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Abstract: In most applications of optical computed tomography (OpCT), limited-view 

problems are often encountered, which can be solved to a certain extent with typical OpCT 

reconstructive algorithms. The concept of entropy first emerged in information theory has 

been introduced into OpCT algorithms, such as maximum entropy (ME) algorithms and 

cross entropy (CE) algorithms, which have demonstrated their superiority over traditional 

OpCT algorithms, yet have their own limitations. A fused entropy (FE) algorithm, which 

follows an optimized criterion combining self-adaptively ME with CE, is proposed and 

investigated by comparisons with ME, CE and some traditional OpCT algorithms. 

Reconstructed results of several physical models show this FE algorithm has a good 

convergence and can achieve better precision than other algorithms, which verifies the 

feasibility of FE as an approach of optimizing computation, not only for OpCT, but also 

for other image processing applications. 
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1. Introduction 

Optical computed tomography (OpCT) techniques such as interferometry tomography [1–3], light 

beam deflection tomography [4], emission spectral tomography [5–7], etc., are a branch of computed 

tomography (CT), which is mainly applied to optical testing of 3-D distributions of physical variables 

of a number of fluid fields [8–10]. Due to the limitations of the testing environments and devices, most 

OpCTs encounter limited-view problems [11–13], e.g., incomplete testing views and/or incomplete 

data at each view, which results in worse reconstruction precision and lower spatial resolution than 

that seen in medical CT. To solve this problem, many OpCT algorithms have been developed since 

Gordon et al. first proposed an algebraic reconstruction technique (ART) algorithm in the 1970s [14]. 

Gilbert introduced a simultaneous iterative reconstruction technique (SIRT) algorithm [15], in which 

each reconstructed pixel is revised after all the projection values have been computed in each iterative 

step. Aderson [16] proposed a simultaneous algebraic reconstruction technique (SART) algorithm, which 

combined the advantages of ART and SIRT. A natural pixel decomposition (NPD) algorithm was first 

proposed by Buonocore et al. [17], in which the shapes of the grids of the reconstructed plane are not 

rectangular but determined by the rays’ paths. Garnero et al. [18] employed the NPD to reconstruct a 

field of refractivity. Different from those above-mentioned row-relaxation iterative methods, a 

column-relaxation iterative reconstruction method was proposed by David [19]. Dean et al. [11] put 

forward a singular-value decomposition (SVD) algorithm that is suitable for the solution of both 

overdetermined and underdetermined equations. To solve the problem of the loss of projection data 

when reconstructing fields comprising obstacle objects, a discrete iterative reconstruction reprojection 

(DIRR) [20] was presented, which combines a low-pass filter with a re-projected estimation of the lost 

data. A Lagrange interpolation reprojection revising (LIRR) algorithm [21] adopts the pre-estimation 

of a Lagrange interpolation method to improve the accuracy of the re-projected estimation by DIRR, 

and has been demonstrated a rather improvement over DIRR. 

OpCT algorithms are required to have accurate reconstruction results with incomplete data, which 

means optimization criteria have to be followed. Typical OpCT algorithms, such as ART, SIRT, 

SART, etc., mostly comply with a single optimization criterion, with which accurate reconstructed 

results can hardly be achieved. Although some multi-criterion OpCT algorithms [13] have been 

proposed, their reconstruction results are still unsatisfactory when the distribution of tested fields is 

relatively complex. Entropy, that first emerged in the information theory, has also been introduced into 

OpCT algorithms. Maximum entropy algorithms (ME) [22,23] search a most possible solution from 

the solution set by maximizing the entropy function of the tested target itself, which is verified as a 

superior approach compared to conventional OpCT algorithms when the number of views was 

extremely limited and tested fields are approximately symmetrical. However, the performance of ME 

degrades when the tested fields have poor symmetry. Cross entropy algorithms (CE) [24,25] figure out 

a most possible target function by minimizing the cross entropy function that measures the possible 

relationship between the distributions of the target function and its projections. The reconstruction 

precision of ME for asymmetrical targets can be improved when combined with CE [26]. 

In this paper, a fused entropy (FE) algorithm is proposed, which self-adaptively combines ME with 

CE, and hence has high reconstruction precision for both symmetrical and asymmetrical fields. The 

performance of FE is investigated by comparisons with ME, CE and some traditional OpCT 
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algorithms in the reconstructions of several physical models. Results of numerical simulations show 

this FE has a good convergence and a better precision than other algorithms. 

2. Principle of FE Algorithm 

Like in medical CT, the projection data of fluid fields, which can be probed with optoelectronic 

sensors, are adopted to compute distributions of physical variables in the OpCT. From a mathematical 

point of view, the OpCT reconstruction problem can be formulated as the inverse Radon transform. As 

shown in Figure 1(a), the relationship between the 2-D physical function f (x, y) of a reconstructed 

plane of a tested fluid field and its projection q(t,) is given by: 

( , ) ( , )q t θ f x y ds



  (1)

where q(t,) is the integral of f (x, y) along the axis s and the Cartesian coordinate system (t, s) rotates 

at an angle  with respect to the original system (x, y). 

Figure 1. (a) Illustration of the OpCT reconstruction. (b) Grids division of OpCT reconstruction. 

 

The 2-D continuous function f (x, y) is normally discretized into grids for the OpCT reconstruction; 

M(N) even grids are discretized in the X(Y) directions, as shown in Figure 1(b). The discrete 

expression of the function f (x, y) is: 

1 1
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MN MN

j j j j j
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 

      (2)

where fj is the reconstructed physical variable at the j-th grid that has a central coordinate (xj, yj), MN is 

the total number of the reconstructed variables, and b is a basis function that has the following property: 

( , ) ( ) ( )yx
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where lx and ly represent the span of grids in the X and Y directions respectively and m and n are the 

sequence number of the j-th grid along these two axes. A sinc basis function is commonly used, which 

can be expressed as: 
sin
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k
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Then we have: 

1 1

( , ) ( ) ( ) =
MN MN

yx
i j ij ji
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q t θ f b b ds w f
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
    (5)

where i is the ray’s sequence number. The number of total testing views is V, and the number of rays 

per view is defined as RPV. Then the number of total rays is I, the product of V and RPV. We can 

rewrite Equation (5) in a matrix form: 

Q WF  (6)

where Q is an I-dimensional measurement vector that consists of qi(t,), W that consists of wij is a 

projection matrix of I rows and MN columns, and F is an image vector that comprises MN 

reconstructed physical variables fj. Limited-view OpCT reconstruction is usually an underdetermined 

problem, since I is less than MN in most practical cases, which hence needs an optimization criterion. 

An optimal solution can be obtained from a number of possible solutions based on the criterion. 

Conventional OpCT algorithms usually follow a single optimization criterion. For example, the 

ART complies with a minimum norm criterion when a suitable initial image vector is selected and the 

SIRT subjects to a least-squares criterion. 

Entropy concepts first based on information theory have also found application in OpCT 

algorithms. Maximum entropy (ME) algorithms maximize the entropy function of the reconstructed 

physical variables fj (the image vector F): 

1
1

( ) ln = ln
MN

T
j j

j

f f


   F F F  (7)

to get a solution of greatest global smoothness. ME algorithms are superior to conventional OpCT 

algorithms in limited-view reconstructions for approximately symmetrical targets, whose performance 

yet degrades when targets have poor symmetry. Cross entropy (CE), unlike ME, is an information 

theoretic measure that quantifies the difference between two probability density functions, which has 

also been applied to the area of OpCT. CE function in OpCT is defined as: 

1
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which measures the difference of information in WF and Q, and thus must be minimized to get an 

optimal reconstructed image F. 

Here, we propose a fused entropy (FE) algorithm that self-adaptively combines ME with CE,  

which minimize: 

1 1 2 2( ) ( ) ( )      F F F  (9)

where 1 and 2 represent for the weight factor of ME and CE respectively. To obtain the solution of 

F, the matrix differential of Equation (9) must follow: 

1 2
1

d ( )
= ( ln + )+ ln( )

d

I
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
  F WF
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 (10)

Then the following FE algorithm is established: 
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where C is an MN-dimensional vector and  is a relaxation parameter. Weight factors 1 and 2 are 

self-adaptively adjusted in FE algorithm based on the following scheme: 
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 (12)

3. Numerical Simulations 

3.1. Physical Models 

Several physical models including a top-concaved paraboloid image (TCP), a three random peaks 

image (TR), a superposition image (TCPTR) of the top-concaved paraboloid and the three random 

peaks, and a six-peak Gaussian image (SG), which are shown in Figure 2, are chosen to investigate the 

performance of FE algorithm. 

Figure 2. Physical models. (a) TCP. (b) TR. (c) TCPTR. (d) SG. 

 

TCP represents a complete symmetric distribution of physical variables and can be expressed as: 
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TR denotes an asymmetric distribution of physical variables and can be formulated as: 
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TCPTR is the sum of TCP and TR: 

3 1 2( , )= ( , )+ ( , )F x y F x y F x y  (15)

SPG is a function of the rotational symmetric distribution: 
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Three errors are adopted to evaluate the construction quality. The first error is the average error: 

1 max
1
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

    (17)

The second error is the maximum error that is defined as: 

2 maxmax
' /j j je f f f   (18)

The third one is the mean square error: 
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Where f is the original image and f’ is the reconstruction image. 

3.2. Reconstruction Results 

The performance of FE is investigated by comparisons with ME, CE and two traditional OpCT 
algorithms, i.e., the algebraic reconstruction technique (ART) algorithm and the simultaneous iterative 
reconstruction technique (SIRT) algorithm, in the reconstructions of the four physical models, where M = N = 
256, RPV = 256, and V = 6 (evenly distributed views over the range of 180 degrees). The reconstruction 
errors of the five algorithms are shown in Table 1, where numbers in bold italic are the best results. 

Table 1. Reconstruction results of FE compared with other algorithms for four physical models. 

Physical Models Errors (%) 
Algorithms 

FE CE ME ART SIRT 

F1 
e1 0.50 0.56 0.51 0.59 1.20 
e2 4.63 4.67 4.74 6.02 8.29 
e3 2.23 2.41 2.55 2.79 5.23 

F2 
e1 1.51 1.56 1.27 2.17 2.99 
e2 11.87 12.17 14.09 19.02 27.52 
e3 11.84 13.66 13.32 19.27 25.75 

F3 
e1 1.23 1.29 1.42 2.12 2.73 
e2 9.33 9.67 17.79 16.13 23.72 
e3 8.76 9.03 11.41 15.23 19.40 

F4 
e1 0.70 0.72 0.93 1.33 1.71 
e2 3.29 3.33 4.87 8.09 11.17 
e3 3.70 3.80 4.87 7.33 9.79 
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The four reconstructed images with the FE algorithm are shown in Figure 3, where the relaxation 

parameter  of FE is 0.3 for all the four physical models. Furthermore, the convergence of FE has been 

studied. Figure 4 shows the convergence properties of FE for the reconstructions of TCP and TR. 

Figure 3. Reconstructed images of the physical models with FE. (a) TCP. (b) TR.  

(c) TCPTR. (d) SG. 

 

Figure 4. Convergence curves of FE for reconstructions of (a) TCP and (b) TR. 
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4. Conclusions 

Numerical simulations show that the FE proposed in this paper is superior to the other four 

algorithms tested in the reconstructions of four physical models (refer to Table 1; note: only the 

average error is little greater than that of ME), and images reconstructed with FE are of similar 

distributions as the original physical models (refer to Figure 2 and Figure 3). Besides, FE also has a 

good convergence (refer to Figure 4). These studies have testified the feasibility of FE as an approach 

of optimizing computation, which can not only be utilized for OpCT reconstructions, but also be 

promoted to find an optimal solution for other imaging processing problems if an FE optimization 

function is set up [27]. However, owing to the complexity, such as turbulences and impulses in the 

fields of real OpCT applications, much deeper research needs to be conducted to verify the 

applicability of FE. 
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