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Abstract: This paper demonstrates a robust maximum entropy approach to estimating 

flexible-form farm-level multi-input/multi-output production functions using minimally 

specified disaggregated data. Since our goal is to address policy questions, we emphasize 

the model’s ability to reproduce characteristics of the existing production system and 

predict outcomes of policy changes at a disaggregate level. Measurement of distributional 

impacts of policy changes requires use of farm-level models estimated across a wide 

spectrum of sizes and types, which is often difficult with traditional econometric methods 

due to data limitations. We use a two-stage approach to generate observation-specific 

shadow values for incompletely priced inputs. We then use the shadow values and nominal 

input prices to estimate crop-specific production functions using generalized maximum 

entropy (GME) to capture individual heterogeneity of the production environment while 

replicating observed inputs and outputs to production. The two-stage GME approach can 

be implemented with small data sets. We demonstrate this methodology in an empirical 

application to a small cross-section data set for Northern Rio Bravo, Mexico and estimate 

production functions for small family farms and moderate commercial farms. The 

estimates show considerable distributional differences resulting from policies that change 

water subsidies in the region or shift price supports to direct payments. 
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1. Introduction 

This paper develops a method to estimate disaggregated production function models from minimal 

data sets. Disaggregated models of bio-economic systems serve two main purposes. First, they allow 

the distributional effects of policies to be measured across farm size or location. Often, the 

distributional effects of a policy have a greater political impact than efficiency gains. Second, 

heterogeneity is often present in the sample, which results in spatial differences in policy impacts and 

input use that are important to model. Also, with a heterogeneous sample, a disaggregated set of 

models may predict farmers’ responses to policy more accurately in cases in which aggregation bias 

exceeds the small-sample errors associated with disaggregated models. Throughout the paper, we 

assume that sample size is fixed and strive to maximize the policy information derivable from such a 

data set. The central question facing an empirical researcher is what level of disaggregation makes the 

best use of the data set for the purpose at hand. We focus our attention on predicting the impacts of a 

policy on farmers in terms of their net income and use of natural resources in production. 

Disaggregated models of agricultural production must be estimated from very small samples. We 

apply a generalized maximum entropy (GME) estimator approach that allows us to estimate all of the 

model parameters and three measures of model fit—R-square, percent absolute deviation, and 

normalized entropy. Since we are interested in models that can address policy questions, our emphasis 

is on the ability of the model to reproduce the existing production system and predict disaggregated 

outcomes of policy changes. 

Several authors have emphasized the need to spatially disaggregate models for environmental 

policy analysis [1,2]. However, such disaggregation is often made difficult by either limited 

availability of disaggregated data or, when such data do exist, lack of enough degrees of freedom to 

identify disaggregated parameters in a classical estimation framework. Researchers who have sought 

to achieve greater disaggregation in the face of these data problems [3–7] have increasingly turned to 

GME estimation techniques [8]. Given the inherent heterogeneity of soils and other agricultural 

resources, aggregating across heterogeneous regions leads to aggregation bias. However,  

ill-conditioned or ill-posed GME methods may produce estimates that are less precise than ones from 

standard models using less disaggregated data because of the small samples. An additional advantage 

of maximum-entropy-based alternatives is the ability to formally incorporate additional data or 

informative priors in the estimation process in a Bayesian fashion. 

An empirical strategy that focuses on the primal production function has several attractive 

properties for models that are subject to fixed factor constraints. Primary farm data developed via 

surveys often incompletely identify prices because important characteristics such as subsidized inputs, 

family labor, and government regulation are not incorporated. The absence of market prices for family 

labor and water and often for land makes the traditional dual approach inoperable. In addition, when 

responding to surveys, farmers may recall information on primal variables more accurately than 

information on corresponding dual variables. Finally, primal production models can directly interact 

with more detailed models of physical processes. 

In many developed and developing agricultural economies, there is considerable emphasis on the 

effect of agricultural policies and production on the environment and, conversely, on the effect of 

environmental policies on the agricultural sector. This emphasis may rekindle interest in production 
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function models for many policy problems. Production functions are well suited to the analysis of 

agricultural-environmental policy. Environmental values are measured in terms of physical outcomes 

of agricultural activity, and some environmental policies are formulated as constraints on input use.  

In addition, economic models of agricultural and environmental policy impacts often have to formally 

interact with process models of the physical systems. Such models require economic output to be 

expressed in terms of primary values. 

Substitution activity at the intensive and extensive margins is a key focus of agricultural-

environmental policy analysis. A common basic policy approach is provision of incentives or penalties 

that lead to input substitution for a given agricultural technology. Such substitutions at the intensive 

margin can reduce the environmental cost of producing traditional agricultural products or of jointly 

producing agricultural and environmental benefits. The policies cannot be evaluated without explicit 

representation of the agricultural production process. It follows, therefore, that the potential for 

substitution should be explicitly modeled within a multi-input/multi-output production framework. 

The disaggregated multi-input/multi-output constant elasticity of substitution (CES) model analyzed 

in this paper has the ability to model at both margins that represent a farmer’s response to changed 

prices, costs, and/or resource availabilities. The same approach has been applied to other flexible 

functional forms, including quadratic, square root, generalized Leontieff, and trans-log specifications. 

By combining an application of GME methods with estimation of a production function, our 

approach is distinguished from other GME production analyses used in the literature [3,9].  

A reassuring characteristic of GME estimators is that their large-sample estimates generally have 

classical properties even when used to estimate consistent parameter values from ill-conditioned or  

ill-posed problems [7]. 

GME estimators require definition of support values for each parameter, and the support values are 

implicit bounded priors on the parameters. Several authors have shown that the specification of 

support values can strongly influence resulting estimates. In addition, if the support values are 

specified in an ad hoc manner, there may be no feasible solution to the resulting GME estimation 

problem. We use values from a calibrated optimization model to ensure that the support values are 

centered on a feasible solution to the data constraints and are consistent with prior parameter values. 

Given those support values, we estimate production function parameters, input shadow values, and 

returns to scale in a simultaneous GME specification. 

The specification of support values differentiates our approach with other GME production analyses 

used in the literature [9,10]. In fact, the empirical GME literature says very little about how sets of 

feasible and consistent support values are defined for several interdependent parameters. We diverge 

from Heckelei and Wolff [11] by using calibrated optimization models to define the prior sets of 

support values. Like Heckelei and Wolff, however, we estimate production function parameters and 

factor input shadow values in a simultaneous GME specification. 

We generate the finite sample distribution properties of the resulting GME estimates by 

bootstrapping the procedure [12]. Previous work has tested GME results for sensitivity to the support 

space or has used Monte Carlo results to approximate asymptotic parameter distributions. However, 

since our aim is to use small data samples, bootstrapping is a natural choice for generating the finite 

sample properties and is simple to implement. 
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Simulating policy alternatives reliably with constrained profit maximization requires a model that 

satisfies the marginal and total product conditions and has stability in the second-order profit-maximizing 

conditions. It is likely that those who use policy models are mainly interested in reproducing observed 

behavior and simulating beyond the base scenario rather than in testing for the curvature properties of 

the underlying production function. In our simulation framework, we also can impose policy 

restrictions in the form of constraints on the estimated farm production model. 

Section 2 briefly reviews modeling methods used to estimate the effect of agricultural and 

environmental policies on land use. Section 3 develops the production model estimation process and 

bootstrap procedure within the GME framework. Section 4 presents the empirical model applied to a 

data set of 27 farms from a primary survey of 45 farms in the Rio Bravo region of northern Mexico. 

The randomly selected sample of farms contains a very wide range of farm sizes. The central question 

is whether production parameters associated with farm size vary enough that disaggregated models 

would better estimate policy responses than models based on the whole sample. Essentially, we test 

whether disaggregated policy models are better predictors of farmer behavior despite the minimal data 

sets used by such GME estimators. We outline our conclusions in Section 5. 

2. Methods for Modeling Disaggregated Agricultural Production 

Our approach addresses the shortcomings of representative farmer models enumerated by Antle and 

Capalbo [1] when they cited the limited range of responses in typical representative farm models. 

Disaggregated production models capture the individual heterogeneity of the local production 

environment in terms of specific effects of land quality or farm size and allow the estimated production 

functions to replicate differences in input usage and output. 

Love [13] made the point that the level of disaggregation matters in terms of the degree of  

firm-level heterogeneity and other localized idiosyncrasies that are averaged out of the sample, which 

affects the likelihood of observing positive results for tests of neoclassical behavior, such as cost 

minimization or profit maximization. We impose curvature conditions on the estimated production 

function since we are aiming for models that reproduce behavior rather than test for it. Relative 

stability observed in cropping systems despite substantial yield and price fluctuations would provide 

informal empirical evidence that farmers acted as if their profit functions were convex in crop 

allocation. A gradual adjustment of agricultural systems to changes in relative crop profitability 

suggests that farmers make progressive changes over time along all of the margins of substitution 

rather than going from one corner solution to another. 

Zhang and Fan [9] concluded that their assumptions about profit-maximization behavior were 

overzealous for the example to which they applied a GME production function estimation. While the 

level of aggregation they used was severe, they made a case for using GME on the basis of its ability 

to incorporate non-sample information and to deal with imperfectly observed activity-specific inputs.  

In our framework, we can implement more flexible functional forms for production as well as avoid 

imposing constant returns to scale because of our greater level of disaggregation. 

Just et al. [14] stated in their classic production paper that three assumptions characterize most 

agricultural production: inputs that are allocated to specific activities, physical constraints that limit the 

total quantity of some inputs, and output combinations that are determined uniquely by the allocation 
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of inputs to various production activities. Our specification incorporates constraints on land available 

but also allows for jointness between various crops in a region that is reflected by deviations between 

the value marginal product of the crop and the opportunity cost of the restricted land input. 

Current approaches to agricultural production modeling and associated analysis of environmental 

impacts seem to fall into one of three groups: (i) disaggregated programming models that are 

calibrated or constrained [15–17]; (ii) disaggregated logistic models of land use [18]; and (iii) 

aggregate econometric models of land use [19,20]. 

3. Using Generalized Maximum Entropy to Estimate Production Functions 

The nature of the data set defines the estimation method to be used. For disaggregate policy models, 

the data set usually takes the form of a cross-sectional survey taken for a sample that covers a 

heterogeneous region. The GME estimation approach advanced in this paper is completely in accord 

with classical econometric estimators for large-sample problems and uses a standard bootstrap 

approach to estimate the GME parameter distributions. The contribution of this paper lies in the idea 

that the modeler does not have to accept the stricture of conventional degrees of freedom and may 

specify a complex model at the level of disaggregation that is thought to minimize the effect of 

estimation errors and aggregation bias on the outcome. The modeler can specify flexible multi-input 

production functions for any number of observations and calibrate closely to the base conditions. 

Essentially, we show that a minimal level of data that, in the past, would have restricted the modeler to 

a simple linear programming model now can be calibrated and reconstructed as a set of multi-input 

CES production functions. 

The first-order conditions for optimal allocation must incorporate the shadow value of any 

constraint on inputs. Because the allocatable inputs are restricted in quantity and rotational 

interdependencies can exist between crops, we use a modified positive mathematical programming 

(PMP) model [21] on each data sample to obtain numerical values for prior values of shadow prices 

that may exist in addition to the allocatable input cash price. 

Before solving the GME program, one must define support values for each parameter and error 

term. To ensure that the set of support values spans the feasible solution set, we define the parameter 

support values for a particular crop and input combination as the inner product of a vector of weights and 

a vector of functions of the average Leontieff yield over the data set. Support values for error terms are 

defined by positive and negative weights that multiply the left-hand-side values of the equation. 

The non-constant return-to-scale CES production function is defined as: 

γ γα ( β )i

i

i
i i ij ij

j

rts

y x   (1)

where rtsi is the return-to-scale parameter for crop i and 
σ 1

γ
σ
i

i
i


  where σi is the elasticity of 

substitution. 

The GME reconstruction problem becomes:  
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Equation (2) is the standard entropy measure which contains the sum of weighted log probability terms 

that comprises the optimization objective criterion. These probabilities are then multiplied  
( 1 2

, , j, , j, , , j, , ,, , , , ,rts e e
i s i s s i s n i s n i sp p p p p p   ) are with the z-values ( 1 2

, , j, , j, , , j, , ,, , , , ,rts e e
i s i s s i s n i s n i sz z z z z z   ) that span the 

discretized support space over which the production model parameters and the error terms in  

Equations (3) and (4) are hypothesized to exist, following the normal GME procedure. The definition 

of the key production model parameters is given in Equation (6), where we have the estimated 

coefficients for return to scale (rtsi), elasticity of substitution (σi), shadow value of allocatable inputs  
( j ), and CES share parameters (βij). The CES scale parameter ( i ), by contrast, is directly estimated 

without the use of an entropy-weighted sum of support values. Equation (5) shows the usual adding-up 

constraint on the entropy weights.  

The first data-based Equation (3) represents the first-order conditions that set the cost ratio equal to 

marginal physical production. If some inputs are restricted, the input cost in the first-order equation 
includes estimated shadow values ( j  ) as well as the nominal input price ( ,i jc ) and output price ( i ) 

for the commodity. 

The second data-based Equation (4) fits the production function to the observations on total 
production ( ,n iY ). While one does not normally include both marginal and total products as estimating 

equations in econometric models, we propose that the information provided by the total product 

constraint is particularly important for two reasons. First, while farmers may lack precise information 

on the cost of production and/or be reluctant to share such information in a survey, they always know 

how many acres they planted and the yield of those acres because they are primary indicators of 

production performance. In addition, usually, they are proud to share that information. Second, while 

information on the marginal conditions is essential for a behavioral analysis, policy models also must 
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accurately fit with total actual production to be convincing to policymakers and correctly estimate the 

total impact of policy changes on the environment and the regional economy. Fitting the model to the 

integral and to the marginal conditions should improve the precision of the model in a policy analysis. 
Due to the separability assumption on the production functions, we can rapidly solve the estimation 

problem by looping through individual production functions since the linkage between production of 

different crops is defined by the shadow values and allocatable input constraints. 

Note that the parameters of the supply functions, the derived input demands, and the elasticities of 

substitution are obtainable from a data set of any size (from one observation upward). Clearly, reliance 

on the support space values and micro-theory structural assumptions is much greater with minimal data 

sets. However, our approach allows one to use a formal disaggregation of production estimates since 

specification of the problem is identical for all sizes of data sets. 

A challenge for widespread adoption of GME and entropy methods in general is that users of 

conventional estimates often question the reliability of entropy estimates and understandably ask for 

the variance of the coefficient. To date, the response from entropy advocates has been to reassure them 

that the asymptotic properties are consistent. However, asymptotic response is not very reassuring for 

an estimator that is especially useful for small samples. It follows, then, that models must be able to 

generate GME parameter error bounds using the small data sets with which such models excel.  

By combining a bootstrap [12] method with GME estimation, we can generate variances for all of the 

production function parameters and their corresponding pseudo t-values. This allows the analyst to 

have a formal measure of precision for each parameter. In addition, having calculated the variance for 

a set of critical policy parameters (such as disaggregated elasticities of substitution and returns to 

scale), one can apply statistical tests for significant differences between the parameters and thus, 

implicitly, test for the robustness of the disaggregated production function estimates. 

4. Empirical Reconstruction of Regional Crop Production in Rio Bravo 

4.1. Data Restrictions 

Ideally, production models are constructed from a consistent time series of regional data that 

includes all of the crop inputs and outputs and their associated prices. Unfortunately, such rich, 

consistent data sets are rarely available. In some cases, comprehensive cross-section survey data are 

available but rarely for more than one year. The empirical example in this paper is a small,  

cross-sectional farm survey conducted by United Nations Food and Agriculture Organization (FAO) 

enumerators for 45 farms in the Rio Bravo region of Mexico in 2005; we use a subset of 27 farms. The 

data set is typical of primary data sets collected in developing and developed countries. 

4.2. Production Function Specification 

We assume that production of a farm’s various crops is restricted by the size of the farm, which 

limits the total amount of land and water available. We treat labor as a normal variable input since 

proportions of family and wage labor varied widely across the sample. 

The CES production function is written as: 
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where yi is the farm output of a given crop and xi,j is the quantity of land, water, or labor allocated to 

crop production for each farm-size class (small, medium, and large). 

The policy simulation problem defined over n farms and i crops in each farm-size class for a single 

year is given by the constrained maximization problem shown in Equation (8), below: 
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where total annual quantities of irrigated land ( 1X ) and water (X2) are limited for each farm.  

By re-solving the producer profit-maximization problem, while changing the right-hand-side 

quantity of water available in the 2nd constraint, we can generate a derived demand function for water 
that corresponds to each farm class. The commodity output prices ( i ) and input costs ( ,i jc ) are the 

same as those given in Equation (3) of the entropy-based estimation procedure. Both the estimation and 

simulation of the production function were carried out within the GAMS [22] programming 

environment, using a standard desktop computer.  

4.3. Estimation Results 

Estimation of the full set of parameters for the production function with three inputs (land, water, 

and labor) requires that each regional crop be parameterized in terms of six parameters: three for the 

share coefficients, a scale parameter, a return-to-scale parameter, and the elasticity of substitution.  

In addition, two shadow values (on land and water) are estimated for each farm-size group. The 

resulting 27 observations can be disaggregated into three size classes (small, medium, and large) based 

on production of the two dominant crops in the region, sorghum and maize. The sample statistics are 

shown in Table 1. Of the farms in our sample, twelve are classified as small, six as medium, and nine 

as large. With six parameters per crop production function, all three farm groups have small or 

minimal degrees of freedom. In fact, when allowing for estimation of shadow values, the medium-size 

farm group has a small negative degree of freedom. This extreme case provides a severe test of the 

disaggregated GME approach. 

The data for this study were collected in a 2005 FAO survey of 45 farms in the Rio Bravo region of 

Mexico. Twelve were in the state of Chihuahua, eight in Coahuila, four in Nuevo Leon, and twenty-one 

in Tamaulipas. The survey generated farm-level data on inputs, outputs, and costs and information on 

the characteristics of each farm. Values for total revenue took into account government support 

programs, and an equivalent crop price was calculated on a per-hectare basis. We dropped three very 

large farms in the sample as atypical and then omitted farms that grew no maize or sorghum, reducing 

the data set to 27 observations. 
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Table 1. Cultivated land and average water used for selected crops by farm size.  

Farm  

Size 

Crop 

Small Medium Large Summary 

Cultivated 

land (ha) 

water used 

(m3/ha) * 

Cultivated 

land (ha) 

water used 

(m3/ha) * 

Cultivated 

land (ha) 

water used 

(m3/ha) * 

Cultivated 

land (ha) 

water used 

(m3/ha) * 

Alfalfa 1.5 23,000 10.0 16,000 129.0 18,558 140.5 19,186 

Wheat 19.4 5,000 77.0 5,000 96.4 5,000 

Maize 3.0 8,000 50.1 5,325 1,358.3 5,236 1,411.4 6,187 

Cotton 290.0 8,138 290.0 8,138 324.0 8,069 

Melon 10.0 17,000 180.0 2,600 190.0 9,800 

Sweet Potato 20.0 7,000 20.0 7,000 

Beans 0.5 5,000 0.5 5,000 

Sorghum 15.0 7,600 83.0 4,172 2,198.0 2,023 2,296.0 4,598 

Average 30.0 12,120 196.5 7,699 4,252.3 6,936 4,478.8 8,105 

* Average of water used per hectare. 

Five of the twelve irrigation districts in the Rio Bravo region are represented in our sample. The 

survey, from which our sample data were obtained, covered three other irrigation units: Delicias, 

Chihuahua, and Bajo Rio Bravo. We selected eight crops for our analysis: alfalfa, wheat, maize, 

cotton, melons, sweet potatoes, beans, and sorghum. 

Table 2. Returns to Scale. 

 Field Forage Maize Sorghum Wheat 

All farms 0.369 0.431 0.658 0.67 0.402 
Small farms 0.385 0.444 0.411 0.615  

Medium farms   0.511 0.437  
Large farms   0.387 0.39  

Table 3. Elasticity of Substitution. 

 Field Forage Maize Sorghum Wheat 

All farms 0.721 0.729 0.397 0.761 0.713 
Small farms 0.720 0.726 0.709 0.702 - 

Medium farms - - 0.699 0.697 - 
Large farms - - 0.714 0.718 - 

Tables 2 and 3 show considerable variation in the returns to scale and elasticities of substitution 

within both the farm-size groups and by crops. For example, sorghum and wheat have higher 

substitution elasticities than maize, the other dominant crop. As expected, returns to scale decrease as 

farm size increases for both sorghum and maize (for medium and large farms). Differences in these 

two parameter values across farm-size groups will be reflected in responses to changes in input price 

or quantity. The intensive margin of adjustment is determined by the elasticity of substitution while 

changes at the extensive margin are determined by the curvature of the production function, which is 

summarized by the decreasing return-to-scale parameter. Intuitively, one expects small farms to be less 

able to respond with changes in crop mix or land area. 
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4.4. Measures of Goodness of Fit 

Tables 4 and 5 show the goodness of fit of the model by way of R-square values for crop production 

and the percent of absolute deviation (PAD) of the in-sample predictions. The R-square values range 

from 0.77 to 0.15 and the PAD measure shows reasonable prediction errors. 

Another measure of the overall information content of the GME estimates is the normalized entropy 

measure [8]. In this paper, we use normalized entropy values for the farm-size groups to calculate 

information indices [23], which measure the reduction in uncertainty attributable to the GME 

estimates. The information indices (whose values represent one minus the normalized entropy value) 

for all of our sample sizes show significant reductions in uncertainty: 0.830 for all farms, 0.769 for 

large farms, 0.709 for medium farms, and 0.768 for small farms. 

Table 4. R-square of Farm Production. 

 Field Forage Maize Sorghum Wheat 

All farms 0.375 0.369 0.269 0.319 0.528 
Small farms 0.374 0.393 0.299 0.142  

Medium farms   0.696 0.263  
Large farms   0.190 0.290  

Table 5. Percent Absolute Deviation of Farm Production. 

 Field Forage Maize Sorghum Wheat 

All farms 3.680 6.550 40.000 40.870 1.50 
Small farms 5.549 15.102 24.495 37.518  

Medium farms   16.797 37.749  
Large farms   9.319 12.712  

Estimation of shadow values for the fixed but allocatable inputs of land and water is a very 

important component in estimating responses of farmers in developing economies to changes in the 

cost of allocatable inputs. For example, electric power used to pump groundwater is heavily subsidized 

in Mexico [24]. The subsidy is an effective income transfer mechanism but leads to distortions in the 

use of water and exacerbates overdrafting. 

The results presented in Table 6 show that the shadow value of land exceeds the nominal cost of 

land in all of the farm-size groups; for water, the shadow value is equal to or greater than the total 

input cost. Clearly, for this sample, any estimation based only on nominal input costs will be highly 

biased, and policy responses will be similarly distorted. 

Table 6. Input Shadow Values. 

 Land Cost Water Cost 

 Shadow Value Nominal Cost Shadow Value Nominal Cost 

Small farms 959.82 762.00 255.59 222.02 
Medium farms 1,947.57 637.10 855.28 185.85 

Large farms 1,208.32 977.27 223.56 223.06 
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4.5. Calculating GME Parameter Distributions Using a Bootstrap 

Bootstrap methods have been used for the past twenty years to approximate the distribution of a 

statistic by systematically resampling the original sample data. The GME bootstrap uses a uniform 

random distribution to select observations from the original sample of n observations with 

replacement. Having generated the bootstrap observations, the GME program developed here 

calculates GME estimates of the production function coefficients, rtsi,B, for i crops. We calculate the 

bootstrapped returns to scale, rtsj,B, and run the bootstrap loop for 500 (B) iterations. The estimated 
asymptotic variance for a given GME parameter estimate (such as return to scale) for the ith crop, ˆ

jrts , 

can be estimated from the B-bootstrapped estimates ( ,
ˆ

j Brts ) as: 

, ,
1

1ˆ ˆ ˆ ˆ ˆ
B

j j b j j b j
b

Var rts rts rts rts rts
B 

          (9)

For simplicity of presentation, we restrict the tables to one crop and three production function 

parameters. We use sorghum because it is the crop grown most often in the random sample. 

Differences in production functions are tested using the return-to-scale parameter, the elasticity of 

substitution, and the CES scale parameter. From theory, we expect that the return to scale will decrease 

as farm size increases; there is no theoretical reason for the elasticity of substitution, which measures 

the intensive margin of adjustment, to differ with farm size for the same crop; and the scale parameter 

is expected to differ with farm size. Table 7 shows means and variances of the three parameters by 

farm size. 

Table 7. Sorghum Production Parameters by Farm Size. 

 Small Farm Medium Farm Large Farm 

 Mean Variance Mean Variance Mean Variance 
RTS 0.615 0.0200 ** 0.437 0.017 0.390 0.056 * 

Substitution 0.615 0.263 0.688 0.019 ** 0.717 0.158 * 

Scale 8.552 251.250 48.445 256,863.530 125.500 28,102.500 

** significant at 1%; * significant at 5%. 

The results in Table 7 show that, as expected, return to scale decreases with larger farms, the 

elasticity of substitution shows no statistical difference between farm sizes, and the scale parameter 

increases. Since the elasticity of substitution between inputs is based on agronomic substitution 

potential on a field basis, we would not expect this agronomic measure to change with farm size. To 

formally evaluate whether there are significant differences in these three parameters according to farm 

size, we use the bootstrap results to generate pair-wise tests. 

The results are shown in Table 8. Table 8 supports the expected production function properties in 

that the returns to scale in the small-farm group are significantly larger than those in the medium- and 

large-farm groups. The increase in return to scale between medium and large farms is not significant. 

As expected, the scale parameter shows an increase between each group, but because of imprecision in 

the bootstrap results for the medium farms, the only significant difference in parameters is between the 

small and large farms. The results in Tables 7 and 8 show that the combination of bootstrapping and 
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GME enables formal tests of the disaggregated estimates and in this case justifies the disaggregation 

by farm size. 

Table 8. t-Values for Differences in Sorghum Production Parameters. 

 Small–Medium Small–Large Medium–Large 

Return to scale 2.578 ** 2.721 ** 0.440 
Substitution –0.338 –0.494 –0.170 

Scale –0.276 –2.423 ** –0.423 

** significant at 1%; * significant at 5%. 

4.6. Simulating Differences in Water Policy Response Functions 

We use the production functions that were estimated across the various sample sizes defined by the 

production maximization problem stated in Equation (8) to simulate the production response for each 

farm in a size group. 

The interval elasticity of demand for water is calculated by decreasing the total available quantity of 

water to each farm in 10% increments and measuring the change in shadow value. Because of sample 

variation, we do not expect that all of the farms within a given size group will have binding water 

constraints when simulated using the estimated production function coefficients for that sample.  

We estimate production functions and demands for the aggregate farm sample and the small-, medium-

, and large-farm samples as per the procedure defined within the preceding section. Each model is 

parameterized over a 50% reduction in available water. Interval elasticities over a 10% change are 

calculated for each farm in the group that has a non-zero shadow value on water in the lower range of 

water availability levels. The interval elasticities show remarkable consistency across the farm-size 

groups. The water demand elasticity is –0.645 for small farms, –0.755 for medium farms, –0.691 for 

large farms, and –0.678 for the aggregated sample. 

Despite the similarity in the interval elasticities, the derived demand functions varied greatly by 

farm-size group. To test the policy value of disaggregating demand estimation by farm size, we obtain 

a demand function by regression on water quantities and shadow values generated for each farm in the 

sample when parameterized by water reductions. Table 9 shows the values of demand parameter s and 

the goodness of fit of the estimation. 

Table 9. Inverse Water Demand Functions.  

Farm Size Demand Equation R-square 

Small P = 618.65 – 97.63 Ln(Q) 0.78 
Medium P = 3,024.2 – 440.54 Ln(Q) 0.74 

Large P = 1,290.4 – 127.69 Ln(Q) 0.33 
Aggregate P = 792.61 – 117.37 Ln(Q) 0.75 

To compare the aggregate and disaggregate water demand functions, we plot the disaggregated and 

aggregated estimated functions over the same range of potential water reductions. The functions can be 

thought of as measuring the impact of a water tax policy or the cost of a quantitative reallocation. 

Figures 1–3 show the functions.  
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Figure 1 presents the functions for the aggregated and small farms. The aggregate function most 

closely approximates the small-farm function in that the difference is a constant overvaluation of 

water, which would introduce a constant distortion into policies. 

Figure 2 compares functions for aggregated and medium farms and demonstrates very large 

undervaluations over most of the water-quantity range. The demands coincide at large quantities but 

differ in value by a factor of four at very small quantities. Thus, the stronger the policy, the greater the 

undervaluation. 

Figure 3 compares the functions of large farms and the aggregated sample. Due to bias toward small 

farms in the aggregate set of farms with binding water constraints, the aggregate function undervalues 

the large-farm data so badly that it is unusable for policy analysis. 

Figure 1. Water Demand- Small farm. 

 

Figure 2. Medium Farm Water Demands. 

 

Figure 3. Large Farm Water Demands. 
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The results in Figures 1–3 clearly show that, despite similarity in the interval elasticities, the water 

demand function estimated using the aggregate data set is unusable for the large-farm group and has 

the expected upward and downward bias in the small- and medium-farm groups, respectively. For this 

empirical example, estimation of policy models disaggregated by farm size gains significantly more 

from the reduction of aggregation bias than it loses from small-sample imprecision. 

5. Conclusions 

This paper shows that a GME approach makes it is possible to construct flexible-form production 

function models from a data set of modest size. A researcher can construct similar, theoretically 

consistent, flexible-form production models using data ranging from small samples with minimal 

degrees of freedom to full econometric data sets with standard degrees of freedom. The convergence of 

GME estimates to conventional estimates as sample size increases means that expansion of the data set 

will generate a continuum from an optimization to an econometric model. 

The disaggregate production models yield all of the comparative static properties and parameters of 

large-sample models. The effect of any constraint on inputs is directly incorporated in the estimates 

through simultaneous estimation of shadow values of the allocatable resources. Models of production 

functions are advantageous because they are readily understood by members of other scientific 

disciplines (especially those who model biophysical processes), who thus can add useful information 

that will clarify prior support values or constraints to production. 

In this example, the aggregation bias in the aggregated model swamped any gains from reducing 

small-sample error. The disaggregated model yielded greater precision for a regional data set. This 

gain from disaggregation of production models will require substantial additional testing before we can 

conclude that it is a common phenomenon. In this example, the empirical results show that the 

disaggregated and aggregated estimates similarly and relatively accurately reproduce the actual 

production system as measured by the values of the R-squared, absolute deviation, and the entropy 

information index. Despite similar estimates of the elasticity of water demand, the disaggregated 

samples showed a wide variation in the derived demand for water that would directly influence  

farm-level responses to policy changes (such as in the price of water, for example). The utility of 

undertaking a rigorous disaggregation of production function estimates is clearly demonstrated by the 

results, and should serve as an encouragement to other researchers who wish to look more closely at 

the heterogeneity in producer behavior that almost certainly exists across the farm landscape in other 

parts of the world. 
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