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Abstract: The paper presents a framework for autonomous search for a diffusive emitting
source of a tracer (e.g., aerosol, gas) in an environment with an unknown map of randomly
placed and shaped obstacles. The measurements of the tracer concentration are sporadic,
noisy and without directional information. The search domain is discretised and modelled
by a finite two-dimensional lattice. The links in the lattice represent the traversable paths for
emitted particles and for the searcher. A missing link in the lattice indicates a blocked path
due to an obstacle. The searcher must simultaneously estimate the source parameters, the
map of the search domain and its own location within the map. The solution is formulated in
the sequential Bayesian framework and implemented as a Rao-Blackwellised particle filter
with entropy-reduction motion control. The numerical results demonstrate the concept and
its performance.
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1. Introduction

The search for an emitting source of particles, chemicals, odour or radiation, based on sporadic clues
or intermittent measurements, has attracted a great deal of interest lately. In the biological context, the
search is studied to understand animal behaviour in the search for food or mates [1–3], to model the
biochemical reactions in cells (the search for specific DNA sequences by transcription factors [2,4],
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genetic-based therapy [5]) and to simulate intracellular transport (viral trafficking in a microtubule
network [6,7]).

Industrial applications mainly focus on rescue operations with the goal of localising hazardous
pollutants, such as chemical leaks [8–10] or radioactive sources [11–13]. The search strategies can
be broadly divided into two categories. The first includes conventional methods, which are guided by
the positive concentration gradient (“chemotaxis”) [14] and its variants [15]. Vergassola et al. [16]
formulated another search strategy (referred to as “infotaxis”), which is driven by the information gain
or entropy-reduction (for a comprehensive review, see [17]).Information-gain guided searchhas been
successfully applied in the context of finding a weak source in a turbulent flow (e.g., drug or leak emitting
chemicals [16,17])and localising radioactive point sources [12,13].The crucial advantage of “infotaxis”
versus “chemotaxis” is that the former can be used even when the estimation of concentration gradient
is infeasible, which is always the case in the presence of sporadic or intermittent measurements.

While all works referenced above deal with search in an open domain (without obstacles) or assuming
that a precise map of the search domain (with obstacles) is a priori available, in this paper, we focus
on autonomous search for a diffusive emitting source in a domain with randomly placed and shaped
obstacles (forbidden areas), whose structure (the map) is unknown. The problem is of importance, for
example, in the localisation of dangerous leaks in collapsed buildings, inside tunnels or mines. The
searcher senses in a probabilistic manner both the structure of the search domain (e.g., the presence
or absence of obstacles, walls, blocked passages) and the level of concentration of tracer particles.
The objective of the search is to navigate through the unknown environment for the purpose of source
localisation in the shortest possible time. Once the source is localised, the coordinates of the source
relative to its starting position (or the path to the source) need to be reported.

This is not a trivial task for several reasons. First, the measurements of the tracer particle concentration
are sporadic, noisy and without directional information. Furthermore, the emission rate of the source
is typically unknown (hence, the concentration measurement cannot easily be related to the distance
between the source and the searcher). Finally, the searcher needs to explore the domain, create its
partial map (which must include the starting point and the source) and localise itself relative to this
map. This partial map is important, for example, in order to guide the rescue team to the source or
to help the searcher retreat to its starting position (simple obstacle avoidance methods clearly would
be insufficient for this purpose). Among the search schemes that are intended to deal with the sporadic
measurements and that directly address the balance between exploitation of the information accumulated
during the search and exploration of the environment, “infotaxis” is the most efficient, exhibiting the
lowest average search time and the highest reliability in source reaching [18]. For this reason, we adopt
an information-driven search strategy in the paper.

The searcher operates in a fully autonomous manner: it senses the environment (the concentration of
a tracer; the position of obstacles) and after processing the sensor data (which is inherently uncertain,
due to the noise in perception and actuation), it subsequently makes a decision on where to move next
in order to collect new measurements. Its motion control is not noise-free, as it may occasionally fail
to execute correctly. Hence, the searcher unknowingly may move to a position different from intended.
The probabilistic models of searcher motion and sensor measurements is assumed to be known.
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In the paper, we consider a two-dimensional search domain. The coordinates of the initial position of
the searcher, as well as the border of the search area (relative to the initial position) are given as input
parameters. In order to fulfil its mission (i.e., find the source and report its coordinates relative to its
starting position), the searcher must carry out simultaneous estimation at three levels: (1) estimation of
source parameters (its location in 2D and its release rate); (2) estimation of the map of the search area;
and (3) estimation of the searcher position within the estimated map. Estimation at levels (2) and (3) has
been studied extensively in robotics under the term grid-based simultaneous localisation and mapping
(SLAM) [19]. The primary mission in all SLAM publications is an accurate mapping of the area. The
primary mission of our searcher, however, is to localise the source, while SLAM is only a necessary
component of the solution.

The search domain is discretised, as, for example, in [8], and modelled by a finite two-dimensional
lattice. With a sufficiently fine resolution of the lattice, the emitting source can be considered to be in
one of the nodes of the lattice. The links (edges) of the lattice represent the traversable paths for emitted
particles (tracer) and for the searcher. Missing links in the lattice indicate blocked paths due to walls or
obstacles. This is a very general model applicable to searches at various scales, from inside buildings
and tunnels, to within cells of living organisms [2]. The percentage of missing links in the lattice is
assumed to be above the percolation threshold pc (for the adopted lattice structure pc = 1/2 [20,21]), so
that long-range connectivity is satisfied [20]. Using the absorbing Markov chains technique [22], we can
compute exactly the mean concentration level in any node of the lattice, that is, at any point of the search
domain with obstacles.

Since the structure (map) of the search domain is unknown, the searcher must rely on a theoretical
model of concentration measurement, which is independent of the map. An approximation of such a
model is derived in an analytic form using conformal mapping [23].

The only related work that deals with autonomous search in an unknown structured environment
is [24]. While [24] presents a plethora of interesting experimental results, the algorithms are based on
heuristics. The contribution of our paper is a theoretically sound framework for autonomous search
for a diffusive source in an unknown environment. The mathematical models of tracer distribution (for
known and unknown maps), as well as the models of measurements and motion dynamics, are derived or
precisely specified. Estimation of source parameters, the map and the searcher location within the map
is carried out in the optimal sequential Bayesian framework, implemented using a Rao-Blackwellised
particle filter. Finally, the searcher motion is driven by the maximisation of the information gain
(i.e., entropy reduction), which, on average, results in the shortest average search time.

The paper is organised as follows. Mathematical models of tracer distribution, measurements and
searcher motion are described in Section 2. The autonomous search problem is formulated and its
conceptual solution provided in Section 3. Full technical details of the proposed search algorithm are
presented in Section 4, with numerical results given in Section 5. Finally, conclusions of this study are
summarised in Section 6.
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2. Modelling

2.1. Model of the Environment

The concentration of a tracer at any point in the search domain is governed by the diffusive equation,
which, in the steady state, reduces to the Laplace equation [25]:

D0 ∆θ = A0 δ(x−X, y − Y ). (1)

Here,D0 is the diffusion coefficient of tracer in the environment, ∆ is the Laplace operator, θ is the mean
(time-averaged) tracer concentration, δ is the Dirac delta function, A0 is the release-rate of the tracer
source andX, Y are the coordinates of the source in a two-dimensional Cartesian coordinate system. We
remark here that D0 is treated as an aggregated parameter, whose value approximately captures the main
diffusion processes in the system. Depending on the problem context, this may be molecular diffusion,
turbulent diffusion, flow-induced diffusion, confined (compartmented structure) diffusion, etc.

For convenience we adopt a circular search area of radius R0, centred on the origin of the coordinate
system, that is, for every point inside the search area, r =

√
x2 + y2 ≤ R0. Assuming that the tracer

source is undetectable outside the search domain, we can impose the absorbing boundary condition
θ(r = R0) = 0. The traditional approach to the computation of the tracer concentration, θ, at every point
of the search domain is via analytical or numerical solution of Equation (1). This, however, is a non-
trivial task when the search domain is a structure of complex topology (due to obstacles, compartments
walls, random openings, etc.).

We therefore adopt an alternative approach, where the continuous model of the tracer diffusion
process is replaced with a random walk on a square lattice, adopted as a discrete model of the search area.
Discretisation is illustrated in Figure 1 for a search area centred on the origin of the coordinate system,
with the radius R0 = 9. The length of each link (edge, bond) in the lattice determines the resolution of
discretisation and, in this example, is adopted as a unit length. The source, assumed to be located at one
of the nodes of the lattice, is emitting particles that travel through the lattice according to the random
walk model [26].

Figure 1. Search area discretisation: the complete grid, with the length of each link equal to
one. The centre of the search area is in (0, 0); its radius is R0 = 9.
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The obstacles in the search domain (the regions through which the tracer cannot pass) are simply
modelled as missing links (or clusters of missing links) in the square lattice. Figure 2 shows an example
of such a model: this incomplete lattice is obtained by removing fraction p ≈ 0.35 of the links in the
complete lattice shown in Figure 1. Note that all nodes in the incomplete lattice are connected. On
average, this will be the case if the fraction of missing links in the incomplete grid of Figure 2 is below
the percolation threshold, pc; above the percolation threshold (p > pc), the lattice becomes fragmented.
The framework of percolation theory enables the analytical description of statistical properties of such a
lattice [20,21].

Figure 2. A model of the search area with obstacles: the missing links of the complete graph
of Figure 1 represent blocked passages (due to the walls, closed doors, etc.) for moving
particles. This incomplete grid is obtained by removing fraction p ≈ 0.35 of the links from
the complete graph.
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2.2. Model of Tracer Distribution

This section explains how to compute the mean concentration of tracer particles in each node of the
incomplete grid (such as the one shown in Figure 2), which represents a discretised model of the search
area with obstacles.

For a given incomplete grid, the mean concentration can be computed using the absorbing Markov
chain technique [22]. Neglecting the spatial approximation of the search domain (due to discretisation)
and under the assumption that the distribution of particles has reached the steady state, the absorbing
Markov chain provides an exact solution for the quantity of source material at each location.

We can regard the random walk of tracer particles through the incomplete grid (e.g., Figure 2) as a
Markov chain whose states are the nodes of the grid. The Markov chain is specified by the transition
matrix, T; each element of this matrix is the probability of the transition from state si to state sj

(i.e., a particle move from node i to node j): Tij = P{sj|si}. How does one construct T given the
incomplete grid? First note that we distinguish two types of states in this Markov chain: absorbing
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states (corresponding to the nodes on the boundary of the grid) and transient states. For an absorbing
state, si, Tii = 1 and Tij = 0, if j 6= i. Suppose a transient state, si, corresponds to node i in the
incomplete grid, which has connections (links) with nodes j1, . . . , jm, where for a square grid m ≤ 4.
Then, Tij1 = · · · = Tijm = 1/m and Tij = 0 for j /∈ {j1, . . . , jm}.

Suppose there are r absorbing states and t transient states. If we order the states so that the absorbing
states come first (before the transient states), then the transition matrix takes the canonical form:

T =

[
Ir 0

R Q

]
(2)

where In denotes the n× n identity matrix, Q is a t× t matrix that describes the transitions between the
transient states, R is a t × r matrix that describes the transitions from the transient to absorbing states
and 0 is an r × t matrix of zeros. The fundamental matrix of the absorbing Markov chain [22],

F = (It −Q)−1 (3)

represents the probability of being in state sj having started from a transient state, si (before being
absorbed). This matrix hence can be used to compute the mean particle concentration in any node of
the incomplete grid at steady state. Suppose an emitting source is placed at node i, which is not on the
boundary. The source is releasing tracer particles at a constant rate,A0. Then, the expected concentration
of tracer particles in any other node, j, of the incomplete grid (which is not on the boundary) is given by
θj = A0 · Fij . The concentration scales linearly with the release rate, A0, which is a direct consequence
of the linearity of Laplace Equation (1).

Figure 3 shows the mean concentration of tracer particles for the search area modelled by the
incomplete grid of Figure 2, with the source placed at (X, Y ) = (0, 7) and with A0 = 12. Notice
from Figure 3 how the concentration depends on the distance from the source and the structure of the
grid, plotted in Figure 2.

Figure 3. Mean concentration of tracer particles for the search area modelled by the
incomplete lattice of Figure 2 with the source placed at (X, Y ) = (0, 7) with A0 = 12

(darker cells indicate higher concentration).
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2.3. Sensor Models and Motion Model

Two types of measurements are collected by the searcher. Sensor 1 measures the concentration of
tracer particles as a count of particles received during the sampling interval. Assuming the so-called
“dilution” limit (limit of low concentrations), the tracer fluctuations follow the Poisson distribution [16],
that is, a concentration measurement at node j of the grid is a random sample drawn from

n ∼ P(n;λ) =
λn

n!
e−λ (4)

where λ = θj = A0 · Fij . The Poisson distribution mimics the intermittency of concentration
measurements [16].

The searcher sequentially estimates the source parameters without knowing the map of the search
area. Hence, the measurement model based on the mean concentration λ = A0 · Fij cannot be used in
estimation (recall that matrix F is formed using knowledge of the structure of the incomplete lattice).
Assuming that the fraction of missing links in the lattice is smaller than the percolation threshold, pc,
the expected concentration of tracer particles in any node, j, of the incomplete lattice can be computed
approximately using the property of conformal invariance of the Laplace equation (see Appendix 6 for
details). Suppose the source of release rate A0 is placed at a node of the grid, positioned at coordinates
(X, Y ). Then, the mean (time and ensemble averaged) concentration at node j, positioned at (xj, yj),
can be approximated as

〈θ〉j ≈ −
A

2
log(R2) (5)

where A = A0/fc, (fc is a constant, 0 < fc < 1, which depends on the fraction of missing links in the
incomplete grid (see Appendix 6)) and

R2 = R2
0

(xj −X)2 + (yj − Y )2

(xjY − yjX)2 + (R2
0 − xjX − yjY )2

. (6)

Note that this model is independent of the structure of the incomplete lattice. In summary, estimation will
be carried out using Sensor 1 measurement model in Equation (4), where mean λ = 〈θ〉j is approximated
by Equations (5) and (6). The actual concentration measurements also follow the model in Equation (4),
but with λ = θj = A0 · Fij . This is how we simulate measurements in Section 5.

The searcher moves and explores the search domain in order to find the source. The source parameter
estimation is carried out using the map-independent measurement model in Equation (5), which does
not require discretisation of the search domain on a square lattice (as in Figure 1). Nevertheless, we
keep discretisation for the searcher in order to model its motion paths and to facilitate its grid-based
SLAM functionality. Thus, we assume that the searcher travels within the search area along the paths
represented by the links of the incomplete grid as in Figure 2. As it travels, it stops at the nodes along its
path to sense the environment, i.e., to collect measurements.

Sensor 2 is a simple binary detector of the presence or absence of the links (paths) visible from the
node in which the searcher is currently placed. It reports on the presence/absence of the primary and
secondary neighbouring links.

A link in a grid of Figure 2 is defined by a quadruple (x1, y1, x2, y2), where (x1, y1) and (x2, y2) are
the coordinates of the nodes it connects. In order to explain what we mean by primary and secondary
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links, consider for example the node at location (−3,−4) indicated by “o” in Figure 2; the zoomed-in
segment is shown in Figure 4. The primary links from this node are the connecting links towards east,
west, up and down from (−3,−4), plotted in red in Figure 4; for example, `1 = (−3,−4,−2,−4). The
status of a link, `, denoted m(`), is a binary variable with the convention that m(`) = 1 means that the
link ` exists. According to Figures 2 and 4, we have: m(`1) = 1, m(`2) = 1, m(`3) = 0, m(`4) = 1.
Existing links are shown by solid lines in Figure 4, while non-existing links are plotted as dotted lines.

The secondary links from the node at (−3,−4) in Figure 2 represent second neighbouring links
in direction of east, west, up and down from (−3,−4), that is, `5 = (−2,−4,−1,−4), and so on.
According to Figures 2 and 4, the status of secondary links is: m(`5) = 1, m(`6) = 0, m(`7) = 0,
m(`8) = 1; existing secondary links are indicated by solid green lines in Figure 4. A secondary link is
observable if the connecting primary link to it exists in the graph. In Figures 2 and 4, for example, `5, `6
and `8 are observable, but `7 is not, because m(`3) = 0.

Figure 4. Primary and secondary links from the node at (−3,−4) (zoomed-in segment of
Figure 2): primary links `1, `2, `3, `4 are in red; secondary links `5, `6, `7, `8 are in green;
existing links are indicated by solid lines; non-existing links by dotted lines
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Let an observation (supplied by sensor 2) about the presence or absence of a link, `, be a binary value
z(`) ∈ {0, 1}, where z(`) = 0 means link ` is absent and z(`) = 1 is the opposite. The performance of
sensor 2 can be described by two detection matrices, one for the primary links, the other for observable
secondary links. Each detection matrix, Π, has a form

Π =

[
P (z = 0|m = 0) P (z = 0|m = 1)

P (z = 1|m = 0) P (z = 1|m = 1)

]
(7)

where P (z = 1|m = 1) = pd and P (z = 1|m = 0) = pfa are the probability of correct detection and
the probability of false detection pfa, respectively. The columns of matrix Π add up to one, and, hence,
Equation (7) can be written as
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Π =

[
1− pfa 1− pd
pfa pd

]
. (8)

Suppose the searcher is in node i at discrete time k − 1. Let the set of admissible controls vectors for
the next move be defined as Uk = {·,→,←, ↑, ↓}, meaning that the searcher can stay where it is, or move
one unit length to the right, to the left, up or down. After processing measurements from its sensors, the
searcher decides to choose control u∗k ∈ Uk and, hence, to arrive at time k at node j. However, due to
control noise or unmodelled exogenous effects [19], control u∗k ∈ Uk is executed correctly only with
probability 1− pe; with probability pe, the searcher will actually execute control u′k ∈ Uk \ {u∗k}.

3. The Problem and Its Conceptual Solution

The searcher has at its disposal the probabilistic models of sensor measurements and dynamic models.
Prior knowledge also includes: (1) the coordinates of its initial position; (2) the length of each link in
the square lattice; and (3) the boundary of the circular search area (defined by its centre and radius). The
described prior translates into knowledge of the full grid, such as the one shown in Figure 1. Searcher
motion is restricted to this full grid.

The objective of the searcher is to estimate in the shortest possible time the coordinates of the emitting
source, as well as the partial map describing the path from its starting (entry) point to the estimated
location of the source.

3.1. Sequential Bayesian Estimation

The described problem can be cast in the sequential Bayesian estimation framework as a nonlinear
filtering problem. Let us first define the state vector, which consists of three parts:

(1) The coordinates of the searcher position at discrete time k = 1, 2, . . . are denoted by pk =

[xk yk]
ᵀ.

(2) The status (presence/absence) of each link in the complete grid (such as the one shown in Figure 1).
The status of link `j , where j = 1, . . . , L and L is the total number of links in the complete grid, is
m(`j) = mj ∈ {0, 1}. The notation P (mj = 1) refers to the probability that link `j is present. The
map at time k is fully specified by vector mk = [m1,k, . . . ,mL,k]

ᵀ. The time index is introduced,
because we allow the map of the search area to occasionally change, e.g., an open door can close.
The assumption is that the statuses of links are mutually independent, i.e., mj,k is independent
from mi,k for i 6= j.

(3) The parameter vector of the source is denoted by s = [X Y A]ᵀ.

The complete state vector is then defined as yk = [pᵀ
k mᵀ

k sᵀ]ᵀ, where pk and mk are discrete
state variables, while s is a continuous state vector. Dynamics of the state, yk, are described by two
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transitional densities: p(mk|mk−1) specifies the evolution of the map over time, while p(pk|pk−1,uk)
characterises the searcher motion model. The observation models of the searcher are specified by two
likelihood functions: g1(nk|pk,mk, s) characterises sensor 1, which provides the count of particles nk at
position pk coming from the source in state s through the map mk; g2(zk|pk,mk) refers to sensor 2 and
describes the observation zk of the status of the links in mk visible from the searcher in location pk. Let
us denote observations at time k by a vector ζk = [nk z

ᵀ
k]

ᵀ. Finally, the prior probability density function
(pdf) of the state is denoted by p(y0).

The goal in the sequential Bayesian framework is to estimate any subset or property of the sequence
of states y0:k := (y0, . . . ,yk) given observation sequence ζ1:k := (ζ1, . . . , ζk) and the control sequence
u1:k := (u1, . . . ,uk), which is completely specified by the joint posterior distribution p(y0:k|ζ1:k,u1:k).
This posterior satisfies the following recursion:

p(y0:k|ζ1:k,u1:k) =
g(ζk|yk) p(yk|yk−1,uk)

p(ζk|ζ1:k−1)
p(y0:k−1|ζ1:k−1,u1:k−1) (9)

where
p(yk|yk−1,uk) = p(mk|mk−1) p(pk|pk−1,uk) (10)

is the transitional density, and

g(ζk|yk) = g1(nk|pk,mk, s) g2(zk|pk,mk) (11)

is the measurement likelihood function.
Recursion in Equation (9) involves intractable integrals in the denominator. In order to solve it, we

adopt a numerical approximation based on the sequential Monte Carlo method [27]. Before going into
details, notice that factorization expressed by Equations (10) and (11) imposes a structure, which can be
conveniently represented by a dynamic Bayesian network (DBN) [28] shown in Figure 5. The circles
in Figure 5 represent random variables: white circles are hidden variables; gray circles are observed
variables. Arrows indicate dependencies. Arrows that are plotted by dashed lines are explained next.

The particle count measurement, nk, depends on the map, mk; hence, its likelihood is formulated as
g1(nk|pk,mk, s). The searcher, however, does not know the map (it estimates it only partially as it travels
through the search area), and hence, we have introduced the approximate measurement model expressed
by Equations (4)–(6). The searcher will therefore process count observations, nk, using the likelihood
function, which is independent of mk and denoted by g̃1(nk|pk, s), rather than g1(nk|pk,mk, s). We
indicate this fact by drawing the arrow from mk to nk in Figure 5 by a dashed line.

The computation of the posterior pdf for a structured complex system, such as the one shown in
Figure 5, can be factorised and consequently made computationally and statistically more efficient.
Technical details will be given in Section 4.
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Figure 5. The dynamic Bayesian network representing the dependency between the
random variables, which feature in the described inference problem (gray circles are
observed variables).
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3.2. Information Driven Motion Control

After processing the measurements received at time k − 1, the searcher needs to select the next
control vector, uk, which will change its position to pk ∼ p(pk|pk−1,uk). The problem of selecting
uk can be formulated as a partially-observed Markov decision process [29], whose elements are: (1) the
set of admissible control vectors Uk; (2) the current information state, expressed by the predicted pdf
p(yk|ζ1:k−1,u1:k−1,uk), where uk ∈ Uk; and (3) the reward function associated with each control uk ∈
Uk. In the paper, we adopt motion control based on a single step ahead strategy; this myopic approach
is suboptimal in the presence of randomly missing links, but is computationally easier to implement and
faster to run. The control vector is then selected as

uk = arg max
v∈Uk

E{D(v, p(yk|ζ1:k−1,u1:k−1,v), ζk(v))} (12)

where D(u, p, ζ) is the reward function. Note that the reward depends on future measurement ζk =

[nk zᵀk]
ᵀ, which would be acquired after control u ∈ Uk had been applied. Since the decision has to be

made before the actual control is applied, the expectation, E, is taken in Equation (12) with respect to
the prior measurements pdf.

Considering that the primary mission of the search is source localisation (map estimation is of
secondary importance), the reward function at time k is adopted as the information gain between:
(1) the predicted pdf over the state subspace (s,pk) and (2) the updated pdf over (s,pk), using the count
measurement nk. The two distributions are denoted π0(s,pk|uk) = p(s|n1:k−1,u1:k)p(pk|pk−1,uk) and
π1(s,pk|nk,uk) = ξ g̃1(nk|pk, s)π0(s,pk|uk), respectively, where ξ is a normalisation constant. The
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information gain between the two distributions is measured using a special case of Rényi divergence,
known as the Bhattacharyya distance [30]:

D(uk) = −2 log

∫ √
π1(s,pk|nk,uk) · π0(s,pk|uk) ds dpk (13)

where we dropped unnecessary arguments in notation for D.

4. The Search Algorithm

The proposed search algorithm, formulated as a DBN with observer control, can be implemented
efficiently as a Rao-Blackwellised particle filter (RBPF) [31] with sensor control. Rao-Blackwellisation
is a technique for analytical marginalisation of a part of the state vector. Its purpose is to reduce the
dimension of the state space in which a Monte Carlo estimation needs to be carried out, in order to
improve the computational and statistical efficiency of the particle filter [31,34].

The idea of the RBPF is as follows. Suppose it is possible to divide the components of the hidden
state vector, yk, into two groups, αk and βk, such that the following two conditions are satisfied:

C-1: p(yk|yk−1,uk) = p(αk|βk−1:k,αk−1) · p(βk|βk−1,uk)
C-2: the conditional posterior distribution p(αk| β0:k, ζ1:k, u1:k) is analytically tractable.

Then, we need only to estimate the posterior p(β0:k|ζ1:k,u1:k), meaning that we reduced the
dimension of the space for Monte Carlo estimation from dim(yk) to dim(βk). In the described DBN,
shown in Figure 5, in order to satisfy conditions C-1 and C-2, the state vector, yk, can be partitioned
as follows:

αk = [mᵀ
k A]ᵀ (14)

βk = [pᵀ
k X Y ]ᵀ (15)

We are interested only in the filtering posterior density, which can now be factorised as follows:

p(αk,β0:k|ζ1:k,u1:k) = p(αk|β0:k, ζ1:k,u1:k) · p(β0:k|ζ1:k,u1:k) (16)

The pdf p(β0:k|ζ1:k,u1:k) is approximated by a random sample {β(i)
0:k}Ni=1. Subsequently, one can

compute analytically (for each sample β
(i)
0:k):

p(αk|β(i)
0:k, n1:k, z1:k,u1:k) = p(mk|z1:k,β(i)

0:k) · p(A|n1:k,β
(i)
0:k) (17)

where:

• p(mk|z1:k,β(i)
0:k) = qk is a vector of probabilities of existence for each link in the random grid and

• p(A|n1:k,β
(i)
0:k) is approximated by a Gamma distribution with shape parameter ηk and scale

parameter θk, i.e., G (A; ηk, θk).

Hence, each particle corresponds to a set: (
β
(i)
0:k,qk, ηk, θk

)
(18)

where qk, ηk, θk are the sufficient statistics of p(αk|β(i)
0:k, n1:k, z1:k,u1:k). Keep in mind that qk, ηk, θk

depend on a particular sequence (particle) β(i)
0:k.
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4.1. Recursive Formulae for Sufficient Statistics

Let us first discuss the analytic recursive formula for the computation of qk, following the ideas of
the grid-based SLAM [19]. Note that

qk = p(mk|z1:k,β(i)
0:k) =

g2(zk|mk,β
(i)
k ) p(mk|z1:k−1,β(i)

0:k−1)∑
mk
g2(zk|mk,β

(i)
k ) p(mk|z1:k−1,β(i)

0:k−1)
(19)

where
p(mk|z1:k−1,β(i)

0:k−1) =
∑
mk−1

p(mk|mk−1) p(mk−1|z1:k−1,β(i)
0:k−1) (20)

The update of probability vector, qk, is then carried out as follows. Recall from Equation (15) that
particle β(i)

k specifies the location of the searcher at time k, p(i)
k = [x

(i)
k y

(i)
k ]ᵀ. Each component of vector

zk is then an observation of existence of a primary or a secondary link from location p
(i)
k . Let qj,k−1 be

a component of vector qk−1, denoting the posterior probability that link `j exists at time k − 1, i.e.,
qj,k−1 = p(mj,k−1|z1:k−1,β(i)

0:k−1). Recall also that since the presence or absence of links are assumed
independent, then qk−1 =

∏L
j=1 qj,k−1. According to Equation (20), link j existence probability is

predicted as

qj,k|k−1 = p(mj,k = 1|mj,k−1 = 0) · (1− qj,k−1) + p(mj,k = 1|mj,k−1 = 1) · qj,k−1. (21)

Let z be a component of vector zk, which refers to link `j , according to the current position of the
searcher, p(i)

k . Then, based on Equation (19), we update the link, j, existence probability as

qj,k =


pd qj,k|k−1

pd qj,k|k−1+pfa(1−qj,k|k−1)
if z = 1

(1−pd) qj,k|k−1

(1−pd) qj,k|k−1+(1−pfa)(1−qj,k|k−1)
if z = 0

(22)

where pd and pfa, introduced in Equation (8), are the elements of the appropriate detection Π matrix
(primary or secondary) of Equation (8). Equations (19)–(22) can be summarised as:

qk = ψ(qk−1,β
(i)
k , zk) (23)

Let us describe next the analytic recursion for the update of the parameters, ηk and θk, of
Equation (18). At time k − 1, the posterior of emission rate A is modeled by a gamma distribution:

A|n1:k−1,β
(i)
0:k−1 ∼ G (A; ηk−1, θk−1) . (24)

Sensor 1 provides at time k a count measurement, nk, which plays the key role in the update of parameters
ηk−1 and θk−1. Recall that the likelihood function of this measurement, g̃1(nk|β(i)

k , A), is a Poisson
distribution with parameter (mean) λ(i)k−1, rather than A. Fortunately, λ(i)k−1 is linearly related to emission
rate A, that is

λ
(i)
k = A · c(β(i)

k )

where the constant c(β(i)
k ) is always positive and given by

c
(i)
k = −1

2

(
2 logR0 + log

(x
(i)
k −X(i))2 + (y

(i)
k − Y (i))2

(x
(i)
k Y

(i) − y(i)k X(i))2 + (R2
0 − x

(i)
k X

(i) − y(i)k Y (i))2

)
(25)
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with X(i) and Y (i), according to Equation (15), being the components of particle β
(i)
k .

In the proposed algorithm for the update of parameters ηk−1 and θk−1, we use the following two
properties of Gamma distribution.

(1) Scaling property [32]: if X ∼ G(η, θ), then for any c > 0, cX ∼ G(η, cθ).

(2) Gamma distribution is the conjugate prior of Poisson distributions [33]: if λ ∼ G(η, θ) is a prior
distribution and n is a sample from the Poisson distribution with parameter λ, then the posterior is,

λ ∼ G(η + n, θ/(1 + θ)).

Given β
(i)
k , we can compute constant c(i)k of Equation (25) and express the prior distribution of λ(i)k−1 as

λ
(i)
k−1|n1:k−1,β

(i)
0:k ∼ G

(
λ; ηk−1, c

(i)
k · θk−1

)
(26)

Using measurement nk and the conjugate prior property, the posterior distribution is

λ
(i)
k |n1:k,β

(i)
0:k ∼ G

(
λ; ηk−1 + nk,

c
(i)
k θk−1

1 + c
(i)
k θk−1

)
(27)

Since we are after the updated parameters of Gamma distribution of A (rather than λ(i)k ), again, using the
scaling property, we have

A|n1:k,β
(i)
0:k ∼ G

(
A; ηk−1 + nk,

θk−1

1 + c
(i)
k θk−1

)
(28)

From Equations (24) and (28), we can summarise the analytic expressions for the update of ηk and θk
as follows

ηk = ηk−1 + nk (29)

θk =
θk−1

1 + c
(i)
k θk−1

. (30)

4.2. Importance Weights

Recursive estimation of p(β0:k|ζ1:k,u1:k) is implemented using a particle filter. If we use the
transitional prior as the proposal distribution, i.e.,

q(β0:k|ζ1:k,u1:k−1) = p(βk|βk−1,uk) p(β0:k−1|ζ1:k−1,u1:k−1) (31)

the importance weights can be computed recursively as follows [31]:

wk ∝ p(ζk|ζ1:k−1,β0:k) (32)

For our problem, Expression (32) can be evaluated as

wk ∝
∫
p(ζk,αk|ζ1:k−1,β0:k) dαk (33)

=

∫
g̃1(nk|A,βk) p(A|n1:k−1,β0:k−1) dA×∑

mk

g2(zk|mk,pk) p(mk|z1:k−1,β0:k−1) (34)
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where p(A|n1:k−1,β0:k−1) is given by Equation (24) and p(mk|z1:k−1,β0:k−1) = qk|k−1 by
Equation (20), i.e.,

qk|k−1 =
∑
mk−1

p(mk|mk−1)qk−1.

The components of vector qk|k−1, i.e., qj,k|k−1, were specified by Equation (21). The integral that features
in Equation (34) can also be computed analytically. This integral equals

I =

∫
g̃1(nk|A,βk) p(A|n1:k−1,β0:k−1) dA (35)

=

∫
P(nk;λk = c(βk) · A) G(A; ηk−1, θk−1)dA (36)

where P(n;λ) is the Poisson distribution introduced in Equation (4). Recall the explanation presented
in Section 4.1 about the update of the parameters of the Gamma distribution, summarised by
Equations (26)–(28). Effectively, we have shown there that

G

(
A; ηk−1 + nk,

θk−1

1 + c
(i)
k θk−1

)
=

P(nk;λk = c(βk) · A) G(A; ηk−1, θk−1)∫
P(nk;λk = c(βk) · A) G(A; ηk−1, θk−1)dA

(37)

where the integral in the denominator is I; see Equation (36). Hence, the integral can be expressed as

I =
P(nk|λk = c(βk) · A) G(A; ηk−1, θk−1)

G(A; ηk−1 + nk, θk−1/(1 + c(βk)θk−1))
(38)

and is computed for an arbitrary chosen value of A > 0. Based on Equation (34), let us summarise the
expression for an unnormalised importance weight as

w̃k = ϕ(βk,qk−1, ηk−1, θk−1, nk, zk) (39)

Importance weights determine in a probabilistic manner which particles will survive (and possibly
multiply) during the resampling step of the RBPF.

4.3. Information Gain

Suppose the posterior distribution at time k − 1, p(yk−1|ζ1:k−1,u1:k−1), is approximated by a set
of particles

Yk−1 =
{(

β
(i)
k−1,q

(i)
k−1, η

(i)
k−1, θ

(i)
k−1

)}N
i=1

(40)

where random sample β
(i)
k−1 consists of the searcher position p

(i)
k−1 = [x

(i)
k−1 y

(i)
k−1]

ᵀ and the position of
the source p(i)

s = [X(i) Y (i)]ᵀ; see Equation (15). The weights of the particles in Yk−1 are equal, because
sensor control is carried out after resampling, i.e., w(i)

k−1 = 1/N , i = 1, . . . , N .
The question is how to compute the information gain Equation (13) for each u ∈ Uk, based on

particles Yk−1. We adopt the ideal measurement approximation for this, that is, in hypothesizing the
future count measurement (resulting from action u), we assume: (1) action u will be carried out correctly,
that is, the transitional density p(pk|pk−1,uk) will be replaced by deterministic mapping; pk = pk−1 +

uk; and (2) the measurement count will be equal to the mean of g̃1(nk|A,βk), that is, λk (rounded off to
the nearest integer).
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Since we are after the expected value of the gain, that is, E{D(u)}, we will create an ensemble of
“future ideal measurements” {n(j)

k }Mj=1. Expectation is then approximated by a sample mean, i.e.,

E{D(u)} ≈ 1

M

M∑
j=1

D(j)(u)

where D(j)(u) was computed using n(j)
k .

The ensemble of “future ideal measurements” {n(j)
k }Mj=1 is created as follows. For each action u,

choose, at random, a set of M particle indices ij ∈ {1, . . . , N}, j = 1, . . . ,M . Action u is then
expected to move the searcher to location p

(ij)
k = p

(ij)
k−1 + u. Then a “future ideal measurement” is

n
(j)
k = bA(ij) · c(ij)e, where c(ij) as a function of p

(ij)
k ,p

(ij)
s was defined by Equation (25), A(ij) ∼

G(A; ηk−1, θk−1) and b·e denotes the nearest integer function.
It remains to explain how to compute the gainD(j)(u) based on n(j)

k . Distribution π0(s,pk|uk), which
features in Equation (13), can be approximated using the particle set Yk−1 as follows:

πo(s,pk,u) ≈ G(A; ηk−1, θk−1)
N∑
i=1

w
(i)
k−1δ(ps − p(i)

s ,pk − p
(i)
k ) (41)

where p
(i)
k ∼ p(pk|p(i)

k−1,u). The updated distribution is

π1(s,pk|u, n(j)
k ) =

g̃1(n
(j)
k |pk,ps, A)πo(s,pk|u)∫

g̃1(n
(j)
k |pk,ps, A)πo(s,pk|u)dsdpk

. (42)

Substitution of Equations (41) and (42) into Equation (13) leads to

D(j)(u) ≈ −2 log

∑N
i=1w

(i)
k−1J (i)(n

(j)
k )[∑N

i=1w
(i)
k−1I(i)(n

(j)
k )
]1/2 (43)

where I(i)(nk) is computed via Equation (38) and

J (i)(nk) =

∫ [
P(nk;λ

(i)
k = c(β

(i)
k )A)

]1/2
× G(A; η

(i)
k−1, θ

(i)
k−1)dA. (44)

The integral in Equation (44) can be evaluated numerically.

4.4. Implementation

The pseudo-code of one cycle of the search algorithm is presented in Algorithm 1. The input consists
of the particle set, Yk−1, defined by Equation (40). Selection of the control vector, uk (line 2 of
Algorithm 1), is described in Algorithm 2.

An explanation of the steps in Algorithm 1 is described first. Estimation of the state vector via the
RBPF is carried out in lines 4–18. According to Equation (15), random vector β(i)

k−1 consists of p(i)
k−1,

X(i) and Y (i). Since the source location, (X(i), Y (i)), is static, only the component, p(i)
k−1, is propagated

to future time k in line 6. In line 7, Equation (39) is applied to compute the unnormalised weights of each
particle. The map, represented by the probability of existence of each link, is updated in line 8, based
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on the Expression (23). The parameters of Gamma distribution are update in lines 9–11. The weights
assigned to each quadruple (β

(i)
k ,q

(i)
k , η

(i)
k , θ

(i)
k ) are normalised in line 14. Resampling of particles is

carried out in lines 15p–18. The particles for source position p
(i)
s are not restricted to the grid nodes and

after the resampling step, their diversity is improved by regularisation [34]. Finally, the output is the
particle set, Yk.

Algorithm 1 The searcher algorithm.
1: Input: Yk−1
2: Run Algorithm 2 to select the control vector uk
3: Apply control uk and collect measurements zk, nk
4: Yk = ∅; Yk = ∅
5: for i = 1, . . . , N do
6: Draw p

(i)
k ∼ p(pk|p(i)

k−1,uk)

7: w̃
(i)
k = ϕ(β

(i)
k ,q

(i)
k−1, η

(i)
k−1, θ

(i)
k−1, nk, zk)

8: q
(i)
k = ψ(q

(i)
k−1,β

(i)
k , zk)

9: η
(i)
k = η

(i)
k−1 + nk

10: Compute constant c(i)k as a function of β(i)
k using Equation (25)

11: θ
(i)
k = θ

(i)
k−1/(1 + c

(i)
k θ

(i)
k−1)

12: Yk = Yk ∪ {(β(i)
k ,q

(i)
k , η

(i)
k , θ

(i)
k )}

13: end for
14: w

(i)
k = w̃

(i)
k /
∑N

j=1 w̃
(j)
k , for i = 1, . . . , N

15: for i = 1, . . . , N do
16: Select index ji ∈ {1, . . . , N} with probability w(i)

k

17: Yk = Yk ∪ {(β(ji)
k ,q

(ji)
k , η

(ji)
k , θ

(ji)
k )}

18: end for
19: Output: Yk

The selection of a control vector, described by Algorithm 2, starts with postulating the set, Uk, in
line 2. For every u ∈ Uk, the algorithm anticipates j = 1, . . . ,M future measurements n(j)

k (line 9) and
accordingly computes a sample of the reward D(j)(u) (line 14). The expected reward is then a sample
mean (line 16). Finally, the optimal one-step ahead control is selected in line 18.

It has been observed in simulations that one step ahead control can sometimes lead to situations where
the observer position switches eternally between two or three nodes of the lattice. In order to overcome
this problem, we adopt a heuristic as follows: if a node has been visited in the last 10 search steps
more than three times, the next motion control vector is selected at random. While a multi-step ahead
searcher control would be preferable than the adopted heuristic, it would also be computationally more
demanding. Multi-step ahead searcher control remains to be explored in future work.
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Algorithm 2 Selection of control vector.
1: Input: Yk−1
2: Create the set of admissible controls Uk = {·,→,←, ↑, ↓}
3: for every u ∈ Uk do
4: for j = 1, . . . ,M do
5: Choose at random particle index ij ∈ {1, . . . , N}
6: p

(ij)
k = p

(ij)
k−1 + u;

7: Compute c(ij)k using p
(ij)
k and p

(ij)
s via Equation (25)

8: Adopt A(ij) = η
(ij)
k−1 · θ

(ij)
k−1

9: n
(j)
k = bA(ij) · c(ij)k e

10: for i = 1, . . . , N do
11: Compute I(i)(n(j)

k ) via Equation (38)
12: Compute J (i)(n

(j)
k ) via Equation (44)

13: end for
14: Compute D(j)(u) using Equation (43)
15: end for
16: Estimate E{D(u)} as a sample mean of {D(j)(u)}Mj=1

17: end for
18: Select control vector uk ∈ Uk using Equation (12)

5. Numerical Results

5.1. Illustrative Runs

We applied the described search algorithm to the search area modelled by the random grid shown in
Figure 2. Prior knowledge available to the searcher is illustrated by Figure 1: the radius of the search
area is R0 = 9; the centre is c = (0, 0), and the total number of potential links in the complete grid
modelling the search area is L = 572. The parameters of the emitting source to be estimated are: X = 0,
Y = 7 and A0 = 12. The searcher initial position is p0 = (9,−4).

Dynamic model p(mk|mk−1) is a 2×2 transitional probability matrix with diagonal and off-diagonal
elements 0.999 and 0.001, respectively, meaning the changes in the status of the links are very rare. This
ensures a stable structure of the search domain, because the count measurement model is valid in a steady
state. Dynamic model p(pk|pk−1,uk) can be expressed as

p(pk|pk−1,uk) = (1− pe)δ(pk − pk−1 + uk) +
∑

v∈Uk\uk

pe
|Uk| − 1

δ(pk − pk−1 + v) (45)

where, in simulations, we used the value pe = 0.04.
The parameters of detection matrices, which define the likelihood function g2(zk|pk,mk), are as

follows: for primary observable links, pd = 1 and pfa = 0; for secondary observable links, pd = 0.8 and
pfa = 0.1.

The RBPF used N = 4, 000 particles with M = 400 samples used in the averaging of information
gain. The particle set, Y0, at the initial time is created as follows: p(i)

0 = p0, for all i = 1, . . . , N particles;
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the source location vector is drawn from a uniform distribution over a circle with centre c and radius R0,
i.e., p(i)

s ∼ UCircle(c,R0)(ps); link existence probabilities are set to qj,0 = 0.5, for all j = 1, . . . , L links;
finally, the parameters of initial Gamma distribution G(A; η0, θ0) were selected as η0 = 15 and θ0 = 1.

We terminate the search algorithm when the searcher steps on the source. At this point, we compare
the true source location with the current estimate of the posterior distribution of the searcher position,
approximated by particles {p(i)

k }Ni=1. If the true source position is contained in the support defined by
{p(i)

k }Ni=1, the search is considered successful.

Figure 6. An illustration of a single run of the search algorithm; the source is at (0, 7): (a)
the true path of the searcher (blue circles); (b) the final estimate of the map (existing links)
and the searcher position; (c) measured counts nk over time.
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Figure 6 illustrates a typical run of the search algorithm. The true path of the searcher on this run
is shown in Figure 6a. It took the searcher 53 time steps to reach the source. During the search,
the motion control vector failed to execute correctly on two occasions. The final estimate of the map
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(i.e., of existing links of the square lattice) is shown in Figure 6b. This figure shows only the links
whose probability of existence is higher than 0.6. The blue circles in Figure 6b indicate the posterior
distribution of the searcher final position. Its true position, which is the same as the source position,
is included in the support of this posterior, meaning that the search was successful. Moreover, on this
occasion, the maximum a posteriori (MAP) estimate of the searcher final position coincides with the
truth. Figure 6c shows the measured values of the count number, nk, along the path. As we discussed in
the Introduction, the measurements are sporadic, especially in the beginning, when the distance between
the searcher and the source is large: among the first ten count measurements, only three indicated a
non-zero tracer concentration. An avi video file, illustrating a single run of the algorithm, is supplied
with this paper.

Figure 7 illustrates two search paths on a much bigger lattice, with the fraction of missing links
p = 0.20. The source parameters were X = 0, Y = 7 and A0 = 16; all other parameters were the same
as above. The duration of two searches was 84 and 103 time steps, respectively.

Figure 7. Two examples of search paths on a much bigger lattice, with fraction p = 0.20 of
missing links.
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5.2. Monte Carlo Runs

The average performance of the search algorithm has been assessed via Monte Carlo runs using
the smaller scale model of the search area (and its corresponding parameters), shown in Figure 6. If
the search on a particular run was successful, its corresponding search time is used in averaging. A
run is declared unsuccessful if the source has not been found after k = 100 discrete-time steps. We
also keep the statistics on the success rate of the search. The results obtained via averaging over 100
Monte Carlo runs are presented in Table 1 for three different locations of the source, i.e., (X, Y ) =

(0, 7), (0, 1), (2,−5). The three locations correspond to the shortest path distances (from the searcher
initial position p0 = (9,−4) to the source) of 20, 14 and eight unit lengths, respectively. All other
parameters were the same as described above for the illustrative run. As expected, the results in Table 1



Entropy 2014, 16 809

indicate that the search is quicker and more reliable (i.e., with a higher success rate) for a source which
is closer to the searcher initial position.

Table 1. The average performance of the search algorithm: different source locations,
A0 = 12.

Source location Shortest path length Number of search steps Success rate

(0, 7) 20 42.1 94

(0, 1) 14 34.0 95

(2,−5) 8 28.8 99

Table 2 presents the results for a source at location (0, 7), but with three different values of the
source release-rate, i.e., A0 = 8, 12, 16. The results indicate that the search is quicker for a source
characterised by a higher release rate. The explanation of this trend is as follows. Initially, when the
searcher is far from the source, its measurements of tracer concentration are very small, typically zero,
hence uninformative. During this phase of the search, the searcher effectively moves according to a
“diffusive” (or random walk) model, which is slower than the so-called “ballistic” movement associated
with an information-driven search [2]. The random walk phase is longer for a weaker source, which
contributes to the overall longer search time in this case. As a specific numerical example, we have also
validated that a purely random search never manages to find the source at (0, 7) in the given time frame
of 100 discrete time steps.

Table 2. The average performance of the search algorithm: different source release-rates,
source location (0, 7).

Release rate A0 Number of search steps Success rate [%]

8 49.5 78

12 42.1 94

16 38.2 93

6. Summary

The paper considers a very difficult problem of autonomous search for a diffusive point source
of tracer in an environment whose structure is unknown. Sequential estimation and motion control
are carried out in highly uncertain circumstances with the state space, including, in addition to the
source parameters, the map of the search area and the searcher position within the map. The paper
develops mathematical models of measurements, formulates the sequential Bayesian solution (in the
form of a Rao-Blackwellised particle filter) and proposes an information-driven motion control of the
searcher. The numerical results demonstrate the concept, indicating high success rates in comparison
with a random walk. A gradient-based search (“chemotaxis”) would be inappropriate in this application,
because the computation of a gradient is infeasible in the presence of intermittent measurements and
geometric constraints.
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There are many areas for further research and improvements of the concepts introduced in this paper.
One direction is to explore the potential benefits of the analytical results available from percolation
theory in the theoretical analysis of searcher performance. Another is to investigate more efficient
particle filters for source parameter estimation (being a deterministic part of the state space) and search
strategies that “look” multiple steps ahead (rather than a one step myopic search). It is also desirable
to further explore the coordination of multiple networked searchers with decentralised estimation and
motion control. Finally, it would be important to practically validate the proposed autonomous searcher
in experimental trials.
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Appendix: Structure-Independent Model of Mean Concentration

An approximate model of mean concentration, independent of the grid structure, was introduced in
Section 2.3. This model is a solution of Laplace Equation (1) for a circular search area in the absence
of obstacles, with a boundary condition θ(r = R0) = 0, but using different values of parameters.
More specifically, the obstacles in the search area are incorporated in this model via homogenization
(volume/ensemble averaging) of the diffusion equation (similar to the effective media approach [35,36]),
so that Equation (1) is replaced with

D ∆〈θ〉 = A0δ(x−X, y − Y ) (46)

where D is the re-scaled diffusivity that accounts for such a homogenization, and 〈θ〉 is the
time/ensemble averaged tracer concentration. The new (often called effective) diffusivity, D, is related
to “unobstructed” diffusivity D0 of Equation (1) via the formula D = fcD0. The scaling parameter
0 ≤ fc ≤ 1 (known as tortuosity [21,37]) describes the effect of obstacles (their shape and packing
density [21,36]). According to Equation (46), the decrease of the effective diffusivity of the tracer
due to the presence of obstacles has the same effect as an appropriate increase of source release-rate
(i.e., A = A0/fc), with unchanged diffusivity in Equation (46) (i.e., D = D0), where parameters
D0, A0 correspond to their values in an unobstructed space, see Equation (1). We arrive at a conclusion
that the effect of obstacles can be approximately incorporated by exaggerating the source release-rate,
without compromising the source position. Since the main goal of the search algorithm is to find the
source, then such inaccuracy in release-rate estimation becomes irrelevant for the performance of the
algorithm. This means that as the first approximation for adopted measurements model, we can still use
Equation (46) with known diffusivity D = D0 and some unknown A. Estimation of A0 (if required)
can be implemented retrospectively based on a theoretical model for fc [37]). For the lattice models, an
expression for fc can be derived analytically by employing the framework of percolation theory, resulting
in the expression fc = (1 − p/pc)α, where pc = 1/2 (percolation threshold on a square lattice), p is the
fraction of missing links in the incomplete square lattice and α = 1.30 [20,21]. If the number of missing
links is small, we can adopt approximation fc ≈ 1 and A ≈ A0.
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In line with the above comments, we will use Equation (46) as a foundation for the measurement
model that is independent of the structure of the search domain. The solution of Equation (46) for a
tracer source located at the center of circle (X = Y = 0) is given by [23]:

〈θ〉 =
A

2
log[(zz∗)/R2

0] (47)

where z = x + iy is the complex coordinate and z∗ is its complex-conjugate. To find the solution for
configurations other than the circular domain with the source in the centre, we employ the property of
conformal invariance of the Laplace equation [23]. We illustrate this method with a source placed inside
the circular domain, but away from its centre (that is, at coordinates (X, Y ) s.t.

√
X2 + Y 2 < R0).

If we can find a conformal transformation, ω(z), that maps an arbitrary position of the source (X, Y )

back to the center of the circular domain, then we can still use the solution in Equation (47), but with
the substitution z → ω(z). Therefore, for an arbitrary position of the source inside the search area√
X2 + Y 2 < R0, we can write

〈θ〉 = (κ/2) log[(ww∗)/R2
0] (48)

The required conformal transformation is the well-known Möbius map (see [23]):

w(z) =
R0(z − Z)

ZZ∗ −R2
0

(49)

where Z = X + iY . After straightforward calculations, we arrive at the solution given by Equations (5)
and (6).

We point out that the model is not restricted to a circular search area. According to the theory of
analytical functions, a conformal mapping to the circle always exists for an arbitrary simply connected
domain, and therefore, it can be computed analytically or numerically [23].

References

1. Viswanathan, G.M.; Afanasyev, V.; Buldyrev, S.V.; Murphy, E.J.; Prince, P.A.; Satnley, H.E. Levy
flight search patterns of wandering albatrosses. Nature 1996, 381, 413–415.

2. Bénichou, O.; Loverdo, C.; Moreau, M.; Voituriez, R. Intermittent search strategies. Rev. Mod.
Phys. 2011, 83, 81–129.

3. Hein, A.M.; McKinley, S.A. Sensing and decision-making in random search. Proc. Natl. Acad.
Sci. USA 2012, 109, 10.1073/pnas.1202686109.

4. Coppey, M.; Benichou, O.; Voituriez, R.; Moreau, M. Kinetics of target site localization of a protein
on DNA: A stochastic approach. J. Biophys. 2004, 87, 1640–1649.

5. Bressloff, P.C.; Newby, J. Filling of a Poisson trap by a population of random intermittent searchers.
Phys. Rev. E 2012, 85, 031909.

6. Holcman, D. Modeling DNA and Virus Trafficking in the Cell Cytoplasm. J. Stat. Phys. 2007,
127, 471–494.

7. Bressloff, P.C.; Newby, J. Stochastic models of intracellular transport. J. Chem. Phys. 2013,
85, 135–196.

8. Farrell, J.A.; Pang, S.; Li, W. Plume mapping via Hidden Markov methods. IEEE Trans. Syst.
Man Cybern. 2003, 33, 850–863.



Entropy 2014, 16 812

9. Li, W.; Farrell, J.A.; Pang, S.; Arrieta, R.M. Moth-inspired chemical plume tracking on an
autonomous underwater vehicle. IEEE Trans. Robot. 2006, 22, 292–307.

10. Oyekan, J.; Hu, H. A novel bio-controller for localizing pollution sources in a medium peclet
environment. J. Bionic Eng. 2010, 7, 345–353.

11. Klimenko, A.V.; Priedhorsky, W.C.; Hengartner, N.W.; Borozin, K.N. Efficient strategies for
low-level nuclear searches. IEEE Trans. Nucl. Sci. 2006, 53, 1435–1442.

12. Ristic, B.; Gunatilaka, A. Information driven localisation of a radiological point source. Inf. Fusion
2008, 9, 317–326.

13. Ristic, B.; Morelande, M.; Gunatilaka, A. Information driven search for point sources of gamma
radiation. Signal Process. 2010, 90, 1225–1239.

14. Ishida, H.; Nakayama, G.; Nakamoto, T.; Morizumi, T. Controlling a Gas/Odor plume tracking
robot based on transient responses of gas sensors. IEEE Sens. J. 2005, 5, 537–545.

15. Dhariwal, A.; Sukhatme, G.S.; Requicha, A.A.G. Bacterium-Inspired Robots for Environmental
Monitoring. In Proceedings of IEEE International Conference on Robotics and Automation
(ICRA’04), New Orleans, LA, USA, 26 April–1 May 2004; pp. 1436–1443.

16. Vergassola, M.; Villermaux, E.; Shraiman, B.I. ‘Infotaxis’ as a strategy for searching without
gradients. Nature 2007, 445, 406–409.

17. Iacono, G.L. A comparison of different searching strategies to locate sources of odor in turbulent
flows. Adapt. Behav. 2010, 18, 155–170.

18. Masson, J.B. Olfactory searches with limited space perception. Proc. Natl. Acad. Sci. USA 2013,
110, 10.1073/pnas.1221091110.

19. Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics; MIT Press: Cambridge, MA, USA, 2005.
20. Ben-Avraham, D.; Havlin, S. Diffusion and Reaction in Fractals and Disordered Systems;

Cambridge University Press: Cambridge, UK, 2000.
21. Torquato, S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties;

Springer: New York, NY, USA, 2002.
22. Kemeny, J.G.; Snell, J.L. Finite Markov Chains; Van Nostrand Reinhold Company: New York,

NY, USA, 1960.
23. Prosperetti, A. Advanced Mathematics for Applications; Cambridge University Press: Cambridge,

UK, 2011.
24. Marjovi, A.; Marques, L. Multi-robot olfactory search in structured environments. Robot. Auton.

Syst. 2011, 59, 867–881.
25. Selvadurai, A.P.S. Partial Differential Equations in Mechanics 1; Springer: Berlin, Germany, 2000.
26. Burioni, R.; Cassi, D. Random walks on graphs: Ideas, techniques and results. J. Phys. A Math.

Gen. 2005, 38, doi:10.1088/0305-4470/38/8/R01.
27. Doucet, A., de Freitas, J.F.G., Gordon, N.J., Eds. Sequential Monte Carlo Methods in Practice;

Springer: New York, NY, USA, 2001.
28. Dean, T.; Kanazawa, K. A model for reasoning about persistence and causation. Comput. Intell.

1989, 5, 142–150.



Entropy 2014, 16 813

29. Chong, E.; Kreucher, C.; Hero, A. POMDP Approximation Using Simulation and Heuristics.
In Foundations and Applications of Sensor Management; Hero, A., Castanon, D., Cochran, D.,
Kastella, K., Eds.; Springer: New York, NY, USA, 2008; Chapter 8.

30. Kailath, T. The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans.
Commun. Tech. 1967, 15, 52–60.

31. Doucet, A.; de Freitas, N.; Murphy, K.P.; Russell, S.J. Rao-Blackwellised Particle Filtering for
Dynamic Bayesian Networks. In Proceedings of the 16th Conference on Uncertainty in Artificial
Intelligence, Stanford, CA, USA, 30 June–3 July 2000; pp. 176–183.

32. Hazewinkel, M. Gamma-Distribution. In Encyclopedia of Mathematics. Available online:
http://www.encyclopediaofmath.org/index.php?title=Gamma-distribution&oldid=24074 (accessed
on 10 February 2014).

33. Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. Bayesian Data
Analysis, 3nd ed.; CRC Press: Boca Raton, FL, USA, 2003.

34. Ristic, B.; Arulampalam, S.; Gordon, N. Beyond the Kalman Filter: Particle Filters for Tracking
Applications; Artech House: Boston, MA, USA, 2004.

35. Nicholson, C. Diffusion and related transport mechanisms in brain tissue. Rep. Prog. Phys. 2001,
64, 815–884.

36. Novak, I.L.; Kraikivski, P.; Slepchenko, B.M. Diffusion in cytoplasm: Effects of excluded volume
due to internal membranes and cytoskeletal structures. Biophys. J. 2009, 97, 758–767.

37. Pisani, L. Simple expression for the tortuosity of porous media. Transp. Porous Media 2011,
88, 193–203.

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Modelling
	Model of the Environment
	Model of Tracer Distribution
	Sensor Models and Motion Model

	The Problem and Its Conceptual Solution
	Sequential Bayesian Estimation
	Information Driven Motion Control

	The Search Algorithm
	Recursive Formulae for Sufficient Statistics
	Importance Weights
	Information Gain
	Implementation

	Numerical Results
	Illustrative Runs
	Monte Carlo Runs

	Summary
	Appendix: Structure-Independent Model of Mean Concentration

