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Abstract: The nonverbal transmission of information between social animals is a primary
driving force behind their actions and, therefore, an important quantity to measure in animal
behavior studies. Despite its key role in social behavior, the flow of information has only
been inferred by correlating the actions of individuals with a simplifying assumption of
linearity. In this paper, we leverage information-theoretic tools to relax this assumption.
To demonstrate the feasibility of our approach, we focus on a robotics-based experimental
paradigm, which affords consistent and controllable delivery of visual stimuli to zebrafish.
Specifically, we use a robotic arm to maneuver a life-sized replica of a zebrafish in a
predetermined trajectory as it interacts with a focal subject in a test tank. We track the
fish and the replica through time and use the resulting trajectory data to measure the
transfer entropy between the replica and the focal subject, which, in turn, is used to
quantify one-directional information flow from the robot to the fish. In agreement with
our expectations, we find that the information flow from the replica to the zebrafish is
significantly more than the other way around. Notably, such information is specifically
related to the response of the fish to the replica, whereby we observe that the information
flow is reduced significantly if the motion of the replica is randomly delayed in a surrogate
dataset. In addition, comparison with a control experiment, where the replica is replaced by
a conspecific, shows that the information flow toward the focal fish is significantly more for
a robotic than a live stimulus. These findings support the reliability of using transfer entropy
as a measure of information flow, while providing indirect evidence for the efficacy of a
robotics-based platform in animal behavioral studies.



Entropy 2014, 16 1316

Keywords: entropy; information flow; robotics; social behavior; zebrafish

1. Introduction

Animals interact with a large number of sources in their environment through multiple senses,
while adapting their behavior in response to a few important cues [1]. In social organisms that move
in groups, it has been shown that the actions of a few nearest neighbors contribute largely to such
cues [2]. In this respect, determining the flow of information between interacting individuals can
reveal how they prioritize sensory modalities [3], infer the directionality of information flow [4–6],
quantify leadership roles in animal groups [7], and determine the effectiveness of engineered stimuli
in the laboratory studies [8–10]. These motivations to measure information flow are similar to those
encountered in the study of networks of dynamical systems, where tools from information theory have
been used to detect causal relationships [11–13], locate driving nodes [14], and quantify the strength of
network connections [15].

Information flow between two systems is measured as the reduction in the uncertainty of one system
given the knowledge of the other [16]. Here, uncertainty is quantified by the entropy rate of a stochastic
process (or the entropy in the case of a random variable) [16,17]. Information flow measured in this
sense is able to highlight nonlinear relationships between coupled systems over large interaction delays,
a major advantage over correlation-based methods that assume linearity [18]. This has resulted in a
multitude of applications of information-theoretic tools ranging from neuroscience [19], to structure
health monitoring [20], financial time series analysis [21] and weather forecasting [22].

The application of information-theoretic measures to study animal behavior is not new [23–25].
In [23], the entropy of a dynamical system is used to study rat locomotor behavior; in [24], relative
entropy is used to quantify behavior patterns in Pacific bluefin tuna after release; and in [25], entropy
rates are used to quantify aphid behavior under different conditions. Across these studies, the advantage
of information-theoretic quantities over traditional methods are cited in terms of independence from
observational noise and sensitivity to higher order moments in parameter distributions. While these
efforts focus on the movement of a single individual, similar opportunities exist in the study of social
animals, whose behavior is driven by the complex exchange of information through multiple sensory
cues [3,26]. Interestingly, entropy-based measures have been used as an efficient sensing approach in
swarm navigation algorithms [27] and multi-robot systems [28].

Here, we utilize information-theoretic tools to study the social behavior of zebrafish [29]. Zebrafish
is selected for its extensive use as an animal model [29–31], its prominent shoaling tendency [32] and
its use of vision as a dominant sensing modality [30,33]. To offer a consistent and controllable visual
stimulus to the focal subjects, we consider a robotics-based experimental paradigm, in which fish interact
with a live fish and a life-sized replica maneuvered along predetermined trajectories using a robotic arm.
We compute transfer entropy between the trajectories of the live fish and the replica to demonstrate the
reliability of this approach in elucidating the direction of information flow between the focal subject and
the replica.
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The paper is organized as follows. In Section 2, we introduce the entropy of a random process
and define transfer entropy to measure information flow between two dynamical systems. Section 3
presents materials and methods used to perform and analyze the animal behavior experiments. Results
are presented in Section 4, followed by their discussion in Section 5.

2. Preliminaries on Information Flow Measurements

In information theory, the uncertainty of a random variable is measured by its Shannon entropy, which
quantifies the expected value of the amount of information contained in the population [17]. Specifically,
the Shannon entropy H(X) of a discrete random variable X that can take values in the set X with a
probability distribution PX(x), x ∈ X , is defined as:

H(X) = −
∑
x∈X

PX(x) log2 PX(x) (1)

The logarithmic function in Equation (1) can have any base; for the selected base 2, H(X) is measured
in bits. In terms of expectation, entropy can also be defined as the expected value of− log2 PX(x), where
X is drawn according to PX(x), as H(x) = EX [− log2 PX(x)] [16]. Notably, Rényi [34] generalized
this definition of information entropy by proposing a parametric family that includes Shannon entropy
as a limiting case. For two random variables X and Y , with Y taking values in Y , the joint entropy,
H(X, Y ), is [16]:

H(X, Y ) = −
∑
x∈X

∑
y∈Y

PX,Y (x, y) log2 PX,Y (x, y) (2)

where PX,Y (x, y) is the joint distribution. The reduction in uncertainty of a random variable X given
another random variable Y is quantified by the mutual information defined as [16]:

I(X;Y ) = H(X)−H(X|Y )

= H(X) +H(Y )−H(X, Y )
(3)

where H(X|Y ) is the conditional entropy that follows the chain rule H(X, Y ) = H(X) + H(Y |X).
Mutual information is nonnegative and symmetric with respect to its arguments, that is, I(X;Y ) =

I(Y ;X). If X and Y are independent, knowledge about one does not alter the uncertainty in the other,
and therefore, mutual information between two independent random variables is zero.

To extend these ideas to dynamical systems, the above quantities are generalized to a stochastic
process as follows. For a stochastic process X , considered as a sequence of random variables,
X1, X2, . . ., the entropy rate is defined as [16,35]:

h = lim
n→∞

1

n
H(X1, . . . , Xn) (4)

where the joint entropy, H(X1, . . . , Xn), for any finite n is computed on the basis of the joint probability
distribution, P (x1, . . . , xn), where x1 ∈ X1, . . . , xn ∈ Xn, similarly to Equation (2).

For two stochastic processes X and Y the mutual information rate is defined by [17]:

ι(X;Y ) = lim
n→∞

I(n)

n
(5)



Entropy 2014, 16 1318

where I(n) = I(X1, . . . , Xn;Y1, . . . , Yn) is the mutual information computed over sequences
of length n.

Unlike the mutual information rate, which is symmetric with respect to the two stochastic processes
it is computed for, Schreiber proposed the use of another quantity, called transfer entropy, to
measure directional information flow between two dynamical systems [36]. (A different, but related
information-theoretic measure, called conditional mutual information, was proposed by Paluš et al. [37].)
Assuming that X and Y are first-order Markov processes, so that for example P (xn+1|xn, . . . , x1) =

P (xn+1|xn) for any n, the transfer entropy quantifies the reduction in uncertainty of the state, Xn+1,
given Xn and Yn. This quantity measures the flow of information from Y to X and is given by [21,36]:

TEY→X =
∑
xn∈Xn
yn∈Yn

xn+1∈Xn+1

P (xn+1, xn, yn) log2

P (xn+1|xn, yn)

P (xn+1|xn)
(6)

where xn and yn take values in the sets Xn and Yn, which are generally different for each
n. The definition implies TEX→Y 6= TEY→X . In this sense, given the direction of dominant
information flow, the transfer entropy is associated with the cause-effect relationship between two
dynamical systems [11,38].

In practice, information-theoretic measures, such as mutual information rate and transfer entropy, are
difficult to compute with experimental data, which is often limited and noisy [39]. As a result, short-
range correlations between noise in two processes may be interpreted as information flow undermining
important long-range correlations [40]. One way to address this issue is to downsample the time series
while ensuring that the Markovianity of the process is not lost [41]. Probability distributions can then be
computed from the down-sampled data using binning methods, such as histograms [12] or a correlation
integral [42]. To ensure that the experimental data is well approximated by a first-order Markov process,
we calculate the sampling time interval t and the number of bins for computing histograms following the
method described in [43]. In [43], expansion rates, instead of probabilities, are used to calculate mutual
information rates and its bounds. The evolution of the coupled system of two one-dimensional processes
X and Y is represented as points on a two-dimensional grid that is quantized into N square boxes each
with side 1/N . The expansion rates, ek, k = 1, 2, are [43]:

ek(t) =
1

ÑC(ε)

ÑC(ε)∑
i=1

1

t
log[Lik(t)] (7)

where ÑC is the number of boxes on the two-dimensional grid occupied by points on the combined
trajectory of X and Y , ε = 1/N , Li1(t) = ∆i(t)/δi measures the maximum growth rate of nearby points
in ε-square box i that have spread out after time t and Li2(t) = Ai(t)/ε

2 quantifies the spread of a region
enclosing such points. Accordingly, δi is the maximum distance between pairs of points in a box i and
∆i(t) is the largest distance between the same pair of points after time t. Similarly, Ai(t) is the area
occupied by points after time t that were initially in ε-square box i. Given a range of values of t and ε,
the following constrained minimization problem is solved [43]:

min
t,ε
| exp(Te2(t))− ÑC(ε)|

subject to exp(Te2(t)) ≥ ÑC(ε)
(8)
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where T = N/e1(t) represents the amount of time that is needed for the correlation of the combined
trajectory of X and Y to decay to zero. The optimization reduces the correlation by ensuring that the
number of boxes occupied in a time window of duration T is the same as that over the full trajectory. In
other words, points on the two-dimensional grid occupy approximately the same number of boxes in T
as for the full distribution.

3. Materials and Methods

3.1. Animals

Experiments were conducted with adult zebrafish, Danio rerio, bought from an online store
(LiveAquaria, Rhinelander, WI, USA). At the time of the experiments, the fish were approximately 3
cm in body length and were maintained in 37.8-liter (10-gallon) housing tanks at a housing density of no
more than 4 fish per liter. Housing conditions were maintained in accordance with the approved animal
care protocol, with lighting at a 12 h dark/12 h light photoperiod [44], pH between 7 and 7.2 and the
temperature set at 27 ± 1 ◦C.

3.2. Experimental Setup

A classical two-choice experimental setup [45], comprising a 76 × 30 × 30 cm tank with two
10 × 30 × 30 cm stimulus compartments on either side of the tank and a 56 × 30 × 30 cm swimming
compartment (Figure 1), was used to conduct the experiments. The tank was lit by two 25 W fluorescent
lamps (All-Glass Aquarium, preheat aquarium lamp, U.K.) mounted above the longitudinal sides. An
overhead view of the setup was recorded with a web camera (Logitech, Newark, CA, USA) mounted
approximately 65 cm above the surface of the water. Experiments were filmed at 15 frames per second
at a resolution of 800 × 600 pixels. A similar setup was used for other zebrafish-robot interactions
experiments by our group [46–51].

Figure 1. Experimental setup. (a) Top view of the experimental tank with two robotic
arms on each side (the fish and the replica are circled); the tank-wide axis is marked in
white bidirectional arrow; (b) painted plastic replica of the zebrafish that is attached to
the end-effector.

3 cm

(a) (b)
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Fish replicas, 3 cm in length, were fabricated using Acrylonitrile Butadiene Styrene (ABS)
thermoplastic in a 3D prototyping machine (Dimension Elite, Stratasys Ltd., Eden Prairie, MN, USA).
The replicas were designed in a Computer Aided Design (CAD) software (SolidWorks, SolidWorks
Corp., Waltham, MA, USA) and featured dorsal, ventral and caudal fins. The replicas were painted
with non-toxic pigments to match the zebrafish skin coloration and were mounted onto a movable
platform with a transparent acrylic rod (Figure 1). The rod was attached to a custom-made robotic arm
installed at the edge of the tank. The robotic arm consisted of three rigid links each driven by a separate
servo-motor (Futaba Corporation of America, Schaumburg, IL, USA; and Hitec RCD USA Inc., Poway,
CA, USA) [52]. The servo motors were controlled using a pre-programmed microcontroller (Arduino
Uno, Arduino, Italy), so that the combined end-effector trajectory followed a periodic figure-eight pattern
along the breadth of the tank at a speed of 5.7 ± 1.5 cm/s. The spatial trajectory was selected to achieve
the large coverage of the stimulus region of the tank while being distinctly visible to the focal subject. A
servo motor at the top end of the attachment rod was oscillated about the vertical axis at 3 Hz. This local
oscillation gave an appearance of undulating movement to the replica in addition to spatial coverage and
was selected to match previous values of tail-beat frequency in studies with bioinspired robots [46,49,51].
Two such robotic arms were installed on either side of the tank to provide a uniform visual background
to the live subject with respect to the two choices available on the sides of the tank.

3.3. Experimental Procedure

A hypothesis-driven biological experiment in animal behavior typically involves conducting
experimental trials by changing independent design parameters while observing specific behaviors [53].
The null hypothesis, namely that no change in behavior will be detected, is rejected using a statistical test
when the alternate hypothesis is true with a high probability, which is typically 95% [54]. The number
of trials for each value of the independent design parameter must be selected to avoid Type II errors, that
is, a failure to reject a false null hypothesis [54]. Here, we test two hypotheses: first, that the directional
information transfer will be dominant from the replica to the live fish; and second, that the information
flow from the replica to the live fish is more than if the replica were replaced by a live stimulus.

To investigate the transfer of information between a live fish and the moving replica, an experimental
condition was conducted where a single zebrafish was filmed as the replica was maneuvered on one of
the tank sides (the experiments performed in this study were approved by the Animal Welfare Oversight
Committee (AWOC) of the Polytechnic Institute of New York University, protocol AWOC-2013-103).
To compare this with information flow between two live animals, a control condition was tested where a
live conspecific was released in the stimulus area. To achieve statistical power, ten trials were conducted
for each of the two conditions with a single experimentally naive fish for each trial; experimentally naive
fish were observed for each trial to avoid pseudo replications [54]. Thus, a total of thirty subjects (twenty
focal fish and ten stimulus fish) were considered in this study. In accordance with an established protocol
that ensures that zebrafish are acclimatized to the experimental tank [55], fish were transferred from the
holding tank using a hand net and were habituated to the experimental tank for ten minutes during which
the replica, if present, was moving. Post-habituation, the fish were filmed for five minutes. Observations
made during these five minutes were used in the analysis. The side on which the stimuli were presented
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was balanced across trials to avoid a possible left-right bias in the results. Note that in all the tests with
the replica, the replica was always started from the same relative location in the stimulus area at the
initial time of the recording to ensure the repeatability of the stimulus across trials.

3.4. Data Assimilation and Statistical Analysis

Video data was post-processed using a target-tracking system that output the trajectories of the
focal fish and the stimulus (conspecific or replica) in the tank frame. The tracking system, described
in detail in [56], used a Kalman filter to track the fish centroid through the five-minute experimental
time. Fish tracks were verified and repaired in a MATLAB R© graphical user interface (GUI) for analysis.
The trajectory data was used to compute average speed along the tank-wide direction and validate the
time series sampling strategy. To reconstruct the replica trajectory, the same was tracked manually using
the GUI for the first ten seconds of each trial. The tank-wide component of the ten-second trajectory
was then fit using the MATLAB nlinfit routine onto a four-parameter sinusoidal function of the form
f(k) = B sin(ωk + φ) + C, k being the time in seconds. Instead, the orthogonal tank-long component
was fit using least-squares estimation onto a twentieth order Fourier series expansion [57]. The full
periodic trajectory was then extrapolated for the remaining of the trial and projected back onto the video
for visual verification. Figure 2 shows sample trajectories from each experimental condition. Referring
to Section 2, we use the tank-wide position of the fish (Figure 1) and the stimulus (replica or conspecific)
as the dynamic variable for computing information flow.

Figure 2. Trajectories. (a) Fish and conspecific; and (b) fish and replica.
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When working with experimentally generated time series, noise and limited data may undermine the
application of theoretical approaches [58]. Coarse-grained treatments of the experimental data address
these issues; however, their incorrect implementation could lead to the possibility of loosing important
information [41]. Following the method detailed in Section 2, a sampling interval and a number of bins
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were computed for all trials to obtain common average values to be used for the entire dataset [43]. Thus,
we set t = 2 seconds for the sampling interval and N = 7 for the number of bins. Notably, the 2-second
sampling interval represents the average time during which the correlation of the trajectory decays to
zero within a square box of size equal to the bin width. The facts that fish speed is generally on the
order of a few body lengths per second [59] and that the size of each bin is on the order of one fish body
length guarantee that a time interval of 2 seconds suffices for the fish to reach a different bin in the given
time step. To ensure that these values are representative of the directionality of the dominant information
transfer [41], we computed transfer entropy over a range of values of t ∈ [0.06, 5]s and N ∈ [4, 30]

values for a random trial. Data from stimulus and focal fish trajectory was normalized so that the values
lie between −1 and 1. The normalized data was, in turn, used to build the joint probability distributions
using histograms. Transfer entropy was computed for each direction (fish → stimulus, stimulus →
fish), where fish is the focal subject, and stimulus can be the replica or the conspecific. Figure 3
shows the tank-wide position for the sample trajectories for a single (fish ↔ fish) and (fish ↔ replica)
trials, respectively.

Figure 3. Transfer entropy computation. (a) Sample (normalized) tank-wide position
trajectories for a fish (red) interacting with a conspecific (blue); for this sample,
TE fish→stimulus = 0.615 bits and TE stimulus→fish = 0.524 bits, where “stimulus” is a
conspecific; (b) Sample tank-wide position trajectories for a fish (red) interacting with a
replica (blue); for this sample, TE fish→stimulus = 0.357 bits and TE stimulus→fish = 0.638 bits,
where “stimulus” is the replica.
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As an additional test to verify the inference about the directionality of the information flow, we
considered an artificial dataset, for which we generated surrogate replica trajectories using the time
trace of the position of the replica in the tank-wide direction as the reference. In particular, we simulated
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artificial motions as sinusoidal functions with the same frequency of oscillation, and a random phase
difference (drawn from a uniform distribution sampled from [0, π]). Thus, the surrogate data shares
the same behavior of the replica motion, while being dissimilar from that for most times (Figure 4). A
total of 10 surrogate trajectories with phase delays of 1.32 ± 0.93 rad were generated and used in the
statistical analysis. To each of these trajectories, we randomly associated the response of a focal fish in
the condition with the replica.

Figure 4. Surrogate data for verification of directionality. Original (solid) (see also
Figure 3b) and surrogate (dashed) data for a section of the trial generated to evaluate transfer
entropy from surrogate data to the live fish.
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Information flow was compared within each condition using one-way analysis of variance
(ANOVA) [54] with the direction of flow as the independent parameter and the transfer entropy as
the dependent parameter. Trials with abnormal fish behavior, such as excessive freezing [60], were
discarded. This resulted in 9 trials for the control condition and 10 for the one with replica. The ANOVA
comparison [54] reports the probability of the null hypothesis, namely that the means of the values are
equal. If this probability is less than 5% (p < 0.05), we assume that the null hypothesis is rejected
and that the means are significantly different. The output of a one-way ANOVA comparison consists of
the probability p of accepting the null hypothesis and the F-test statistics reported in the form, Fdf1,df2,
where df1, df2 are the degrees of freedom between groups and between single observations, respectively.
The value of the F-test statistic is computed as F = between-group variability/within-group variability,
where variability is computed as the variance between and within groups [54]. A large value of the
F-test statistic corresponds to a higher between-group variability than within-group variability, implying
a difference in populations. Significance is evaluated by comparing with an F-distribution whose shape
depends on the number of degrees of freedom [54]. Information flow in a given direction is compared
between conditions using one-way ANOVA, with the condition as the independent parameter and the
transfer entropy for that direction as the dependent parameter. Similarly, one-way ANOVA was used to
compare information flow from the surrogate trajectories to the fish with the information flow from the
replica to the fish.
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4. Results

Figure 5 shows the experimental results of this study. We found that the transfer entropy from the
focal fish to the replica TE fish→replica was significantly less than from the replica to the fish TE replica→fish

(p = 0.007,F1,9 = 9.127). Differently, transfer entropy from the focal fish to the conspecific TE fish→fish

was not significantly different between directions (p = 0.193,F1,8 = 1.845). Between conditions, the
transfer entropy from the replica to the focal fish was significantly more than from the conspecific to
the fish (p = 0.024,F1,17 = 6.05; Figure 5). With respect to the surrogate dataset, we also found that
the transfer entropy from the simulated replica to the fish was significantly less than the transfer entropy
from the replica to the focal subject (TE surrogate→fish = 0.25 ± 0.08 bits; p < 0.001,F1,17 = 40.99).
Finally, transfer entropy from the focal fish to the conspecific and transfer entropy from the focal fish to
the replica were not significantly different (p = 0.086,F1,17 = 3.326).

Figure 5. Transfer entropy was significantly different between directions when a replica was
present. Transfer entropy from the stimulus to the fish was significantly different between
conditions. Overhead bars (blue) p < 0.05.
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To evaluate the sensitivity of the dominant flow of information with respect to variations in the
selection of the parameters t and N , we considered the effect of varying them in the analysis of the
single trial displayed in Figure 3b. Transfer entropy over a range of t values shows that the dominant
direction of information flow, measured as the difference between the transfer entropies in each direction
(TE replica→fish − TE fish→replica), is preserved for a majority of the range. In particular, the difference in
transfer entropy was positive for most values of the sampling time interval more than 0.5 s (Figure 6).
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Figure 6. Transfer entropy difference (TE replica→fish−TE fish→replica) for a single trial shown
in Figure 3b for a range of values of sampling time and number of bins. The sampling time
interval and number of bins selected for the analysis is marked with a red cross.

5. Discussion

Our results show that the transfer entropy can be used to measure information flow in zebrafish.
In agreement with our expectations, we found that when a live fish interacts with a replica moving
along predetermined trajectories, the dominant flow of information is from the replica to the fish. The
comparison of information flow between the control and the experimental condition shows that the life-
sized replica of a real zebrafish maneuvered using a robotic arm influences the motion of the focal fish
more than a conspecific.

While determining the direction of information flow, we note that a lower value of the sampling
interval is typically recommended in the literature on unidirectionally coupled oscillators modeled as a
second-order autoregression process [41]. In this case, where the full system may be represented as a
high-dimensional state vector with the past two states in time, a foreseeable problem associated with low
temporal resolution is the loss of observability [41]. In contrast, the relatively large value of sampling
interval used here can be justified in terms of the typical fish speed, which is on the order of a few body
lengths [59], and thus allows for a change in position from one bin to another in a single time step,
preserving the process’ Markovianity [41]. We find that although the dominant direction of information
flow stays replica → fish for the most part, the direction is reversed when the sampling time interval is
less than 0.5 s. A possible reason for this reversal may be the correlation between the noise in the fish
and the replica trajectories [39]. In particular, correlations between the movement of the replica, which
maneuvers tank-wide at a higher oscillation than the focal fish, and the noise from the fish trajectory may
be detected at this temporal resolution.



Entropy 2014, 16 1326

The validation of the transfer entropy as a measure of directional information is offered by the
significant difference between the information flow from the replica to the zebrafish and the information
flow computed the other way around. Combined with the fact that no such significance was found when
the stimulus is a conspecific, this suggests that transfer entropy is a valid measure of information flow.
In particular, the result that the replica influenced the focal subject more than the other way around
was expected, since the replica was controlled independently. The conspecific, on the other hand, was
always visually aware of the focal subject and, therefore, likely to be influenced by it. In addition,
transfer entropy from the replica to the focal subject was significantly reduced in a surrogate dataset
in which the replica was artificially delayed, confirming the validity of the directional information flow
between the replica and the live subject. At the same time, the non-zero information flow from the
live subject to the replica is misleading, but not unexpected. This is because of the generality of the
method that exhaustively looks at all possible combinations for the reduction in the uncertainty in the
dynamics of one system given the knowledge of the other [36]. It is possible that within the confined
space in which we observed the replica and the focal fish, some nonlinear relationships exist that can
relate movements of the replica to those of the focal subject. At the same time, the significantly higher
transfer of information from the replica to the fish is strong evidence in support of the use of this method
to unravel information flow in zebrafish social response.

Between conditions, the amount of information flow from the stimulus to the focal subject was also
significantly more when the stimulus was a replica. This is direct evidence in support of the efficacy
of a robotics-based solution in animal behavior studies. For example, often cited benefits of using
robotics in experimental paradigms addressing functional and dysfunctional processes are the reliability
and repeatability of the animal response to the robot [47,48]. In this respect, the marked one-directional
influence of the replica on the focal fish indicates that consistent responses may be elicited more easily
with a robot than a live stimulus. Although vision was the primary mode of sensing in this experiment,
it is conceivable that a similar finding could be garnered with animals that utilize other cues, such as
chemical [61], acoustic [62] and hydrodynamic [63], to sense their environment.

6. Conclusions

An important question in the study of the behavior of social species is “who follows whom?” [64],
which can be answered by quantifying the direction of information flow between individuals [11].
In this paper, we validated for the first time the use of transfer entropy as an information-theoretic
measure to compute directional information flow in social behavior. To test the method in a scenario in
which information flow is known, we designed an experimental paradigm based on the integration of a
robotics-based platform in a dichotomous preference test. Ongoing work includes the classification of
engineered stimuli using this method and the assessment of information flow in larger animal groups.
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