notation, where the “base” belongs to the

alphabet, {m,M}, and the “exponent” is a kneading symbol. The extra information of a min-max
symbol, ωin, as compared to a kneading symbol, γin, is contained, therefore, in the base, which tells us
whether fn(ci) is a minimum (m) or a maximum (M ). Theorem 1 shows that once the symbol, ωin, of a
map with a positive shape is known, the symbol, ωin+1, can be read from the table:

ωin → ωin+1

mceven ,M ceven → mγin+1

mcodd ,M codd → Mγin+1

mIodd ,M Ieven → mγin+1

mIeven ,M Iodd → Mγin+1

(2)

Let us mention for completeness that if f ∈ Ml has a negative shape, then the transition rules from
ωin to ωin+1 read:

ωin → ωin+1

mceven ,M ceven → Mγin+1

mcodd ,M codd → mγin+1

mIodd ,M Ieven → Mγin+1

mIeven ,M Iodd → mγin+1

(3)

instead. This follows mutatis mutandis as in the proof of Theorem 1.
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The transition rules in Equations (2) and (3) substantiate our claim in the Introduction that, from
the point of view of the computational cost, min-max sequences and kneading sequences are
virtually equivalent.

Therefore, the kneading symbols of f ∈Ml, along with its initial min-max symbols, i.e.,

ωi1 =

{
Mγi1 if i = 1, 3, ..., 2

⌊
l+1
2

⌋
− 1

mγi1 if i = 2, 4, ..., 2
⌊
l
2

⌋ (4)

and the transition rules (2) allow us to compute the min-max sequences of f in a recursive way. If f has
a negative shape, swap M and m in the initial condition (4) and use the transition rules (3).

A final ingredient (proper of min-max sequences) is the following. Let the i-th critical line, 1 ≤ i ≤ l,
be the line y = ci in the Cartesian product I×I . Min-max symbols split into bad and good symbols with
respect to the i-th critical line. Geometrically, good symbols correspond to local maxima strictly above
the line y = ci or to local minima strictly below the line y = ci. All other min-max symbols are:

Bi = {M I1 ,M c1 , ...,M Ii ,M ci ,mci ,mIi+1 , ...,mcl ,mIl+1}

for the set of bad symbols of f ∈Ml with respect to the i-th critical line. There are 2(l+1) bad symbols
and 2l good symbols with respect to a given critical line.

Bad symbols appear in all results of [5,6] concerning the computation of the topological entropy
of f ∈ Ml via min-max symbols. In this sense, we may say that bad symbols are the hallmark of
this approach.

3. Auxiliary Results

Let siν , 1 ≤ i ≤ l, stand for the number of interior simple zeros of f ν(x) − ci, ν ≥ 0, i.e., solutions
of x − ci = 0 (ν = 0) or solutions of f ν(x) = ci, x ∈ (a, b), with fµ(x) 6= ci for 0 ≤ µ ≤ ν − 1 and
f ν′(x) 6= 0 (ν ≥ 1). Geometrically, siν is the number of transversal intersections on the Cartesian plane
(x, y) of the curve y = f ν(x) and the straight line y = ci, over the interval (a, b). Note that si0 = 1 for
all i.

To streamline the notation, set:

sν =
l∑

i=1

siν (5)

for ν ≥ 0. In particular,

s0 =
l∑

i=1

si0 =
l∑

i=1

1 = l (6)

According to [5] (Equation (31)), the lap number of fn, `n, satisfies:

`n = 1 +
n−1∑
ν=0

sν = `n−1 + sn−1 (7)

for n ≥ 1. In particular, `1 = `0 + s0 = 1 + l.
Furthermore, define:

Ki
ν = {(k, κ), 1 ≤ k ≤ l, 1 ≤ κ ≤ ν : ωkκ ∈ Bi} (8)
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(ν ≥ 1, 1 ≤ i ≤ l), that is, Ki
ν collects the upper and lower indices (k, κ) of the bad symbols with

respect to the i-th critical line in all the initial blocks:

ω1
1, ω

1
2, ..., ω

1
ν ; ω2

1, ω
2
2, ..., ω

2
ν ; ...; ωl1, ω

l
2, ..., ω

l
ν

of the min-max sequences of f . We note for further reference that Ki
ν−1 ⊂ Ki

ν , the set-theoretical
difference being:

Ki
ν\Ki

ν−1 = {(k, ν), 1 ≤ k ≤ l : ωkν ∈ Bi} (9)

Finally, set:
Siν = 2

∑
(k,κ)∈Ki

ν

skν−κ (10)

where Siν = 0 if Ki
ν = ∅ and analogously to Equation (5),

Sν =
l∑

i=1

Siν (11)

We say that f ∈ Ml is boundary-anchored if f{a, b} ⊂ {a, b}. This boundary condition boils
down to:

f(a) = a, and f(b) =

{
a if l is odd
b if l is even

(12)

for multimodal maps with a positive shape, and to:

f(a) = b, and f(b) =

{
b if l is odd
a if l is even

(13)

for multimodal maps with a negative shape. As we will see shortly, boundary-anchored maps have some
advantages when calculating the topological entropy.

Theorem 2. Let f ∈Ml be boundary-anchored. Then:

siν = 1 +
ν−1∑
µ=0

sµ − Siν (14)

Proof. Suppose for the time being that f is twice differentiable on [a, b] without any restriction at the
boundaries. In this case, it was proved in ([5], Theorem 5.3) that:

siν = 1 +
ν−1∑
µ=0

sµ − Siν − αiν − βiν (15)

where αiν ,βiν are binary variables that vanish if f is boundary-anchored. Moreover, Equation (15)
follows from the transition rules in Equation (2) (or (3) if f has a negative shape), which has
been proven to hold true also for continuous multimodal maps in Theorem 1. It follows that
Equation (15) holds for continuous, multimodal maps, as well. In particular, Equation (14) holds for
the boundary-anchored ones. �
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Therefore, the boundary conditions (12) or (13) allow us to express siν with the help of some sk0,
sk1, ..., skν−1, 1 ≤ k ≤ l, via Equations (14) and (10). Sum the Equation (14) over i from one to l to obtain
the compact relation:

sν = l

(
1 +

ν−1∑
µ=0

sµ

)
− Sν (16)

between s0 = l, s1, ..., sν and Sν , for all ν ≥ 1. By Equation (7), this equation can we rewritten as
sν = l`ν − Sν , hence:

`ν =
1

l
(sν + Sν) (17)

4. A Closed Formula for the Topological Entropy of Multimodal Maps

According to [11] (Lemma 4.4), the topological entropy of a multimodal map depends only on the
kneading sequences, i.e., on the itineraries of the critical values, but not on the itineraries of the boundary
points. This entails that one may assume without restriction boundary conditions (12) or (13) when
calculating the topological entropy of l-modal maps with a positive or negative shape, respectively. A
formal justification is given by the following theorem.

Theorem 3. Let f ∈ Ml(I). Then, there exists F ∈ Ml(J), where J ⊃ I , such that h(F ) = h(f) and
F is boundary-anchored.

See [9] (Lemma 7.7) and [11] (proof of Lemma 4.4). For the reader’s convenience, a proof of Theorem
3 is given in the Appendix.

This being the case, Equations (1) and (17) yield the following result.

Theorem 4. Let f ∈Ml. Then,

h(f) = lim
ν→∞

1

ν
log

sν + Sν
l

(18)

= lim
ν→∞

1

ν
log

1

l

l∑
i=1

siν + 2
∑

(k,κ)∈Ki
ν

skν−κ


Equation (18) provides a closed expression for h(f), which includes the min-max symbols of f .

5. A Simplified Algorithm for the Topological Entropy

An offshoot of the preceding section is that, when it comes to calculating the topological entropy of a
multimodal map, one can resort to Equation (18), whether the map is boundary-anchored or not. Loosely
speaking,

h(f) ' 1

ν
log

sν + Sν
l

(19)

for ν large enough.
As a matter of fact, the numerical algorithm below estimates h(f) by 1

ν
log sν+Sν

l
to the desired

precision. The core of the algorithm consists of a loop over ν. Each time the algorithm enters the loop, the
values of sν−1 and Sν−1 are updated to sν and Sν , and the current estimation of h(f) is compared to the
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previous one. Note that the computation of Siν , 1 ≤ i ≤ l, requires si0 = 1, si1, ..., s
i
ν−1, see Equation (10),

while the computation of siν , 1 ≤ i ≤ l, requires si0, s
i
1, ..., s

i
ν−1 and Siν , see Equation (14).

We summarize next the algorithm resulting from Equation (18) in the following scheme (“A −→ B”
stands for “B is computed by means of A”).

(A1) Parameters: l ≥ 1 (number of critical points), ε > 0 (dynamic halt criterion) and nmax ≥ 2

(maximum number of loops).

(A2) Initialization: si0 = 1, and Ki
1 = {k, 1 ≤ k ≤ l : ωk1 ∈ Bi} (1 ≤ i ≤ l).

(A3) First iteration: For 1 ≤ i ≤ l,

si0, K
i
1 −→ Si1, S1 (use Equations (10) and (11))

si0, S
i
1 −→ si1, s1 (use Equations (14) and (16))

(A4) Computation loop. For 1 ≤ i ≤ l and ν ≥ 2, keep calculating Ki
ν , Siν and siν according to

the recursions:

Ki
ν−1 −→ Ki

ν (use Equations (9) and (2))
si0, s

i
1, ..., s

i
ν−1, K

i
ν −→ Siν , Sν (use Equations (10) and (11))

si0, s
i
1, ..., s

i
ν−1, S

i
ν −→ siν , sν (use Equations (14) and (16))

(20)

until (i) ∣∣∣∣1ν log
sν + Sν

l
− 1

ν − 1
log

sν + Sν
l

∣∣∣∣ ≤ ε (21)

or else, (ii) ν = nmax + 1.

(A5) Output. In case (i), output:

h(f) =
1

ν
log

sν + Sν
l

(22)

In case (ii), output “Algorithm failed”.
As said above, Algorithms (A1)–(A5) simplify the original algorithm [5], which formally consists

of the same five steps above, but is based on the exact value of the lap number, `ν . This entails that
the new algorithm needs more loops to output h(f) with the same parameter ε in the halt criterion
shown in Equation (21), although this does not necessarily mean that the overall execution time will be
longer, since now, less computations are required. In fact, we will find both situations in the numerical
simulations of Section 6.

Furthermore, given a halt criterion, ε, the execution time depends, as well, on the units (i.e., on the
base of the logarithm), whichever algorithm is used. For instance, if logarithms to base e are used (i.e.,
h(f) in nats) and ν = nnat is the first time that the halt criterion,∣∣∣∣ln sν + Sν

l
− ln

sν−1 + Sν−1

l

∣∣∣∣ ≤ ε

happens to hold in the computation loop, then:∣∣∣∣log2

snnat + Snnat

l
− log2

snnat−1 + Snnat−1

l

∣∣∣∣ =
1

ln 2

∣∣∣∣ln snnat + Snnat

l
− ln

snnat−1 + Snnat−1

l

∣∣∣∣
≤ ε

ln 2
= 1.4427ε
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Therefore, if the the halt criterion:∣∣∣∣log2

sν + Sν
l

− log2

sν−1 + Sν−1

l

∣∣∣∣ ≤ ε

for the computation of h(f) in bits does not hold when ν = nnat, i.e.,∣∣∣∣ln snnat + Snnat

l
− ln

snnat−1 + Snnat−1

l

∣∣∣∣ > (ln 2)ε = 0.6932ε

then the algorithm will not exit the computation loop. We conclude that nbit ≥ nnat with both algorithms,
where nbit is the exit loop when logarithms to base 2 are employed.

Two final remarks:

R1. The parameter ε does not bound the error
∣∣h(f)− 1

ν
log sν+Sν

l

∣∣, but the difference between
two consecutive estimations; see Equation (21). The number of exact decimal positions of h(f)

can be found out by taking different ε’s, as we will see in the next section. Equivalently, one can
control how successive decimal positions of 1

ν
log sν+Sν

l
stabilize with growing ν. Moreover, the

smaller h(f), the smaller ε has to be chosen to achieve a given approximation precision.

R2. According to [4] (Theorem 4.2.4), 1
ν

log `ν ≥ h(f) for any ν. We may expect, therefore, that the
numerical approximations (22) converge from above to the true value of the topological entropy
with ever more iterations, in spite of the relation `ν = 1

l
(sν +Sν) holding in general for boundary-

anchored maps only.

6. Numerical Simulations

In this section, we compute the topological entropy of a variety of multimodal maps. To this end, a
code for arbitrary l was written with PYTHON and run on an Intel(R) Core(TM)2 Duo CPU. All the
numerical results will be given with six decimal positions for brevity.

Thus, in Section 6.1 to 6.3, we calculate the entropy of families of uni-, bi- and tri-modal maps,
respectively, taken from [6] (unimodal case) and [5] (general case). Except for particular values of the
parameters, these maps are not boundary-anchored. The purpose of our choice is to compare our entropy
plots with the plots published in those references. To complete the picture, we will consider non-smooth
maps in Section 6.4. The natural choices are piecewise linear maps of a constant slope, because, in
this case, the exact value of the topological entropy is known. In all sections, we are going to compare
numerically the performance of the algorithm presented in Section 5 with the general algorithm presented
in [5] (Section 7) by means of single maps. For brevity, we shall refer to them as the new algorithm and
the old one, respectively.

As for the units, the nat is the usual choice in applied mathematics and physics, while the bit is the
standard unit in information theory and communication technologies. In the following subsections, we
are actually going to use both of them despite the fact that, as shown in Section 5, computations with
Napierian logarithms are faster, to a given precision. To be specific, we use bits in Sections 6.2 and 6.3
for the sake of comparison with the results published in [5], which are given in that unit.
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6.1. Simulation with One-Modal Maps

Let α > 0, −1 < β ≤ 0 and fα,β : [−(1 + β), (1 + β)] → [−(1 + β), (1 + β)] be defined as ([6],
Equation (29)):

fα,β(x) = e−α
2x2 + β

These maps have the peculiarity of showing direct and reverse period-doubling bifurcations when the
parameters are monotonically changed (see Figure 3a in [6]).

Figure 1 shows the plot of h(f2.8,β) vs. β calculated with the algorithm of Section 7. Here, ε = 10−4,
and the parameter, β, was increased in steps of ∆β = 0.001 from β = −0.999 to β = 0. Upon
comparing Figure 1 with Figure 3b of [6], we see that both plots coincide visually, except for the two
vanishing entropy tails. We conclude that ε = 10−4 is not small enough to obtain reliable estimations of
the topological entropy for vanishing values of h(f2.8,β). This fact can also be ascertained numerically
by taking different values of ε, as we do in the table below.

Figure 1. Plot of h(f2.8,β) in nats vs. β, −1 < β ≤ 0 (ε = 10−4,∆β = 0.001).

−1.0 −0.8 −0.6 −0.4 −0.2 0.0
β

0.0

0.1

0.2

0.3

0.4

0.5

h
(f

2.
8,
β
)

To compare the convergence speed and execution time of the old and the new algorithm, we have
computed h(f2.8,−0.5) with both algorithms for different ε’s. The number of loops, n, needed to achieve
the halt condition ε = 10−d, 4 ≤ d ≤ 7, and the execution time, t (in seconds), are listed in Table 1.
The columns, hold, nold and told, were obtained with the old algorithm, while the columns, hnew, nnew
and tnew, were obtained with the new one. For ε = 10−4, it exceptionally holds told > tnew; otherwise
told < tnew. Furthermore, we conclude from Table 1 that h(f) = 0.52... nats with either algorithm and
ε = 10−6, both decimal digits being exact. If ε = 10−7, the old algorithm fixes the third decimal digit,
h(f) = 0.524... nats, whereas the new algorithm does not.
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Table 1. Comparison of performances when computing h(f2.8,−0.5) in nats.

hold nold told hnew nnew tnew

ε = 10−4 0.531968 81 0.031076 0.534106 101 0.021248
ε = 10−5 0.526645 253 0.179558 0.527305 318 0.193149
ε = 10−6 0.524935 797 1.684213 0.525142 1,004 1.912784
ε = 10−7 0.524391 2,519 16.369158 0.524456 3,174 18.900032

Figure 2 depicts the values of h(fα,β) for 2 ≤ α ≤ 3, −1 < β ≤ 0, ε = 10−4 and ∆α,∆β = 0.01.

Figure 2. Level sets of h(fα,β) in nats vs. α, β, 2 ≤ α ≤ 3 and −1 < β ≤ 0

(ε = 10−4,∆α = ∆β = 0.01).
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6.2. Simulation with Two-Modal Maps

Let 0 ≤ v2 < v1 ≤ 1 and fv1,v2 : [0, 1]→ [0, 1] be defined as ([5], Section 8.1):

fv1,v2(x) = (v1 − v2)(16x3 − 24x2 + 9x) + v2

These maps have convenient properties for numerical simulations, as they share the same fixed
critical points,

c1 = 1/4, c2 = 3/4

the critical values are precisely the parameters,

fv1,v2(1/4) = v1, fv1,v2(3/4) = v2

and the values of f at the endpoints are explicitly given by the parameters as follows:

fv1,v2(0) = v2, fv1,v2(1) = v1
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Figure 3 shows the plot of h(f1,v2) vs. v2, 0 ≤ v2 < 1, computed with the new algorithm,
ε = 10−4, and ∆v2 = 0.001. Again, this plot coincides visually with the same plot computed with the old
algorithm [5] (Figure 4), except for the vanishing entropy tail, which indicates that ε = 10−4 is too large
a value for obtaining accurate estimates in that parametric region.

Figure 3. Plot of h(f1,v2) in bits vs. v2, 0 ≤ v2 ≤ 1 (ε = 10−4,∆v2 = 0.001).
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Table 2 displays the performance of the new algorithm as compared to the old one when computing
h(f0.9,0.1). This time, told > tnew for ε = 10−d, 4 ≤ d ≤ 7 (as in Table 1). Furthermore, we obtain
two correct decimal digits of the topological entropy, h(f0.9,0.1) = 0.60... bits, with both algorithms and
ε = 10−6.

Table 2. Comparison of performances when computing h(f0.9,0.1) in bits.

hold nold told hnew nnew tnew

ε = 10−4 0.619682 195 0.286922 0.622100 218 0.253133
ε = 10−5 0.606568 613 2.665108 0.607310 688 2.485049
ε = 10−6 0.602385 1938 26.238006 0.602622 2173 24.890648
ε = 10−7 0.601062 6125 271.074381 0.601137 6871 265.198039

Figure 4 depicts the values of h(fv1,v2) for 0 ≤ v2 ≤ v1 − 0.5, ε = 10−4, and ∆v1,∆v2 = 0.01.
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Figure 4. Level sets of h(fv1,v2) in bits vs. v1, v2, 0 ≤ v2 ≤ v1 − 0.5 (ε = 10−4,

∆v1 = ∆v2 = 0.01).
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6.3. Simulation with Three-Modal Maps

Consider next the three-modal maps, fv2,v3 : [0, 1] → [0, 1], defined by the quartic polynomials [5]
(Section 8.2):

fv2,v3(x) =
4
[(

2
√

2− 1
)
v2 − 2v3

]
x

2(2
√

2 + 1)v3 − 7v2

[
4
(

1 + 2
√

2
)

(x− 1)(1− 2x)2v3

+
(
−56x3 + 20

(
4 +
√

2
)
x2 −

(
37 + 18

√
2
)
x+ 3

√
2 + 5

)
v2

]
where 0 ≤ v2 < v3 ≤ 1. The critical points of fv2,v3 are:

c1 =
−
√

2v2 − 4v2 + 12
√

2v3 − 8v3

8
(
−7v2 + 4

√
2v3 + 2v3

) , c2 = 1/2, c3 =
1

4
(2 +

√
2)

Moreover, this family verifies fv2,v3(0) = 0, fv2,v3(c2) = v2, f(c3) = v3 and:

fv2,v3(1) =
4
(
5
√

2− 8
)
v2

((
2
√

2− 1
)
v2 − 2v3

)
−7v2 + 4

√
2v3 + 2v3

Figure 5 shows the plot of h(fv2,1) vs. v2, 0 ≤ v2 < 1, computed with the new algorithm, ε = 10−4,
and ∆v2 = 0.001. Once more, this plot coincides visually with the same plot computed with the old
algorithm (see Figure 7 (left) in [5]), except for the vanishing entropy tail, which again indicates that
ε = 10−4 is too large a value for obtaining accurate estimates in that parametric region.

Table 3 displays the performance of the new algorithm as compared to the old one when computing
h(f0.7,1). Furthermore, this time, told > tnew for ε = 10−d, 4 ≤ d ≤ 7 (as in Tables 1 and 2).
Furthermore, we obtain two correct decimal digits of the topological entropy, h(f0.7,1) = 0.69... bits,
with both algorithms and ε = 10−6.

Figure 6 depicts the values of h(fv2,v3) for v2 + 0.3 ≤ v3 ≤ 1, ε = 10−4 and ∆v2,∆v3 = 0.01.
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Figure 5. Plot of h(fv2,1) in bits vs. v2, 0 ≤ v2 < 1 (ε = 10−4,∆v2 = 0.001).
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Table 3. Comparison of performances when computing h(f0.7,1) in bits.

hold nold told hnew nnew tnew

ε = 10−4 0.710321 162 0.422875 0.711709 177 0.351586
ε = 10−5 0.699339 511 4.028703 0.699793 557 3.448455
ε = 10−6 0.695855 1,615 39.882275 0.696000 1,759 34.853025
ε = 10−7 0.694752 5,105 417.489291 0.694798 5,561 368.900286

Figure 6. Level sets of h(fv2,v3) in bits vs. v2, v3, v2 + 0.3 ≤ v3 ≤ 1 (ε = 10−4,

∆v1 = ∆v2 = 0.01).
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6.4. Simulation with Higher Multimodal Maps

Last, but not least, we are going to compare the performances of the old and new algorithms with the
four- and five-modal maps of Figure 7. These are piecewise linear maps on [0, 1], with constant slope
s = ±1.5, critical points:

c1 = 3
10
, c2 = 23

60
, c3 = 7

15
, c4 = 11

20

and critical values:
f(c1) = f(c3) = 0.450, f(c2) = f(c4) = 0.325

in the l = 4 case, while:

c1 = 0.3, c2 = 0.4, c3 = 0.5, c4 = 0.6, c5 = 0.7

and:
f(c1) = f(c3) = f(c5) = 0.45, f(c2) = f(c4) = 0.30

in the l = 5 case. By [4] (Corollary 4.3.13),

h(f) = max{0, ln |s|} = ln 1.5 = 0.40547 nats

in both cases. At variance with the previous examples in Sections 6.1 to 6.3, these two maps are non-
smooth and boundary anchored.

Figure 7. A piecewise linear four-modal map (left) and five-modal map (right) with constant
slope s = ±1.5.
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Table 4 summarizes the computational performance of both algorithms with the four-modal map.
As happened with the two- and three-modal maps (Tables 2 and 3), the new algorithm needs more
computation loops, but less execution time than the old one for all ε = 10−d, 4 ≤ d ≤ 7.

Table 4. Comparison of performances when computing h(f) in nats with the four-modal
map of Figure 7 (left).

hold nold told hnew nnew tnew

ε = 10−4 0.421218 160 0.697776 0.422215 169 0.576800
ε = 10−5 0.410476 503 6.583444 0.410776 533 5.747668
ε = 10−6 0.407051 1,589 65.236068 0.407147 1,683 57.951979
ε = 10−7 0.405967 5,021 678.706894 0.405997 5,321 616.59469
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Likewise, Table 5 summarizes the computational performance of both algorithms with the five-modal
map. It is worth noting that now, both algorithms need the same number of loops for all halt criteria ε,
and yet, the new algorithm is faster.

Table 5. Comparison of performances when computing h(f) in nats with the five-modal
map of Figure 7 (right).

hold nold told hnew nnew tnew

ε = 10−4 0.420542 152 0.848166 0.420542 152 0.644305
ε = 10−5 0.410239 480 8.231152 0.410239 480 6.501711
ε = 10−6 0.406978 1,515 81.429872 0.406978 1,515 65.307619
ε = 10−7 0.405944 4,788 864.376277 0.405944 4,788 695.24749

As in the preceding simulations, we conclude from Tables 4 and 5 that both algorithms determine
two correct decimal positions of the topological entropy of the corresponding map, h(f) = 0.40... nats.
However, this time, the halt criterion ε = 10−6 does not suffice; here, one has to set ε = 10−7 to achieve
the same precision.

A concluding observation. As anticipated in remark R2 of Section 5 and illustrated in
Tables 1–5, the values of hnew converge from above with ever more computation loops (or smaller values
of the parameter, ε). This property follows for hold from ([4] (Theorem 4.2.4).

7. Conclusions

The main contributions of this paper are the following.
(i) In Theorem 1, we proved that the transition rules for min-max symbols in Equations (2)

and (3), which were derived in [5] for twice differentiable multimodal maps, actually hold true for just
continuous ones.

(ii) As a result of Theorem 1, we conclude that the validity of formula (15), which was proved
in ([5], Theorem 5.3) for twice differentiable multimodal maps, can be extended to continuous maps.
For subsequent applications, only the particularization of Equation (15) to boundary-anchored maps
(Theorem 2) is needed.

(iii) The results reviewed and proved in Sections 2 and 3 lead to closed formula (18) for the topological
entropy of multimodal maps. Previously, we proved in Theorem 3 that, although `n clearly depends on
the boundary conditions, the limit h(f) = limn→∞

1
n

log `n does not.
(iv) The numerical algorithm proposed in Section 5 for the computation of h(f) amounts to a recursive

scheme to approximate the limit in closed formula (18).
This algorithm is a simplification and, at the same time, a generalization of the recursion scheme

proposed in [5] for h(f). Indeed, it is a simplification, because Equation (15) was used in [5] to compute
the lap number, `ν , while the abridged expression in Equation (14) is used here. In other words, the new
algorithm does not track the orbits of the endpoints. Additionally, it is also a generalization, because
we proved in Theorem 2 that Equation (14) (and Equation (15) for that matter) holds not only for twice
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differentiable maps (as assumed in [5], (Theorem 5.3)) but also for just continuous ones. By the way,
this point was numerically checked in Section 6.4.

The performances of both algorithms, old and new, were compared in Section 6.1 to 6.4 using smooth
and non-smooth l-modal maps with 1 ≤ l ≤ 5. In view of the results summarized in Tables 1 to 5, the old
algorithm performs better in the unimodal case, while the opposite occurs in the other multimodal cases.
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Appendix

Let g : X → X be a continuous map of a compact Hausdorff space, X , into itself. A point, x ∈ X , is
non-wandering with respect to the map, g, if for any neighborhood, U , of x, there is an n ≥ 1 (possibly
depending on x), such that fn(U) ∩ U 6= ∅. Fixed and periodic points are examples of non-wandering
points. The closed set of all non-wandering points of g is called its non-wandering set and denoted by
Ω(g). According to ([4], Lemma 4.1.5),

h(g) = h(g|Ω(g)) (A1)

Furthermore, if:

X =
k⋃
i=1

Yi

and all Yi are closed and g-invariant (i.e., g(Yi) ⊂ Yi), then ([4], Lemma 4.1.10),

h(g) = max
1≤i≤k

h(g|Yi) (A2)

To prove Theorem 3, suppose that f is an l-modal self-map of the compact interval, I , with a positive
shape (the proof for maps with a negative shape is analogous).

Set I = [a, b], and J = [a′, b′] with a′ ≤ a < b ≤ b′. If f(a) = a, choose a′ = a; if f(b) = a (l odd)
or f(b) = b (l even), choose b′ = b. For definiteness, we suppose the most general situation, namely,
a′ < a and b < b′. Let F : J → J be such that: (i) F is strictly increasing on [a′, a]; (ii) F |[a,b] = f ; and
(iii) F is strictly decreasing (l odd) or strictly increasing (l even) on [b, b′]. In particular, F may be taken
as piecewise linear on [a′, a] ∪ [b, b′]. Thus, F ∈Ml(J) has the same critical points and values as f , the
same shape and is boundary-anchored. Note that the shape enters in how f is extended to F .

Moreover, it is easy to check that Ω(F ) = Ω(f) ∪ C, where C is a closed and F -invariant set that
only contains fixed points. Thus, h(F |C) = 0 and, according to Equations (A1) and (A2),

h(F ) = h(F |Ω(F )) = max{h(F |Ω(f)), h(F |C)} = h(F |Ω(f)) = h(f |Ω(f)) = h(f) �
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5. Amigó, J.M.; Dilão, R.; Giménez, A. Computing the topological entropy of multimodal maps via

min-max sequences. Entropy 2012, 14, 742–768.
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