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Abstract: We treat the non-equilibrium evolution of an open one-particle statistical system,
subject to a potential and to an external “heat bath” (hb) with negligible dissipation. For the
classical equilibrium Boltzmann distribution, Wc,eq, a non-equilibrium three-term hierarchy
for moments fulfills Hermiticity, which allows one to justify an approximate long-time
thermalization. That gives partial dynamical support to Boltzmann’s Wc,eq, out of the set of
classical stationary distributions, Wc,st, also investigated here, for which neither Hermiticity
nor that thermalization hold, in general. For closed classical many-particle systems without
hb (by using Wc,eq), the long-time approximate thermalization for three-term hierarchies is
justified and yields an approximate Lyapunov function and an arrow of time. The largest
part of the work treats an open quantum one-particle system through the non-equilibrium
Wigner function, W . Weq for a repulsive finite square well is reported. W ’s (< 0 in
various cases) are assumed to be quasi-definite functionals regarding their dependences on
momentum (q). That yields orthogonal polynomials, HQ,n(q), for Weq (and for stationary
Wst), non-equilibrium moments, Wn, of W and hierarchies. For the first excited state of
the harmonic oscillator, its stationary Wst is a quasi-definite functional, and the orthogonal
polynomials and three-term hierarchy are studied. In general, the non-equilibrium quantum
hierarchies (associated with Weq) for the Wn’s are not three-term ones. As an illustration,
we outline a non-equilibrium four-term hierarchy and its solution in terms of generalized
operator continued fractions. Such structures also allow one to formulate long-time
approximations, but make it more difficult to justify thermalization. For large thermal and de
Broglie wavelengths, the dominant Weq and a non-equilibrium equation for W are reported:
the non-equilibrium hierarchy could plausibly be a three-term one and possibly not far from
Gaussian, and thermalization could possibly be justified.
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1. Introduction

A large and comprehensive set of references on the philosophy and foundations of statistical
mechanics (both at equilibrium and off-equilibrium), from different points of view, is collected
in [1]. Non-equilibrium statistical systems of classical particles are described by non-negative Liouville
distribution functions (Wc) [2–5]. For non-equilibrium statistical systems of quantum particles, Wigner
functions (W ) are quite suitable in a global sense [3–8] (W < 0 in some cases). Achieving a deeper
knowledge of how open or closed (classical or quantum) statistical interacting systems evolve in time
plays a key role in statistical physics. A system subject to the influence of another (in general, larger)
system at thermal equilibrium (external “heat bath” or hb) is named open. A system not influenced by
any such external hb is named closed. The issue of the thermodynamic asymmetry in time continues to
be central [9]: in short, how an arrow of time and/or irreversibility could arise in the long-time evolution
of closed classical or quantum many-particle systems [2–5,10].

The dependences of the non-equilibrium Liouville and Wigner equations on momenta have a universal
character (see Equations (1), (40) and (41)), while their dependences on positions are contained
inside the potentials and, then, vary from one case to another. These facts suggest the use of
non-equilibrium position-dependent moments (through suitable orthogonal polynomials profiting from
the universal dependences on momenta and integrations over the latter). One could ask whether those
universal momenta dependences would allow, for large systems under certain conditions and in some
approximation, for their thermalization towards the canonical equilibrium distributions.

We shall adopt the following standpoint, certainly different from those in [11–14] and bearing
connections to and, simultaneously, differences from those in [15–22]. As a direct analysis of large
systems is very difficult, we shall start with an open small statistical system, subject to an hb at thermal
equilibrium at absolute temperature, T (6= 0), but with negligible external dissipation, due to the hb.
In such a framework, the non-equilibrium evolution of the system does not thermalize, but we shall apply
suitable long-time approximations and investigate whether they yield an approximate thermalization or if
the latter is physically unexpected. Even if such dissipationless systems constitute an oversimplification,
they give rise to both considerable difficulties and some interesting possibilities, as we shall see.
Just in case an approximate thermalization could occur under certain conditions, then such a strategy
could possibly be generalized for non-equilibrium evolutions of closed statistical many-particle systems
without hb, at least approximately.

We shall study the following issues, left open in [11–14]: (a) In the non-equilibrium evolution for an
open classical one-particle system for long times, subject to an external hb at absolute temperature T with
negligible external dissipation on the former, is there anything in the structure of its Liouville equation



Entropy 2014, 16 1428

allowing for certain dynamical selection of the canonical equilibrium distribution, out of the set of all
stationary distributions, at least partially and/or approximately? If so, in what sense? If (a) has some
positive (even if partial) answer: (b) could it be extended to non-equilibrium closed classical systems
without external hb (the role of the latter being then played by a large set of internal degrees of freedom
at equilibrium in the system ), at least approximately? (c) Could it be extended to quantum systems by
means of Wigner functions [6], at least approximately or in some regime? The present work, which will
extend, non-trivially, [15–22], is devoted to study questions (a), (b) and (c).

First, we shall investigate Issue (a). See Section 2 (which will also provide a useful framework for (c)
later, in Sections 3–7) and Appendices A and B.

Second (Issue (b)), we shall present a simple overview of [15] on long-time approximations and
irreversibility in closed interacting many-particle classical systems (with neither hb’s nor dissipation due
to external sources), including some improvements from [17], in order to extract some approximate
arrow of time. See Section 3 and Appendix B.

Third, we turn to the largest part of this work (Issue (c)). The genuine difficulties of quantum cases
already show up in one-dimensional systems, and they deserve further study. Some generalizations
of the moment method to non-equilibrium open one-particle quantum statistical systems have already
been studied with external dissipation (to lowest order in Planck’s constant) [21,22] and also without
external dissipation [20]. Here, we shall focus on the Wigner function and equation, with negligible
external dissipation due to the hb, to all orders in Planck’s constant. We shall treat stationary and
equilibrium Wigner functions, the issue of negativity and the orthogonal polynomials generated by them
(Sections 4 and 5) and the non-equilibrium evolution (Section 6). Could one display some arrow of
time in the quantum case, at least approximately in some regime? See Section 6.4 and, just for the case
of large thermal and de Broglie wavelengths, Section 7. Finally, Section 8 presents some conclusions
and various discussions. Several technical aspects on Issues (a) and (c) are treated in Appendices A
and C–G.

The inclusion of non-negligible dissipation in open systems has been studied in detail, both in classical
and quantum cases, in [22]. From the outset, in the present work, we shall deal with an open system,
subject to an hb (at finite and well-defined T 6= 0) exerting negligible dissipation on the former. However,
the very consideration of such a system could give rise to criticisms. In fact, one could argue that either
the neglection of dissipation would upset the fact that the system evolves at finite T or that the system
would be a closed one ( then being unclear what the temperature would mean ). We shall address such
conceptual issues a posteriori in Sections 2.3 (classical) and 6.4 (quantum).

2. Open Classical One-Particle Systems

2.1. Some General Aspects

Let a classical non-relativistic particle, with mass m, position x and momentum q, be subject to
a real potential V = V (x), in the presence of a “heat bath” (hb) at thermal equilibrium at absolute
temperature T , with β = (kBT )−1 (kB being Boltzmann’s constant). Dissipation effects on the particle
due to the hb will be supposed as so small that they will be discarded completely (negligible friction).
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We shall suppose that V (x) ≥ 0, with V (x) → 0 as | x |→ +∞. Classical harmonic/anharmonic
oscillators, treated in [17,20], will not be considered in Sections 2 and 3. The classical Hamiltonian of
the particle is: Hc = q2/(2m) + V . Let the classical particle be, at the initial time t = 0, out of thermal
equilibrium with the hb, and have a Liouville probability distribution Wc,in = Wc,in(x, q) (≥ 0) to be at
the position, x, with momentum q. Then, the non-equilibrium particle has, at time t(> 0), the probability
distribution Wc = Wc(x, q; t)(≥ 0), which evolves through the reversible Liouville equation:

∂Wc

∂t
+

q

m

∂Wc

∂x
− ∂V

∂x

∂Wc

∂q
= 0 (1)

We shall treat the temporal evolution for t > 0 by using Equation (1) for Wc, with the initial condition,
Wc,in. Equation (1) has an infinite set of stationary (t-independent) solutions: Wc = Wc,st = f(Hc),
with an arbitrary function, f ≥ 0, decreasing quickly as | Hc |→ +∞, by assumption. Hence, Wc,st is
not Gaussian in q, in general. The equilibrium (or Boltzmann’s) canonical distribution, a t-independent
solution of Equation (1) describing thermal equilibrium of the particle with the hb, is Gaussian in q:
Wc,st = Wc,eq = exp[−β(q2/(2m)+V )]. Another stationary solution, to be treated briefly in Appendix B,
just as a peculiar illustration, is the stationary microcanonical distribution, Wc,mc.

Let q0 be some fixed x-independent momentum, to be discussed later. We shall define y = q/q0. We shall
consider a generic stationary Wc,st, with an arbitrary f , and we shall introduce the denumerably infinite
family of all (unnormalized) polynomials in y: Hc,n = Hc,n(y) (n = 0, 1, 2, 3, . . . ), orthogonalized in y
(for fixed x) by using Wc,st as the weight function. By choosing Hc,0(q) = 1, we impose, for n 6= n′ and
any x (left unintegrated), that: ∫ +∞

−∞
dyWc,st(x, q)Hc,n(y)Hc,n′(y) = 0 (2)

The orthonormalized polynomials are Hc,n(y)/(hc,n)1/2, with the (x-dependent) normalization factor:

hc,n ≡
∫ +∞

−∞
dyWc,st(x, q)Hc,,n(y)2 (3)

The Hc,n(y)’s suggest the following new moments Wc,n (n = 0, 1, 2, . . .) of Wc:

Wc,n = Wc,n(x; t) =

∫ +∞

−∞
dyHc,n(y)Wc(x, q; t) (4)

For Wc = Wc,st(x, q), Equation (4) yields Wc,st,n = 0 if n > 0, and Wc,st,0 =
∫ +∞
−∞ dyWc,st(x, q). The

initial condition, Wc,in,n, for Wc,n is obtained by replacing Wc by Wc,in in Equation (4). One has the
following (formal) expansion for Wc:

Wc = Wc,st(x, q)
+∞∑
n=0

Wc,n(x; t)
Hc,n(y)

hc,n
(5)

2.2. Wc,st = Wc,eq: Three-Term Hierarchy, Operator Continued Fractions and Long-Time Approximation

Let us consider the very special case: Wc,st = Wc,eq, with q0 = (2m/β)1/2. The orthogonal
polynomials generated by the weight function, Wc,eq, are Hc,n(y) = Hn(y), Hn(y) being the standard
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(x-independent) Hermite polynomials [23]. For Wc = Wc,eq(x, q) and Hc,n(y) = Hn(y), Equation (4)
yields Wc,eq,n = 0 if n > 0, and Wc,eq,0 =

∫ +∞
−∞ dyWc,eq(x, q) = π1/2 exp[−βV ]. For Hc,n(y) = Hn(y),

Equations (1) and (4) give an exact three-term non-equilibrium hierarchy for all Wc,n’s [11,12,15]. Such
a three-term hierarchy, through the transformation Wc,n(x; t) = [Wc,eq,0(x)]1/2gn(x; t), becomes the
following exact three-term hierarchy for the gn’s for any n = 0, 1, 2, 3....:

∂gn
∂t

= −Mc,n,n+1gn+1 −Mc,n,n−1gn−1 (6)

Mc,n,n±1gn±1 ≡ [
(n+ (1/2)(1± 1))kBT

m
]1/2[

∂gn±1

∂x
− (±1)gn±1

2kBT

∂V

∂x
] (7)

with initial condition gin,n = Wc,in,n/W
1/2
c,eq,0. One key fact is that Mc,n,n+1 and−Mc,n+1,n are the adjoint

of each other. Notice that Equation (7) corrects a misprint in Equation (5) in [20]. One sees directly that
the Wc,eq,n’s solve the three-term recurrence relation Equations (6) and (7).

Let us consider the Laplace transforms g̃n = g̃n(s) =
∫ +∞

0
dtgn exp(−st), with inverse

gn =
∫ c+i∞
c−i∞ (ds/2πi)g̃n exp(st) (c being real and such that g̃n(s) is analytic in the half-plane Res > c of

the complex s-plane). This definition and Equation (6) yield the three-term hierarchy for g̃n:

sg̃n = gin,n −Mc,n,n+1g̃n+1(s)−Mc,n,n−1g̃n−1(s) (8)

The hierarchy Equation (8) can be solved formally by extending to it standard procedures for solving
numerical three-term linear recurrence relations in terms of continued fractions [12]. One gets all g̃n(s),
for any n = 1, . . . , in terms of sums of products of certain s-dependent linear operators D[n′; s], n′ ≥ n,
acting upon g̃n−1(s) and upon all gin,n′’s, with n′ ≥ n. The following recurrence gives the D[n; s]’s:

D[n; s] = [sI −Mc,n,n+1D[n+ 1; s]Mc,n+1,n]−1 (9)

I is the unit operator. By iteration of Equation (9), D[n; s] becomes a formal infinite continued fraction
of the products of the non-commuting linear operators, Mc,n,n+1 and Mc,n+1,n. The hierarchies in
Equations (6)–(8) are as reversible as Equation (1). The long-time approximation below will introduce
irreversibility in those hierarchies. Let us consider some real and small ε > 0 and some integer, n0 ≥ 1.
Then, for n ≥ n0, D[n + 1; ε] is Hermitian, and all its eigenvalues are real and non-negative. The
essential justification of those two properties can be easily exemplified through 2 × 2 matrices: let us
replace D[n + 1; s] by a Hermitian 2 × 2 matrix with non-negative eigenvalues, Mc,n,n+1 and Mc,n+1,n,
by two 2 × 2 matrices, such that Mc,n,n+1 and −Mc,n+1,n are the adjoint of each other. Then, it is
easy to see that −Mc,n,n+1D[n + 1; s]Mc,n+1,n is also a Hermitian 2 × 2 matrix with non-negative
eigenvalues, and the same holds for εI − Mc,n,n+1D[n + 1; s]Mc,n+1,n, I being now the unit 2 × 2

matrix. An alternative justification of the above is also given just before Equation (32). To complete
the justification, one should take into account the [(n + (1/2)(1 ± 1))kBT )]1/2 factors contained inside
Mc,n,n±1 in Equation (7): the continued-fraction structure of the D’s in Equation (9) implies that for
adequately large n, −Mc,n,n+1D[n + 1; s]Mc,n+1,n decreases grossly as n−1/2, so that, if ε is not large,
[εI − Mc,n,n+1D[n + 1; s]Mc,n+1,n]−1 is also Hermitian and has non-negative eigenvalues. In short,
the continued-fraction structure of the D’s in Equation (9) justifies recurrently that if D[n + 1; ε] is
Hermitian and has only non-negative eigenvalues, the same is also true for D[n; ε]. For more details,
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see [15,16,20]. For a simpler hierarchy, without loss of generality, let us assume that Wc.in,n′ = 0 for
n′ ≥ 1, with Wc,in,0 6= 0. Although the long-time approximation has been justified for adequately large
n, let us choose n0 = 1, for simplicity. Then, Equation (8) yields:

sg̃0(s) = W
−1/2
c,eq,0Wc,in,0 −Mc,0,1g̃1(s) (10)

g̃n(s) = −D[n; s]Mc,n,n−1g̃n−1(s), n ≥ 1 (11)

The long-time approximation for n ≥ 1 and small s can now be implemented as follows (with ε > 0).
One replaces any D[n; s] yielding g̃n in Equation (11), n ≥ 1, by D[n; ε]: this approximation is not
done for n = 0, which will be crucial. We regard D[n; ε] in Equation (11) as fixed (s-independent)
operators. Thus, in particular, we approximate in Equation (11) for small s and n = 1 as:
g̃1(s) ' −D[1; ε]Mc,1,0g̃0(s) (to be compared to Equation (11) for n = 1, before the approximation).
Then, Equations (11) (after the approximation) and (10) become, by taking inverse Laplace transforms:

∂g0

∂t
= −Mc,0,1g1 (12)

g1 ' −D[1; ε]Mc,1,0g0 (13)

Equations (12) and (13) give the irreversible Smoluchowski-like equation for the n = 0 moment:

∂g0/∂t = Mc,0,1D[1; ε]Mc,1,0g0 (14)

In the latter, after the above long-time approximation, we employ the same initial condition
Wc,in,0/W

1/2
c,eq,0 at t = 0; this amounts to another kind of approximation (presumably, without special

importance, as long as the system will thermalize, independently on the initial condition). The solutions
of the last equation for g0 relax irreversibly, for large t and reasonable Wc,in,0, towards W 1/2

c,eq,0 6= 0 and
gn → 0 if n = 1, . . . (thermal equilibrium). Then, the dominant moment is g0, while any gn with n > 0

is negligible. gn (n ≥ 1) is the smaller, the larger t(> 0) and n are (due to the behaviors of Mc,n,n±1

and of D[n; ε] with n) [15,16,20]. Similar behaviors hold for Wc,0 and Wc,n with n > 0. To carry out
quantitative studies for large t, some ansatz or approximation (outside our scope) should be provided
for D[1; ε] at least, consistently with the above properties. Equation (102) describes a Brownian-like
random walker, subject to V (x). For other applications of the operator continued fractions to the
Smoluchowski equation for Brownian motion and to problems in condensed matter physics, see [24] and
references therein.

For the following computation, the right-hand-side of Equation (14) should be interpreted
as

∫ +∞
−∞ dx′(Mc,0,1D[1; ε]Mc,1,0)(x, x′)g0(x′; t). Let: (f1, f2) =

∫ +∞
−∞ dxf1(x)∗f2(x) for suitable

functions f1 and f2. The following properties (which follow from the general ones of D[n; ε]

stated above) will be used to get Equation (16): (a) due to the Hermiticity of D[1; ε]:
(f1,Mc,0,1D[1; ε]Mc,1,0f2) = (Mc,0,1D[1; ε]Mc,1,0f1, f2), thereby checking that Mc,0,1D[1; ε]Mc,1,0 is
Hermitian, as so is D[1; ε]; (b) (f1,Mc,0,1D[1; ε]Mc,1,0f1) = −(Mc,1,0f1, D[1; ε]Mc,1,0f1) ≤ 0 for
arbitrary functions f1, as all eigenvalues of D[1; ε] are ≥ 0. Both Properties (a) and (b) (with D[1; ε]

replaced by D[n + 1; ε]) lie at the heart of the iterative justification that D[n; ε] is Hermitian and has
only real and non-negative eigenvalues for n ≥ 0. After the long-time approximation and anticipating
Equation (32), let:

L =
1

2
(g0, g0) (15)
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Using Equation (14) and the preceding Properties (a) and (b):

∂L/∂t = (g0,Mc,0,1D[1; ε]Mc,1,0g0) = −(Mc,1,0g0, D[1; ε]Mc,1,0g0) ≤ 0 (16)

As L is a non-decreasing function in the time evolution, it can be regarded as a Lyapunov function. A
function quite similar to this L has been studied for the Brownian motion of one classical particle [25]
(but without having arrived to it, by starting from Equation (1)).

2.3. Wc,st = Wc,eq: On the Inclusion of Dissipation

The following discussion on dissipation is adequate. We do not attribute a physical meaning to
temperature for a closed classical one-particle system (contrary to a closed classical many-particle one,
to be treated in Section 3). There is a physical difference between a closed classical one-particle system
and the meaningful open one in the presence of (and coupled to) an external hb at thermal equilibrium at
finite T , with friction. By recalling [20], we shall treat briefly the inclusion of non-negligible dissipation
with friction constant σ > 0 for the open classical system. Then, Equations (1), (8) and (9) are replaced,
respectively, by:

∂Wc

∂t
+

q

m

∂Wc

∂x
− ∂V

∂x

∂Wc

∂q
=

1

σ

∂[(q + (m/β))(∂Wc/∂q)]

∂q
(17)

(s+
n

σ
)g̃n = W

−1/2
c,eq,0Wc,in,n −Mn,n+1g̃n+1 −Mn,n−1g̃n−1 (18)

D[n; s+
n

σ
] = [s+

n

σ
−Mn,n+1D[n+ 1; s+

n+ 1

σ
]Mn+1,n]−1 (19)

Equation (17) is a well-known dissipative Equation [11–13]. Notice the key fact that in Equations (18)
and (19), σ only appears as s + (n/σ), so that ε + (n/σ) > 0 (for s = ε > 0 and n = 0, 1, 2, ...).
Having in mind Equation (7) (and the T−dependences in it), one can let σ−1 be as small as one wishes
at constant and finite T , while D[n; ε + n

σ
] always fulfills Hermiticity and non-negativity, regardless

of how its magnitude could vary (which, in turn, depends on σ−1, n, ε and T , for given V ). This is
the essential argument allowing one to use a hb at finite T with very small dissipation and in trying to
justify that the step σ−1 ' 0 could be permissible (those properties of D[n; ε + n

σ
] not depending on

whether σ−1 is very small, with 6= 0, or σ−1 ' 0), in the classical case. However, just for σ−1 ' 0,
one could argue that the resulting σ−1-free equations (namely, Equations (1), (8) and (9), containing a
finite T ) account for a closed classical one-particle system. We shall not delve into the conceptual issue
of whether the step σ−1 ' 0 allows for the classical one-particle system in the presence of an hb at
finite T to be still interpreted as open (which we have favored and employed) or leads to a closed one.
We can avoid that issue for the following practical reason: (oversimplified) open classical one-particle
systems are interesting, as long as they provide useful technical guides towards approximate long-time
thermalization in non-equilibrium closed classical large systems (without external hb’s), and that will
turn out to be the case in Section 3.

A similar practical standpoint in the (far more difficult) quantum case will be expressed in the last
paragraph in Section 6.4.
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2.4. Generic Wc,st: Hierarchy and Failures of the Long-Time Approximation

For a general Wc,st, with given (x-independent) q0, we shall return to the Hc,n’s defined in
Equation (2) (depending parametrically on x in general for n ≥ 2), so that Hc,n 6= Hn. We shall
write them as:

Hc,n(y) = yn +
n∑
j=1

εc,n,n−jy
n−j (20)

εc,n,n−j , being y-independent (but x-dependent, in general), is given in Appendix A for
n = 2, 3, 4, 5 (Equations (73)–(76)). As Wc,st is even in y, one has εc,n,n−j = 0 for odd j, so that
Hc,n(−y) = (−1)nHc,n(y). Consistently with the general properties [26], theHc,n’s fulfill the three-term
recurrence relation:

yHc,n(y) = Hc,n+1(y) + Cc,nHc,n−1(y) (21)

for n = 0, 1, 2, . . . , withCc,0 ≡ 0. Cc,n is y-independent (but it depends on x). SinceWc,st ≥ 0, a general
theorem [26] ensures that Cc,n ≥ 0. Examples of the lowest Cc,n’s for the stationary microcanonical
distribution are given in Appendix B. One could also express the Hc,n’s as suitable sums of Hermite
polynomials: such an alternative will not be followed here, but in Section 5, in other cases.

The Hc,n’s determine new moments Wc,n (not to be confused with those in Section 2.2 for the Hn’s)
through Equation (4). We shall transform Equation (1) into a linear hierarchy for the new moments,Wc,n.
For that purpose, we multiply Equation (1) by Hc,n(y), integrate over y and operate, so as to express the
resulting equation solely in terms of the Wc,n′’s. We carry out cancellations and simplifications, by using
Equations (1) and (20). We shall display the first five equations (for n = 0, 1, 2, 3, 4) in the hierarchy, for
any Wc,st and q0:

∂Wc,0

∂t
= −q0

m

∂Wc,1

∂x
(22)

∂Wc,1

∂t
= −q0

m

∂Wc,2

∂x
+
q0

m

∂

∂x
[(εc,2,0)Wc,0]− 1

q0

∂V

∂x
Wc,0 (23)

∂Wc,2

∂t
= −q0

m

∂Wc,3

∂x
+
q0

m

∂

∂x
[(εc,3,1 − εc,2,0)Wc,1] +

q0

m

∂εc,2,0
∂x

Wc,1 −
2

q0

∂V

∂x
Wc,1 (24)

∂Wc,3

∂t
= −q0

m

∂Wc,4

∂x
+
q0

m

∂

∂x
[(εc,4,2 − εc,3,1)Wc,2] +

q0

m

∂εc,3,1
∂x

Wc,2 −
3

q0

∂V

∂x
Wc,2 (25)

∂Wc,4

∂t
= −q0

m

∂Wc,5

∂x
+
q0

m

∂

∂x
[(εc,5,3 − εc,4,2)Wc,3] +

q0

m

∂εc,4,2
∂x

Wc,3 −
4

q0

∂V

∂x
Wc,3 (26)

Equations (77)–(80) play a key role in the computations and cancellations leading to Equations
(22)–(26). The latter constitute a three-term recurrence relation for 0 ≤ n ≤ 4. For any Wc,st 6= Wc,eq

and V 6= 0, the equation for ∂Wc,n/∂t for n ≥ 5 contains Mst,n,n+1Wc,n+1 = (q0/m(∂Wc,n+1/∂x and
no other dependences on higher order moments, but it is increasingly difficult to exhibit cancellations
in it for moments of order lower that n. Then, it is an open question whether the hierarchy
Equations (22)–(26), when analyzed for 5 ≤ n ≤ +∞, is also a three-term one regarding moments
of order lower than n. In spite of that, and for a generic Wc,st(6= Wc,eq), let us conjecture, tentatively, for
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a while, that, for V 6= 0, the Wc,n’s would fulfill an infinite three-term hierarchy, with other operators
Mst,n,n±1(6= Mc,n,n±1), namely:

∂Wc,n

∂t
= −Mst,n,n+1Wc,n+1 −Mst,n,n−1Wc,n−1 (27)

with the above Mst,n,n+1. The corresponding Mst,n,n−1’s are linear first-order differential operators, and
those for n = 0, 1, 2, 3, 4 are obtained by comparison with Equations (22)–(26). That is, the finite
hierarchy Equations (22)–(26) would be the lowest part of the infinite three-term one in Equation (27),
conjectured to hold for any 5 ≤ n ≤ +∞. See Section 7 for one further development regarding such a
conjecture. The initial conditions at t = 0 continue to beWc,in,n. One sees directly that the stationary mo-
ments Wc,st,n’s do solve the three-term recurrence relations Equations (22)–(26), (27). A key issue for a
generic Wc,st(6= Wc,eq) is that Mst,n,n+1 is not the adjoint of −Mst,n+1,n for any n in general, as
Equations (22)–(26) exemplify. Moreover, we have been unable to transform exactly the hierarchy
Equation (27) into another one with new W ′

c,n and M ′
st,n,n±1, in which M ′

st,n,n+1 is the adjoint of
−M ′

st,n+1,n for any n, and we believe that, likely, such a transformation does not exist in general.
Let us consider the Laplace transforms W̃c,n = W̃c,n(s) =

∫ +∞
0

dtWc,n exp(−st). This definition
yields an infinite three-term hierarchy for W̃c,n’s similar to Equation (8) which, in turn, can be
solved formally in terms of other operator continued fractions, Dst[n; s]’s. The latter are defined
recurrently through:

Dst[n; s] = [sI −Mst,n,n+1Dst[n+ 1; s]Mst,n+1,n]−1 (28)

As Mst,n,n+1 and−Mst,n+1,n are not adjoint to each other, it follows that Dst[n+1; ε] is not Hermitian in
general, and no general statement can be made regarding its eigenvalues, if they exist. Then, a priori, it is
unlikely that a long-time approximation and a long-time approach to equilibrium for n ≥ n0 ≥ 1 could
be justified for the W̃c,n’s in the three-term Equation (27), for an arbitrary Wc,st. Upon recalling at this
stage that the validity of the three-term structure in Equation (27) has not even been established if V 6= 0

for 5 ≤ n ≤ +∞, the possibility of formulating a long-time approximation for a generic Wc,st(6= Wc,eq)
becomes even more unlikely. It is unclear whether the microcanonical distribution Wc,st = Wc,mc could
be an exception, somehow: see Appendix B.

Then, the developments in Section 2.2 and in the present one appear to indicate that, if ε > 0, there
would exist some sort of (at least, partial) dynamical selection of the canonical equilibrium distribution,
Wc,eq(x, q), out of the set of all stationary distributions, Wc,st, solving the Liouville equation. On the
other hand, the general recurrence Equations (22)–(26) and the arguments on the Dst’s in this subsection
will turn out to be very useful in Sections 6 and 7.
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3. Closed Classical Many-Particle Systems: Long-Time Approximation and the Arrow of Time

We treat a closed large system of many (N � 1) classical non-relativistic particles, in d spatial
dimensions (d = 1, 2, 3), with spatial coordinates x1,. . . , xN (≡ [x]) and momenta q1,. . . , qN (≡ [q]):
a real gas. All particles, which are identical, have mass m. Let xi,α and qi,α be the Cartesian
components of xi and qi, respectively (i = 1, . . . , N , α = 1, . . . d). Neither a hb, nor external
friction mechanisms, nor external forces are included. The interaction potential among all particles is:
V = ΣN

i,j=1,i<jVi,j(| xi − xj |). By assumption, all Vi,j(| xi − xj |) are repulsive (≥ 0) and tend quickly
to zero for large | xi − xj |. The non-equilibrium classical distribution function is: Wc = Wc([x], [q]; t).
The reversible Liouville equation reads:

∂Wc

∂t
= ΣN

i=1Σd
α=1[

∂V

∂xi,α

∂Wc

∂qi,α
− qi,α

m

∂Wc

∂xi,α
] (29)

See [3,5,27] for studies of non-equilibrium states. The initial Wc,in [3,5,15], given by assumption,
describes the following non-equilibrium distribution at t = 0. There is a very large set (s1) of degrees
of freedom in the system, which are at thermal equilibrium at temperature T with one another, and they
play the role of an effective (internal) hb. The gas at t = 0 also contains a large set of degrees of freedom
(s2), which are off-equilibrium with the previous set, s1, and among themselves. We may suppose that
the set, s1, is located at large distances and is larger than the set, s2 (located, in turn, at finite distances).
We shall focus on Boltzmann’s equilibrium distribution at temperature T : Wc,eq = exp[−βHc,N ], where
Hc,N = (2m)−1ΣN

i=1Σd
α=1q

2
i,α + V is the classical N -particle Hamiltonian. Let [n] denote a set of

non-negative integers (n(i = 1, α = 1), . . . , n(i = N,α = d)), and let n = ΣN
l=1Σd

α=1n(l, α). Let
[dq] =

∏N
i=1

∏d
α=1 dqi,α.

We introduce non-equilibrium moments W[n] of W (using products of the Hermite polynomials
orthogonalized through Wc,eq, by generalizing Equation (4)):∫

[dq]
N∏
i=1

d∏
α=1

Hn(i,α)(qi,α/(2mkBT )1/2)

(π1/22n(i,α)n(i, α)!)1/2
Wc([x], [q], t) ≡ Wc(x; [n]; t) = Wc([n]) (30)

with the choice q0 = (2m/β)1/2. If Wc = Wc,eq, then Wc,eq([0]) = π3N/4q3N
0 exp[−βV ]

([0] = (0, 0, . . . , 0)) and Wc,eq([n]) = 0, [n] 6= [0] (n > 0). Equation (30) can also be applied to Wc,in

and gives the corresponding initial moments, Wc,in([n]). We shall work with the symmetrized moments
g([n]) = Wc,eq([0])−1/2Wc([n]). The resulting infinite reversible three-term hierarchy for g([n])’s (for
any [n], generalizing Equations (6) and (7)) and the long-time approximation and evolution towards
Wc,eq, have been justified previously [15,20]. In principle, the long-time approximation also requires
here a similar ε > 0; see [15,20] for the possibility of letting ε→ 0 here (as N is very large and d > 1, in
the thermodynamical limit). One expects that if Wc,in is not too far from Wc,eq, then the thermalization
of the whole system at constant T throughout it occurs. The arguments in Section 2.2, based upon
Hermiticity and non-negativity and justifying partially the dynamical selection of Wc,eq, also hold in
the present case; the details will be omitted. A posteriori, the formal similarity between Equations (6)
and (7) and the actual three-term hierarchy for N particles (with vanishing external dissipation) [15]
justify the usefulness of the studies in Section 2 for hb’s with negligible dissipation.
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Both the exact hierarchy for the g([n])’s and the closed approximate one for them after the long-time
approximation are genuinely different from the non-equilibrium classical BBGKY (Bogoliubov-Born-
Green-Kirkwood-Yvon) hierarchy [2–4]. In the latter, in the equation for the distribution function
for n(> 0) particles, one leaves unintegrated their position vectors and momenta, while those for
the remaining N − n particles are integrated over. Moreover, such an equation also depends on the
distribution function for n + 1 particles, but not on that for n − 1 ones, a feature that, beyond the
approximate framework of the standard Boltzmann equation (for n = 1) [2–4], does not seem to shed
much light on the long-time approach to thermal equilibrium for larger n. By contrast, in the equation
for g([n]) in the actual non-equilibrium hierarchy based upon Wc,eq, the contributions from g([n + 1])’s
are neatly different from (and, for large n, approximately smaller by a factor of ' n−1/2 than) those
coming from g([n])’s, at least in the long-time approximation [15,20].

As an example, let us consider the following irreversible Smoluchowski-like equation for the [n = 0]

moment, which follows from long-time approximation [15,22]. It generalizes Equation (14) ([n = 0]

meaning n(1, 1) = 0, . . . , n(j, β) = 0, . . . , n(N, d) = 0):

∂g([n = 0])

∂t
= ΣN

l=1Σd
α=1Ml,α;n(l,α)=0;+ ×

(ΣN
l′=1Σd

α′=1[D[[n = 1]; ε]]l,α;l′,α′Ml′,α′;n(l′,α′)=1;−)g([n = 0]) (31)

The (continued fraction) operator D[[n = 1]; ε] is Hermitian with non-negative eigenvalues and
has, as a square matrix, the matrix elements [D[[n = 1]; ε]]l,α;l′,α′ (possibly, with ε → 0). The
justification generalizes that for D[1; ε] in Section 2.2; see [15,16,20]. The initial condition is
Wc,eq([0])−1/2Wc,in([0]). Equation (102) describes the Brownian-like motion of N random walkers: the
interaction of each walker with the other N − 1 ones is contained in V .

The structure of Equation (31), with Vi,j 6= 0 between any pair of particles and D[[n = 1]; ε]

replaced by a constant, is similar to that of the linear Smoluchowski equation in the standard Rouse
model for (linear) polymer dynamics [25], except for the following difference. For the polymer,
one deals with a linear three-dimensional chain of many atoms, and the interaction is 6= 0 only (or
dominant) between successive pairs of neighboring atoms along the chain (each of which performs
Brownian-like motion). Another physical motivation of our approach would be to provide irreversible
evolution equations for the actual (real gas) system, which, being different from those in the standard
non-equilibrium BBGKY hierarchy, would have, in the simplest case (Equation (31)), a structure
mimicking the one in the standard Rouse model for polymer dynamics, namely, resembling Brownian
motion for N interacting random walkers, and would allow for generalizations (by using g([n]),
with n > 0).

Let d = 3. We shall introduce the t-dependent Lyapunov function:

L =
1

2

∫ N∏
i=1

3∏
α=1

dxi,αg([n = 0])2 (32)

upon integrating in −∞ < xi,α < +∞ for any i, α. Like for Equation (15) in Section 2.2, Equation (31)
implies:

∂L/∂t ≤ 0 (33)
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Then, the actual L is a non-decreasing function in the time evolution. The generalization of a Lyapunov
function for n0 > 1, also fulfilling the generalization of Equation (33), can be made by extending [15,17]
and will be omitted here. Let the classical many-particle system be at thermal equilibrium at T . Then:

L =
1

2

∫ N∏
i=1

3∏
α=1

dxi,αq
3N
0 π3N/4 exp[−βV ] ≡ Leq (34)

As is well known, in equilibrium statistical mechanics, the equilibrium entropy, Seq, is defined, up to a
constant Seq,0, by:

exp[
Seq − Seq,0

kB
] =

∫
[
N∏
i=1

3∏
α=1

dxi,α]

∫
[dq]Wc,eq (35)

Upon comparing Equations (34) and (35), we get:

exp[
Seq − Seq,0

kB
] = 2π3N/4Leq (36)

In our statistical mechanics approach, the situation seems somewhat paradoxical. In fact, let us start
out from the t-independent structure in Equation (36) in order to go beyond equilibrium by letting t

vary. That is, one would try tentatively a non-equilibrium entropy S(t), such that exp[S(t)
kB

] would be
proportional to L(t). However, in so doing, one faces a paradox: as L(t) decreases as t increases,
such an S(t) would also be forced to decrease, which strongly contradicts, in principle, what one expects
from any physically acceptable non-equilibrium entropy. Then, if a t-dependent non-equilibrium entropy
exists, it should not be related to L(t) through some structure like “exp[S(t)

kB
] proportional to L(t)”.

Alternatively, we recall that, at thermal equilibrium, one introduces the information, Ieq, as −Seq, and
that if a non-equilibrium information, I(t), could be defined in general, one would expect that it would
decrease as t increases. Then, an attempt to introduce such a non-equilibrium information, I(t), through
a structure like “exp[−I(t)

kB
] proportional to L(t)”, would not work either; as such, an I(t) would be an

increasing function.
There has been much interesting work aimed at extending, in different frameworks (thermodynamical,

statistical, etc.), the definition of a t-dependent entropy, S(t), to non-equilibrium phenomena, in
such a way that the inequality dS(t)/dt ≥ 0 would hold. Rate equation dynamics following the
path of steepest entropy ascent constitute an interesting research subject [28]. At present, several
different non-equilibrium entropies have been proposed and do characterize, in general settings, the
notion of evolution [29–32] (to the best of the present author’s knowledge). So far, neither a general
agreement seems to have been reached on a unique non-equilibrium entropy S(t) valid for different
frameworks [29,32], nor an accepted definition of it on the basis of non-equilibrium statistical mechanics
appears to exist (to the best of the present author’s knowledge). Further perspectives are given by other
interesting presentations, like [33].

Both in case that a general definition of a unique non-equilibrium entropy does not exist or, in the case
that it could be formulated at the end, our proposal for a partial way out towards the characterization of, at
least, an approximate arrow of time in the actual moment approach to non-equilibrium classical statistical
mechanics is the following. Once the long-time approximation has been carried out as indicated above,
we have studied a t-dependent function, L, through Equation (32), the variation of which seems to
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be adequate to define an arrow of time, although it does fail to provide a non-equilibrium entropy!A
previous study of L was limited to the framework of classical Brownian motion [25] and did not relate
it to either non-equilibrium classical statistical mechanics for N particles or (to our knowledge) to any
sort of non-equilibrium entropy. Our proposal could possibly complement partially different proposals
by other authors characterizing evolution; see [1–4,9,29–34].

4. Open Quantum-Mechanical One-Dimensional System without Dissipation: General Aspects

4.1. Some General Aspects

We shall consider a quantum Brownian particle (qBp) of mass m (> 0) and momentum operator
−i~(∂/∂x), in one spatial dimension, x, with (Hermitian) quantum Hamiltonian:

H = − ~2

2m

∂2

∂x2
+ V (37)

with a real potential V = V (x) (~ being Planck’s constant). We shall suppose that V (x) ≥ 0 and,
having in mind possible generalizations to many degrees of freedom, that V (x) = V (−x) (parity being
a constant of motion). We shall also suppose that V (x) and all dnV (x)/dxn, n = 1, 2, 3..., are continuous
for any x; a study for V ’s with finite discontinuities will be reported later (see, in particular, Appendices
C and D). If ϕj(x) is a suitably normalized eigenfunction of H: Hϕj(x) = Ejϕj(x), j being a suitable
label. We shall deal with two classes of potentials, V (x), depending on their behavior as | x |→ +∞,
and characterized as follows. The first class of V (x)’s fulfills V (x) → 0 quickly, as | x |→ +∞.
Then, all eigenvalues, Ej , of H sweep the continuous positive real half-line: 0 ≤ Ej < +∞. Such a
purely continuous spectrum has, typically, a double degeneracy, associated with two different asymptotic
conditions (incoming plane waves) at x → ±∞, with the same energy, Ej . Then, j is a continuous
variable (−∞ < j < +∞), which labels all states and distinguishes degenerate ones (see Appendices
D and G). The second class of V (x)’s fulfill as | x |→ +∞, V (x) → +∞ (proportional to x2n, for
positive integer n), and they correspond specifically to harmonic/anharmonic oscillators (polynomials;
see Section 5.1, where the spectra of the corresponding Hamiltonians is discussed). All items in this
Section will apply to both classes of V (x)’s, unless otherwise stated.

For general aspects on quantum open systems, see [34–38] and the references therein. We consider
the non-equilibrium statistical evolution of a qBp subject to V (x) and in the presence of a hb at thermal
equilibrium at T , with negligible external dissipation, due to the hb. The time evolution for t > 0 of the
qBp is given by the density operator ρ = ρ(t) (a statistical mixture of quantum states), with the initial
condition ρ(t = 0) = ρin. ρ(t) for t > 0 and ρin are Hermitian and positive-definite linear operators
acting in the Hilbert space spanned by the set of all eigenfunctions, ϕj(x), ofH . Unless otherwise stated,
we shall not impose that ρ(t) be normalized. The time evolution of the qBp is described by the operator
equation ([H, ρ] = Hρ− ρH):

∂ρ

∂t
=

1

i~
[H, ρ] (38)
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We consider the matrix element, 〈x−y|ρ(t)|x+y〉, of ρ(t) in generic eigenstates, |x−y〉, |x+y〉, of the
quantum position operator. The quantum Wigner function W = W (x, q; t), determined by ρ, is [6,7]:

W (x, q; t) =
1

π~

∫ +∞

−∞
dy exp[

i2qy

~
]〈x− y|ρ(t)|x+ y〉 (39)

The initial non-equilibrium Wigner function at t = 0 is Win, given by Equation (39) if ρ = ρin.
For t > 0, the exact dissipationless quantum master equation for W [6,7] is:

∂W (x, q; t)

∂t
= − q

m

∂W (x, q; t)

∂x
+MQW (40)

MQW =

∫ +∞

−∞
dq′W (x, q′; t)

∫ +∞

−∞

idy

π~2
[V (x+ y)− V (x− y)]

× exp[
i2(q − q′)y

~
] =

dV

dx

∂W

∂q
− ~2

3!22

d3V

dx3

∂3W

∂q3
+ · · · (41)

As ~ → 0, Wigner’s Equation (40) becomes, formally, by dropping all ~-dependent terms (containing
∂nW/∂qn, n = 3, 5, ...) in Equation (41), the classical Liouville Equation (1), with W → Wc [6,7]. All
terms in the series in Equation (41) contribute, in general, to V ’s in the first class. For V ’s in the second
class, there is some n1, such that dnV/dxn ≡ 0 for n > n1. We shall suppose that, as | q |→ +∞,
W (x, q; t)→ 0 quickly, for fixed x and t, so that

∫ +∞
−∞ dqW (x, q; t)qn converges, for any integer n ≥ 0.

We shall check the validity of such an assumption in specific cases in Section 4.4 and Appendix C. Under
the latter assumption, Equation (40) readily implies that (∂/∂t)

∫ +∞
−∞ dx

∫ +∞
−∞ dqW (x, q; t) = 0.

A stationary density operator, ρst, for the system fulfills Equation (38), with ∂ρ/∂t = 0. Then,
ρst = f(H) is a function of H only (in the actual one-dimensional system, the constants of motion being
H and parity). Then, ρst has the matrix elements:

〈x− y|ρst|x+ y〉 =
∑
j

f(Ej)ϕj(x− y)ϕj(x+ y)∗ (42)

For a continuous spectrum,
∑

j is a short-hand notation denoting integration over the whole continuous
spectrum of j (

∫ +∞
−∞ dj), with

∑
j ϕj(x)ϕj(y)∗ = δ(x − y), δ denoting the Dirac delta function. For a

purely discrete spectrum,
∑

j stands for the infinite sum over the denumerably infinite set of all Ej’s: see
Section 5.1. f(Ej) are real and non-negative constants, for all Ej . In turn, ρst determines the stationary
Wigner function, Wst(x, p), through Equation (39). Then, Wst fulfills:

− q

m

∂Wst

∂x
+MQWst = 0,

∂Wst

∂t
= 0 (43)

We shall also suppose that Wst → 0 quickly for | q |→ +∞. The general structure of ρin is:

〈x− y|ρin|x+ y〉 =
∑
j,j′

cj,j′ϕj(x− y)ϕj′(x+ y)∗ (44)

where cj,j′ define a Hermitian non-negative matrix. In general, [H, ρin] 6= 0. See [38] for theorems and
constructive methods to find stationary solutions of Equation (43).

There exist two exact integral relationships for any W fulfilling Equation (40), for any V , x and t:

∂[
∫
dqW (x, q; t)2]

∂t
= − 1

m

∂[
∫
dqqW (x, q; t)2]

∂x
(45)

∂[
∫
dqWst(x, q)W (x, q; t)]

∂t
= −− 1

m

∂[
∫
dqqWst(x, q)W (x, q; t)]

∂x
(46)
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the integrations over q being performed in −∞ < q < +∞. Wst is an arbitrary stationary Wigner
function. Equation (45) is proven by multiplying Equation (40) by W , integrating over q, performing
partial integrations and recalling that as | q |→ +∞,W (x, q; t)→ 0 quickly. Equation (46) is derived by
multiplying Equation (40) by Wst, operating similarly and using the first Equation (43). Equations (45)
and (46) are new, to the best of the present author’s knowledge.

The main part of this work will generalize, wherever possible, the developments in Section 2.2 to the
(much more difficult) Wigner Equation (40).

4.2. W and Wst As Quasi-Definite Functionals in Momentum

We now remind ourselves of the known quantum difficulty: neitherW norWst can be warranted to be
≥ 0 (negativity), in general [6,7]. As stated in [39], a necessary and sufficient condition for the Wigner
function associated with a Schrodinger wave function being ≥ 0 is that the latter is the exponential
of a quadratic polynomial [39]. See also [40,41]. As a nontrivial illustration, the Wigner functions, W ,
associated with several eigenstates of the Morse potential, have been studied by combining analytical and
numerical methods: negative values of the W associated with the ground state are reported in [42,43].
The latter two references and [44] present negative values of theW ’s associated with some excited states.
Even if Wst < 0, the domain in which that occurs cannot be large and has to be consistent with the fact
that both

∫ +∞
−∞ dxWst and

∫ +∞
−∞ dqWst are ≥ 0.

In order to be able to proceed in spite of W < 0, we shall now invoke, in an outline, an acceptable
mathematical framework based upon the theory of orthogonal polynomials [26]. Let us consider a kernel
K = K(y) (which could be ≤ 0), a set of functions f = f(y) and the following functional, LK ,
determined by the kernel, K: f → LK [f ] =

∫ +∞
−∞ dyK(y)f(y). We shall suppose that all integrals

over y are convergent. Let us consider, successively: µn = LK [yn], n = 0, 1, 2, 3..., the set of all
(S+ 1)× (S+ 1) matrices MS (S = 0, 1, 2, 3, ...) with the (i, j)-th element equal to µi+j (i, j = 0, ..., S)
and their determinants, Det[MS]. By definition, the functional, LK , is quasi-definite if Det[MS] 6= 0

for any S = 0, 1, 2, 3, ... [26]. If LK is a quasi-definite functional, then a theorem [26] implies: (i)
the existence of a family of orthogonal polynomials, named here as HQ,n = HQ,n(y), with weight
function K (even if K < 0 in some domain in y); and (ii) that the polynomials, HQ,n, fulfill a three-term
recurrence relation analogous to Equation (21), in which the (y-independent) counterparts of the Cc,n’s
are not warranted to be > 0.

Let q0 be some fixed (x-independent) momentum and let us replace q by y = q/q0. We shall suppose
in all that follows that, regarding their y-dependences, the Wigner function, W , and any Wst determine,
respectively, quasi-definite functionals, LW (for any x and t) and LWst (for any x). The interest of the
assumption is obvious: if it holds (as we suppose), it implies the existence of orthogonal polynomials.
To check that assumption for any W and Wst, in general, lies outside our scope: its validity for LWst will
be checked (and confirmed) in one interesting case in Section 5.2 and in Appendix E.

4.3. Equilibrium Wigner Function

We shall now consider the equilibrium Wigner function Wst = Weq, fulfilling Equation (43) and
accounting for thermal equilibrium at T of the qBp with the hb. Like in the classical case, the solutions
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of Equations (40) and (41) are not expected to approach Weq exactly, unless some approximation is
made. Weq arises from the canonical (t-independent) density operator ρeq = exp[−βH]. Then:

〈x− y|ρeq|x+ y〉 =
∑
j

exp[−βEj]ϕj(x− y)ϕj(x+ y)∗ (47)

∑
j in Equation (47) has the same meaning as in Equation (42). ρeq determines Weq(x, q), through

Equation (39). Weq(x, q) is neither Gaussian in q nor known in closed form in general [6,7], and
the dependences on q and x do not factorize. Weq(x, q) for a repulsive finite square well is given in
Appendix D.

It is easy to show that the imaginary part, ImWeq(x, q), of Weq(x, q) vanishes for any x and q, that is,
Weq(x, q) is real. Let Ej sweep the continuous positive real half-line: 0 ≤ Ej < +∞ (V in first class).
Let β become complex (β = Reβ + iImβ) and wander in the right-half-plane Reβ > 0. Then, one sees
that Weq(x, q) is an analytic function of β in the right-half-plane Reβ > 0, for fixed x and q.

4.4. Orthogonal Polynomials HQ,n Generated by Wst and by Weq

We shall introduce the (unnormalized) polynomials in y(= q/q0), HQ,n = HQ,n(y)

(n = 0, 1, 2, 3, . . . ), orthogonalized in y (for fixed x) by using a generic stationary Wst (Equation (43))
as the weight function. By choosing HQ,0(q) = 1, for n 6= n′ and any x (left unintegrated), we impose:∫ +∞

−∞
dyWstHQ,n(y)HQ,n′(y) = 0 (48)

The HQ,n’s, depending parametrically on x for n ≥ 1, will be used for the time evolution. For V ’s
belonging to the first class, we shall look for the HQ,n(y)’s as:

HQ,n(y) = yn +
n∑
j=1

εQ,n,n−jy
n−j (49)

εQ,n,n−j being y-independent (but x-dependent, in general). One has εQ,n,n−j = 0 for odd j, so that
HQ,n(−y) = (−1)nHQ,n(y). The εQ,n,n−j’s are given by equations entirely similar to those yielding the
εc,n,n−j’s in Appendix A (Equations (73)–(76)), provided that the quantum < yn > be now understood
as

∫ +∞
−∞ dyWsty

n/
∫ +∞
−∞ dyWst. The orthonormalized polynomials are HQ,n(q)/(hQ,n)1/2, with an

(x-dependent) normalization factor, hQ,n, defined through Equation (3), by replacing Wc,st by Wst and
Hc,n byHQ,n. One could also express the sameHQ,n’s as suitable sums of Hermite polynomials: such an
alternative, although consistent, will not be followed for V ’s in the first class (but it will in Section 5.1,
for V ’s in the second class). The above definitions and statements also hold, in particular, for the
polynomialsHQ,eq,n = HQ,eq,n(y) determined byWst = Weq, with suitable choices of q0 (to be discussed
later). For another discussion of the HQ,eq,n’s, see [20].

We shall not focus on cases in which V (x) → 0 quickly for | x |→ +∞ and can be ≤ 0 (attractive),
except for the following comments (and a short one in Section 5.1). In such a case, H has a general
spectrum; both discrete (finite number of bound states) plus continuous spectra. We shall justify
briefly the motivation for such an exclusion. Let us consider for a short while the attractive δ-function
potential V (x) = −V0δ(x), V0 being a positive constant. Then, H has a unique bound state, namely,
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ϕ0(x) = A exp[−α | x |], with α = mV0/~2 > 0, A = α1/2. A direct computation of Weq at x = 0 in
Equation (39), by using Equation (47) and keeping only the contribution of ϕ0(x) (say, at very low T ),
shows that such a contribution to Weq(x = 0, q) equals a constant times [α2 + (q/~)2]−1. The latter
contribution to Weq(x = 0, q) has a slow decrease as q increases, and hence, it does not allow one to
define orthogonal polynomials, HQ,eq,n(y), for n ≥ 2, because one finds divergent integrals in q. A
similar study for V (x) corresponding to an attractive finite square well having, for simplicity, only one
bound state yields a contribution toWeq(x = 0, q) having another slow decrease as q, which also prevents
the construction of an infinite family of HQ,eq,n(y)’s.

5. Denumerably Infinite Purely Discrete Spectrum

5.1. Some General Aspects

Here, we treat V ’s in the second class (polynomials: harmonic/anharmonic oscillators). Then, H is
defined in a denumerably infinite Hilbert space, and it has a nondegenerate denumerably infinite discrete
spectrum, Ej , j = 1, . . . (Ej ≥ 0, without loss of generality), the continuous spectrum being absent. Let
ϕ0 be the ground state with energy E0, and let the successive nondegenerate eigenvalues be ordered as
j = 1, 2, 3...., with E0 < E1 < E2 < E3 < .... All eigenfunctions, ϕj , are square-integrable and, by
assumption, normalized. As V (x) = V (−x), one has : ϕj(−y) = (−1)jϕj(y). Then, Equations (47)
and (39), with f(Ej) = exp(−βEj) give:

Weq(x = 0, q = 0) =
1

π~

∫ +∞

−∞
dy

∑
j

exp[−βEj]ϕj(−y)ϕj(y)∗ =

1

π~
[(exp[−βE0]− exp[−βE1]) + (exp[−βE2]− exp[−βE3]) + ....] (50)

It follows that Weq(x = 0, q = 0) > 0 for any T . The same argument indicates that, for sufficiently low
T and adequately small | x | and | q |, Weq(x, q) ' (π~)−1 exp[−βE0], which is non-negative: that is,
Weq(x, q) is dominated by the ground state ϕ0 with energy E0. This dominance of ϕ0 for small T , x and
q formally holds for V ’s having a general (discrete finite plus continuous) spectrum.

Let T = 0 strictly. It follows that: (i)Weq is proportional to (π~)−1
∫ +∞
−∞ dy exp[ i2qy~ ]ϕ0(x−y)ϕ0(x+

y)∗ (we have factored out exp[−βE0]( at T → 0), which leads us to discard any other contribution
different from the ground state one to Weq in the T → 0 limit); (ii) any other Wst is necessarily
proportional toWeq; (iii) the initial condition,Win, is proportional toWeq; and (iv)W is also proportional
to Weq and, hence, it is equal to Win and t-independent. Cases with low T will be treated later.

For V ’s in the second class, we choose another q′0 (6= the q0 employed in Equation (49), in principle)
and, instead of using Equation (49), the same orthogonal polynomials, HQ,n(y) (n = 0, 1, 2, 3, . . . ), will
be searched for being equal to the standard Hermite polynomial, Hn(y), plus another polynomial in y of
a degree smaller than n. Then:

HQ,n(y) = Hn(y) +
n∑
j=1

σn,n−jHn−j(y) (51)
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with n = 1, 2, 3, . . . and (y-independent, but x-dependent) coefficients σn,n−j . One has: HQ,n(y) = Hn(y),
for n = 0, 1 and σn,n−j = 0 for odd j. For generic q0 and q′0 (unrelated to each other), the HQ,n(y)’s in
Equation (51) are equal to those in Equation (49) times (2q0/q

′
0)n, which, in general, is 6= 1.

5.2. One-Dimensional Quantum Harmonic Oscillator

We shall treat a quantum harmonic oscillator, with frequency ω(> 0) and V = V (x) = mω2x2/2.
Let the quantum oscillator be at thermal equilibrium at T with some hb. The corresponding
〈x− y|ρeq|x+ y〉 in Equation (47) is well known [45], and Weq reads:

Weq(x, q) = [
1

2(π~)2(1 + cosh(β~ω))
]1/2 exp[−mω(cosh(β~ω)− 1)x2

~ sinh(β~ω)
]×

exp[− sinh(β~ω)q2

m~ω(1 + cosh(β~ω))
] (52)

See [20] for the orthogonal polynomials for Equation (52). For simplicity, we shall set the ground
state energy equal to zero and choose ~ω = 1 and m = 1. For the harmonic oscillator V (x), the
series expansion of the operator, MQ, into powers of ~2 reduces exactly to the first term shown in
Equation (41). Then, Equations (40) and (41) reduce to a quantum equation formally similar to the
classical Equation (1):

∂W

∂t
+ q

∂W

∂x
− x∂W

∂q
= 0 (53)

First, let the quantum oscillator be in the ground state. The stationary Wigner function is:

Wst(x, q) =
2

π
exp[−2(x2 + q2)] > 0 (54)

The orthogonal polynomials for Equation (52) yield, as β → 0, those for Equation (54).
Next, let the quantum oscillator be in the first excited state and let y = 21/2q in the present case. The

associated stationary Wigner function, of considerable interest in quantum optics, is [46]:

Wst(x, q) =
2

π
[4(x2 + q2)− 1] exp[−2(x2 + q2)]

=
2

π
[
1

2
H2(y) + 4x2] exp[−(2x2 + y2)] (55)

H2(y) being the standard Hermite polynomial. One easily confirms that Equation (55) is a stationary
solution of Equation (53)). Wst(x, q) is negative in the finite domain in which 4(x2 + q2) < 1 [46]. This
case provides an interesting example, enabling us to justify that Wst(x, q) in Equation (55) is indeed a
quasi-definite functional regarding the y (or q) dependence for any x (except at a set of zero measure):
see Appendix E. The polynomials, HQ,n(y) (n = 0, 1, 2, 3, . . . ), orthogonalized in y (for fixed x) by
using Wst in Equation (55) as the weight function, are given in Equation (51); the low-order coefficients,
σn,n−j , are given in Appendix E.
Weq, given in Equation (52), is positive, and one could ask how the negativity of Equation (55) can be

compensated for. To answer that question, we shall suppose that T is so low that the actual
∑

j reduces
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just to the contributions of the ground state and of the first excited one. Then, the corresponding Wigner
function is:

Weq(x, q) '
2

π
exp[−2(x2 + q2)][1 + exp[−βE1](4(x2 + q2)− 1)]

E1 > 0 being the energy of the first excited state. Clearly, Weq(x, q) > 0 for any x and q, which is
consistent with the positivity of Equation (52).

6. Non-Equilibrium Hierarchy

6.1. V ’s in the First Class

We consider only V ’s in the first class (all its derivatives exist and are continuous) and suppose that T
is neither high nor low. We shall analyze general off-equilibrium situations by using Equations (40)
and (41). We consider a generic Wst. The HQ,n(y)’s in Equation (49) lead to the new moments
(n = 0, 1, 2, . . .):

Wn = Wn(x; t) =

∫ +∞

−∞
dyHQ,n(y)W (56)

The initial condition, Win,n, for Wn is obtained by replacing W by Win in Equation (56). One has the
following (formal) expansion for W , which generalizes Equation (5):

W = Wst(x, q)
+∞∑
n=0

Wn(x; t)
HQ,n(y)

hQ,n
(57)

For W = Wst(x, q), Equation (56) yields Wst,n = 0 if n > 0, and Wst,0 = hQ,0. The transformation
of Equations (40) and (41) into a linear hierarchy for the new moments, Wn, for a general Wst, can be
carried out as in the classical case. Through additional computations and cancellations, we have obtained
the first five equations in that quantum hierarchy.

∂W0

∂t
= −q0

m

∂W1

∂x
(58)

∂W1

∂t
= −q0

m

∂W2

∂x
+
q0

m

∂

∂x
[(εQ,2,0)W0]− 1

q0

∂V

∂x
W0 (59)

∂W2

∂t
= −q0

m

∂W3

∂x
+
q0

m

∂

∂x
[(εQ,3,1 − εQ,2,0)W1] +

q0

m

∂εQ,2,0
∂x

W1 −
2

q0

∂V

∂x
W1 (60)

∂W3

∂t
= −q0

m

∂W4

∂x
+
q0

m

∂

∂x
[(εQ,4,2 − εQ,3,1)W2] +

q0

m

∂εQ,3,1
∂x

W2 −
3

q0

∂V

∂x
W2 (61)

∂W4

∂t
= −q0

m

∂W5

∂x
+
q0

m

∂

∂x
[(εQ,5,3 − εQ,4,2)W3] +

q0

m

∂εQ,4,2
∂x

W3 −
4

q0

∂V

∂x
W3 +

+
~2

22q3
0

∂3V

∂x3
[−6 +

εQ,4,2
εQ,2,0

]W1 (62)

The first four Equations (58)–(61) are formally identical, respectively, to those in the classical case
(Equations (22)–(25)), provided that Wc,n’s are replaced by Wn’s and εc,n,n−j’s by εQ,n,n−j’s, for
n = 0, 1, 2, 3. On the other hand, for a general Wst, Equation (62) (for n = 4) acquires a new term
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(of quantum origin) containing W1, and so, it differs from its classical counterpart, Equation (26). The
reason for the similarities for n = 0, 1, 2, 3 and for the difference if n = 4 is that the quantum corrections
in Equations (40) and (41) manifest themselves only at order ~2 and then, in turn, in the equations in the
hierarchy at orders n ≥ 4. The computation and cancellations leading to Equation (62) are very lengthy
and painful, and we shall omit them. We have confirmed thatW0 = hQ,0 andWn = 0 for n = 1, 2, 3, 4, 5

solve the hierarchy Equations (58)–(62), with ∂Wn/∂t = 0.
Let us now consider Equations (58)–(62) for the caseWst = Weq, describing thermal equilibrium with

the hb. After further analysis, the new term containing ~2W1 in Equation (62) is not seen to disappear,
but to be 6= 0 still, for generic q0. For any Wst and V 6= 0, the equation for ∂Wn/∂t for any n ≥ 5

contains a dependence on Wn+1, given below in Equation (64), but no other dependences on higher
order moments. On the other hand, the fact that the full quantum equation for n = 4 does contain a term
of order ~3 in W1 implies that the quantum hierarchy is not a three-term one due to moments Wn′ with
n′ < n, neither for a generic Wst nor for Weq. The most general non-equilibrium hierarchy is:

∂Wn

∂t
= −Mn,n+1Wn+1 −

n∑
n′=1

Mn,n−n′Wn′ (63)

Mn,n+1Wn+1 ≡
q0

m

∂Wn+1

∂x
(64)

Mn,n′=0 = 0 for any n, except for n = 1 (with n′ = 0). We emphasize that, in the non-equilibrium
classical and quantum hierarchies (in Equations (22)–(26) for Wc,eq and in Equations (63)–(64) for
Weq, respectively), the contributions from Wc,n+1 and from Wn+1 have always the same structures
(−(q0/m)∂Wc,n+1/∂x and −(q0/m)∂Wn+1/∂x, with n-independent coefficients). On the other hand,
the contributions from Wc,n−1 and from Wn′ (0 < n′ ≤ n− 1) do carry n-dependent coefficients, which
increase with n. An example of such an n-dependence will be displayed, in the quasiclassical regime,
by Equation (66). ∂rV/∂xr starts to contribute in Equation (63) for n = r + 1.

6.2. V ’s in the First Class: Reduction to Three-Term Hierarchy near the Classical Regime

The comments after Equations (58)–(62) imply that, in the classical case (~ → 0), the quantum
hierarchy reduces to the classical one, with Wst → Wc,st.

We shall analyze the following more subtle simplification, only for Wst = Weq, with q0 = (2m/β)1/2

in the quasiclassical regime at high temperature, so that both β and ~(6= 0) are small. Weq, the orthogonal
polynomials, HQ,n(y)’s, generated by it, the non-equilibrium solutions, W , the Wn’s and the dynamical
equations will be considered up to and including order ~2 (higher orders in ~ being disregarded). We
shall focus on whether the exact hierarchy Equations (58)–(62), which is not a three-term one, due to the
contribution, ~2W1, in Equation (62), could become a three-term recurrence relation up to and including
order ~2. The analysis boils down to studying whether the coefficient multiplying ~2W1 in Equation (62),
namely,−6+

εQ,4,2

εQ,2,0
, vanishes or not at the required order, which turns out to be order ~0. In fact, as we are

working to order ~2 and there is an overall factor, ~2, it will suffice to approximate Weq and −6 +
εQ,4,2

εQ,2,0

by Wc,eq and −6 + εc,4,2
εc,2,0

, respectively. Thus, in order to evaluate εc,4,2 and εc,2,0 through Equations (73)
and (74), we use Wc,eq = exp(−y2) exp[−βV ]. A direct computation shows that −6 + εc,4,2

εc,2,0
= 0.

Then, we see that up to and including order ~2, Equations (58)–(62) become a quasiclassical three-term
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hierarchy. The simplification should hold for all higher values of n = 5, 6, 7, .... (say, for Equation (63)),
in general. The last paragraph in Section 6.3 leads to the same conclusion, through a different procedure.

6.3. V ’s in the Second Class: Examples of Quantum Hierarchies

Here, we shall use the HQ,n(y)’s in Equation (51), which gives non-equilibrium moments equal to
those in Equation (56) times 22(q0/q

′
0)n+1 and the same formal hierarchy as in Section 6.1 (recast

in terms of σn,n−j’s). See [20] for the non-equilibrium three-term hierarchy for Equation (52). The
off-equilibrium three-term hierarchy for the first excited state of the harmonic oscillator is outlined in
Appendix E. Let us consider a quartic anharmonic oscillator: V = V (x) = 2−1mω2x2 + (4!)−1gx4,
g(> 0) being a coupling constant. Weq and the associated orthogonal polynomials (for a suitable q′0)
have been constructed in [20]. The resulting hierarchy for the non-equilibrium quantum moments, Wn

(for Weq), has been given in [20] for n = 0, 1, 2, 3 and turns out to be a three-term one. However,
further analysis indicates that the first quantum correction ∂3V/∂x3 starts to contribute in equations in
the hierarchy for n ≥ 4, so that the whole non-equilibrium hierarchy is not a three-term one.

Just to illustrate the features met upon dealing with n-term hierarchies with n > 3, we shall treat
briefly the following four-term one, which is a simplification of the quantum ones:

∂Wn

∂t
= −Mn,n+1Wn+1 −Mn,n−1Wn−1 −Mn,n−3Wn−3 (65)

where Mn,n+1Wn+1 could be either Equation (64) or (q′0/2m)(∂Wn+1/∂x). The essential structure of
the formal solution of the four-term hierarchy Equations (64) and (65) is outlined in Appendix F.

We shall now treat the same quasiclassical regime as in Section 6.2, also up to and including order
~2, with q′0 = (2m/β)1/2. In such a regime: (i) Weq is well known [6]; (ii) the HQ,n(y)’s have been
constructed explicitly in terms of Hermite polynomials [21]; and (iii) it has been shown that the Wn’s
(determined by the latter HQ,n(y)) fulfill the following three-term hierarchy for all values of n, n =

0, 1, 2, 3, ....: (∂Wn/∂t) = −(q′0/2m)(∂Wn+1/∂x)−Mn,n−1Wn−1 with the operators [21]:

Mn,n−1Wn−1 =
2nq′0
m

∂(1 + 4a2)Wn−1

∂x
+ 2[

2n

q′0

∂V

∂x
+

2q′0n(n− 1)

m

∂a2

∂x
]Wn−1 (66)

and a2 = (β2~2/48m)(∂2V/∂x2).
The hierarchy Equation (66), with the HQ,n(y)’s in Equation (51), also applies in the quasiclassical

regime for V ’s in the first class [21]. This is consistent with the simplification to a three-term hierarchy
studied in Section 6.2.

6.4. Long-Time Approximation in the Quantum Case: Pending Problems to Justify It

First, we treat the four-term hierarchy of Equation (65) for V ’s in the second class and for Weq, with
the initial condition Win,0 6= 0, Win,0 6= Weq,0 and Win,n = 0 for n 6= 0. We set n = 4 in the structure
Equation (112) in Appendix F (for Weq). Then:

W̃4(s) = DQ,4[n = 4; s]
3∑

n′=1

B4,n′(s)W̃n′(s) (67)
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The operators, B4,n′ , follow by comparison with Equation (112). The ~-dependent quantum corrections
in Equation (41) are responsible for the fact that B4,2(s) and B4,1(s) are non-vanishing, in principle.
The long-time approximation in Section 2.2 for generic Wc,st = Wc.eq can be generalized formally to
the present quantum case as follows. By arguing that the t-dependence of W4 is slaved approximately
by those of Wn, for n = 0, 1, 2, 3, one replaces DQ,4[n = 4; s], all DQ,4[n′′; s] (n′′ > 4) and B4,n′(s)

with n′ = 1, 2, 3, by s-independent operators, DQ,4[4], DQ,4[n′′] and B4,n′ , respectively (say, by fixing
s = ε > 0). Then, Equation (67) could be approximated as: W̃4(s) ' DQ,4[4]

∑3
n′=1B4,n′W̃n′(s).

The latter, together with Equation (65), as they stand for n = 0, 1, 2, 3 (without setting s = ε), would
constitute a finite closed system for W̃n(s), n = 0, 1, 2, 3, 4, and would complete the approximation
scheme. However, notice that neither Hermiticity nor non-negativity properties have been discussed nor
invoked for the generalized operator continued fractions.

Next, we turn to the three-term quasiclassical hierarchy for Weq with Equation (66), considered in
the preceding subsection. A long-time approximation can be formulated formally, like in Section 2.2.
Due to the quantum correction at order ~2, that hierarchy does not fulfill the requirement that Mn+1,n

be the adjoint of −Mn,n+1. We have been unable to transform such a hierarchy into another three-term
one satisfying the adjointness requirement. Due to the latter difficulty, the actual counterpart of the
continued fraction operator, D[n; s] (Sections 2.2 and 2.4), cannot be warranted to fulfill Hermiticity and
non-negativity. Then, the argument employed in the purely classical case for Wc,eq (Section 2.2) cannot
be invoked to justify the approach to thermalization in the quasiclassical regime.

For V ’s in the first class andWeq, similar formal constructions could be generalized for Equations (63)
and (64) to all orders in ~ and finite T ). Criticisms for them would also apply, similar to the above ones
for V ’s in the second class and for Weq, and contrary to the classical case.

On physical grounds, and in spite of our limitations to provide justifications, we expect that, just for
Weq and V ’s in both classes, the long-time approximations outlined above for the moment approach give
an approach to thermalization in the quantum regime for all hierarchies discussed in this subsection. The
justification lies outside our scope here.

We shall discuss the inclusion of non-negligible dissipation due to the external hb in the quantum
case. Two non-equilibrium dissipative quantum master equations for V ’s in the second class (quartic
potentials) have been dealt with in [20]. In the first one, Weq turned out to depend on dissipation,
while the second was a specific, but quite interesting, subclass of Lindblad’s theory [47], in which
Weq equals the equilibrium Wigner function for the associated dissipationless Wigner equation with
the same V . In both cases, we have studied the (more difficult) construction of the HQ,n’s and the
non-equilibrium moments, Wn’s, and hierarchies. The analysis in Section 2.2 (classical case) did
justify that, at least, a very small (and, eventually, negligible) dissipation due to the hb was consistent
with Hermiticity and non-negativity and with the long-time approximation. In the actual quantum case,
the above difficulties related to Hermiticity and non-negativity will also prevent the justification of the
corresponding consistency. Nevertheless, it is physically natural to expect that in the actual open
quantum system at finite T , the analysis with negligible friction will not lead to inconsistencies, and
that is our standpoint in Sections 4–7.

While such consistencies refer to oversimplified open one-particle systems, long-time approximate
evolutions for non-equilibrium closed large systems (without external hb’s) are our main goal. The
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analysis in [15,16,20] and Section 3 in the present work confirmed, a posteriori, the reliability of letting
dissipation vanish and justified the long-time approximate evolution towards thermalization for closed
classical large systems, precisely through an extension of the techniques employed for open classical
one-particle systems with negligible friction. The pending issues are closed large quantum systems,
which are far more difficult. Then, the extraction and awareness of the consequences from the neglecting
of dissipation in an open quantum one-particle system could be, at least, potentially interesting.

7. V ’s in the First Class: Large Thermal and de Broglie Wavelengths

We shall suppose that V ≥ 0, V → 0 as | x |→ +∞ and that it is finite and continuous, except for,
at worst, a finite number of finite discontinuities. Let T be suitably small, so that: (a) kBT �Max(V )

(the absolute maximum of V (x), as x varies); and (b) the thermal wavelength λth = ~[β/2m]1/2 is�
the size, a, of the domain where V is appreciably different from zero. Let ql ≡ ~/λth. In what follows,
we shall restrict to W (x, q; t) ' Wl(x, q; t) = Wl for | x | /a � 1 and | q |< ql, which implies ~/ | q |
adequately larger than a (large de Broglie wavelength). For | q |< ql, the detailed structure of V should
not be relevant, as a leading approximation, for Wl. Then, the expansion of MQ in Equation (41) into
successive derivatives of V , even if correct, does not seem adequate; one should take into account the
integral form in Equation (41).

We shall be interested in the equilibrium Wigner function Weq(x, q) ' Wl,eq(x, q), given by
Equations (39) and (47) and describing thermal equilibrium with the hb, in the actual low-T regime
characterized by the above Conditions (a) and (b). This is exemplified for the case of a finite repulsive
square well in Appendix D. See Appendix G for the derivation of an approximate representation for
Weq(x, q) for the above general V . To leading order (orders (a/λth)

0 and ((βMax(V ))−1/2)0), the
underlying physics appears to correspond to total reflection and zero transmission of the quantum
particle by the potential V (x) concentrated in a region of very small size, a. This picture is qualitatively
consistent with the general features of quantum bosonic many-particle systems at very low T [48]. ¿From
Appendices G and D, one gets:

Weq(x, q) ' Wl,eq(x, q) '
∫ λ−1

th

0
dk1
π~ exp[−β(~k1)2/2m][−2 cos 2k1x

sin 2(q/~)x
q/~ +

sin 2(k1+q/~)x
k1+q/~ + sin 2(−k1+q/~)x

−k1+q/~ ] (68)

This Wl,eq(x, q) can be < 0 in some region, while, on the other hand,
∫
|q|<ql

dqWl,eq(x, q) > 0. One has:

a2q
∂Wl,eq(x, q)

∂x
'

∫ λ−1
th

0

dk1

π~
exp[−β(~k1)2/2m][4(k1a)(qa) sin 2k1x

sin 2(q/~)x

q/~
] (69)

which is negligible to leading order. Then, under the above Conditions (a) and (b) and the approximations
yielding Equation (68), it would appear that, to leading order, MQ in Equation (43) could be neglected.
Moreover, MQ can be also neglected to leading order in the non-equilibrium Equation (41). In fact, in
the integral form of MQW , we set exp[i2(q − q′)y/~] ' 1, under the above approximations, and notice
that

∫ +∞
−∞ dy[V (x+ y)− V (x− y)] = 0. Then, one gets the quantum non-equilibrium equation:

∂Wl(x, q; t)

∂t
' − q

m

∂Wl(x, q; t)

∂x
(70)
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which is formally similar to the one encountered in the classical case, for V = 0. We shall introduce the
polynomials HQ,l,n = HQ,l,n(y) (n = 0, 1, 2, 3, . . . ), orthogonalized in y = q/ql with weight function
Wl,eq(x, q) using Equation (49), by integrating in | y |≤ +1. New non-equilibrium moments, Wl,n

(n = 0, 1, 2, . . .), are introduced through the analogue of Equation (56), also by integrating in | y |≤ +1.
With the corresponding replacements (εQ,n,n−j → εQ,l,n,n−j and Wn → Wl,n), Equations (58)–(62)
now become a linear hierarchy for the new moments, Wl,n, in which all successive derivatives of V
are neglected to leading order. Moreover, further computation, also with MQ = 0, gives another
three-term equation:

∂Wl,5

∂t
= −q0

m

∂Wl,6

∂x
+
q0

m

∂

∂x
[(εQ,l,6,4 − εQ,l,5,3)Wl,4] +

q0

m

∂εQ,l,5,3
∂x

Wl,4 (71)

See Appendix G. It is plausible that the equations for all ∂Wl,n/∂t could constitute an infinite three-term
hierarchy for any n and V = 0, namely:

∂Wl,n

∂t
= −q0

m

∂Wl,n+1

∂x
+
q0

m

∂

∂x
[(εQ,l,n+1,n−1 − εQ,l,n,n−2)Wl,n−1] +

q0

m
[
∂εQ,l,n,n−2

∂x
]Wl,n−1 (72)

for a generic Wst, but a proof lies outside our scope here.
For the approximate hierarchy Equation (72) in the actual quantum system, under the above

Conditions (a) and (b) and approximations, a long-time approximation can also be formulated formally,
by following the procedure in Section 2.4. Approximate estimates in Appendix G suggest that those
HQ,l,n are not radically different (or differ little, eventually) from those determined by the Gaussian
exp[−βq2

2m
], for very large β and | q |< ql. The Gaussian exp[−βq2

2m
] (for any | q |< +∞) determines

a three-term non-equilibrium hierarchy similar to the one for gn’s in Equation (6) with V = 0,
which displays D’s with Hermiticity and non-negativity and, so, thermalization under the long-time
approximation. The latter D’s could possibly not differ much from those for Equation (72). Then, for
the approximate hierarchy Equation (72), an approximate long-time thermalization with the hb could
possibly be justified. Detailed computations lie outside our scope.

8. Conclusions and Discussion

The existence of approximate long-time thermalization or the absence thereof for open one-dimensional
systems subject to a potential V and to a hb (with negligible external dissipation) has been studied,
in the framework of hierarchies for non-equilibrium moments (Wc,n and Wn). The conceptual issues
involved in treating an open system subject to a hb with negligible dissipation have been discussed
(Sections 2.3 and 6.4). The universal dependences of the non-equilibrium Liouville and Wigner
equations on momenta imply that the equations for Wc,n and Wn have universal dependences on one
unique moment of higher order (Wc,n+1 and Wn+1, respectively), while in different cases, there are
various dependences on moments of lower orders.

In the classical case, the non-equilibrium moments, Wc,n, for the canonical distribution, Wc,eq, are
obtained in terms of operator continued fractions, D’s, which are Hermitian and have non-negative
eigenvalues (non-negativity): these properties, in a suitable long-time approximation, justify
thermalization. In this work, we deal with a general stationary Wc,st (6= Wc,eq), which is not Gaussian
in momenta and fails, on physical grounds, to lead to approximate long-time thermalization, and the
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moment method displays this failure. In fact, hierarchies for the non-equilibrium moments, Wc,n’s,
determined by Wc,st are obtained for n ≤ 4, but they lead to several unsolved difficulties (Section 2.4).
Then, the formal construction through non-equilibrium moments provides one additional partial support
to the selection of the Boltzmann equilibrium distribution, Wc,eq, out of the set of all Wc,st, on a
dynamical basis (although not a proof of it). From the outset, Wc,eq and Wc,st correspond to different
situations, and the moment method emphasizes, a posteriori, the differences. The microcanonical Wc,st

and its special features are discussed briefly. The above analysis is one novelty of the present paper.
The formal structure of the non-equilibrium hierarchies for n ≤ 4 so obtained is very useful for the
quantum case.

For closed classical interacting non-relativistic many-particle systems, without external hb’s and for
the canonical equilibrium distribution, Wc,eq, non-equilibrium three-term hierarchies for moments with
Hermiticity have enabled us to justify approximate long-time thermalization [15,16,20]. Here, we have
pointed out an interpretation in terms of interacting random walkers and an approximate Lyapunov
function yielding an arrow of time, as novelties. Our proposal, based directly on moment approaches
to classical non-equilibrium statistical mechanics and selecting approximately a time direction in
the evolution, fails to give a non-equilibrium entropy. It could possibly be regarded as partially
complementary to the proposals by other authors. The latter do not appear to be based directly on
moment methods in classical non-equilibrium statistical mechanics, but, on the other hand, they do
provide non-equilibrium entropies and other ways to select a time arrow, in different settings.

We have concentrated on a non-equilibrium open quantum one-dimensional particle, in the presence
of a hb at thermal equilibrium at T with negligible external dissipation and subject to suitable repulsive
V (x)’s (characterized in Section 4.1). We have used non-equilibrium Wigner functions W (x, q; t), to all
orders in Planck’s constant.

The following developments and results are reported in this work (and are new, to the best of the
author’s knowledge).

The exact equilibrium canonical Wigner function, Weq(x, q), for a repulsive finite square potential is
presented.

We have shown that Weq(x, q) > 0 for small T , x and q and have obtained two exact relationships for
any non-equilibrium, W .

We have assumed that, for rather general repulsive V ’s, any W and any stationary Wigner functions,
Wst (even if < 0 in some region), determine quasi-definite functionals [26] regarding their dependences
on the momentum, q. The assumption is confirmed for the Wst (< 0 in some domain) corresponding to
the first excited state of the quantum harmonic oscillator. That general assumption implies the existence
of orthogonal polynomials, HQ,n, in q’s, having Wst’s as weight functions, and leads to non-equilibrium
moments, Wn, of W .

Non-equilibrium quantum hierarchies for the Wn’s have been obtained. As an illustration, we treat
the HQ,n’s and the hierarchy for the first excited state of the harmonic oscillator. In general, with V 6= 0,
the hierarchies for each Wn are not three-term ones, due to moments Wn′ with n′ < n, neither for
a generic Wst nor for Weq, due to the quantum corrections. As another illustration, we have studied
a non-equilibrium four-term hierarchy and have outlined its solution in terms of generalized operator
continued fractions.
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As an interesting new check for Wst = Weq, we have found consistency between the present
non-equilibrium quantum hierarchies and the three-term ones derived previously [21] in the quasiclassi-
cal regime at high temperature (up to and including order ~2).

In the non-equilibrium hierarchies for the corresponding Weq’s (both in the full quantum case and in
the quasiclassical regime, up to and including order ~2), we have formulated a long-time approximation.
One expects physically that such an approximation should yield thermalization with the hb. However,
we have been unable to display properties like Hermiticity and non-negativity and, hence, to justify
thermalization with the hb, so far.

In the regime of large thermal and de Broglie wavelengths and to leading order, we have obtained
an approximate Weq and an approximate non-equilibrium Wigner equation (Equations (68) and (70))
with V ' 0. To leading order, the underlying physics corresponds to total reflection and zero
transmission of the quantum particle by the potential V (x′) concentrated in a region of very small
size. Further computations with V ' 0 show that the equation for the non-equilibrium moment W5

contains a three-term structure. That and the hierarchy for n ≤ 4 obtained in Section 6.1 suggest that, for
V ' 0, the non-equilibrium quantum hierarchy could plausibly be a three-term one for any n. An
approximate long-time evolution towards thermalization through moment methods can also be
formulated. Based upon that, we have argued that, in such a regime, an approximate long-time
thermalization could possibly hold.

Among other pending problems, we quote the following ones. In the classical case: (i) mathematical
studies of the operator continued fractions, D’s, in the three-term hierarchies for Wc,eq, for one
and N particles; (ii) connections of the non-equilibrium hierarchy for N particles, in the long-time
approximation, with non-equilibrium thermodynamics and fluid dynamics. There is no attempt here to
replace the latter by moment methods: rather, non-equilibrium moments emphasize Brownian motion
features and approximate long-time thermalization, and it could be interesting to relate those (eventually,
complementary) standpoints. In the quantum case: (iii) for one particle, studies of the non-equilibrium
hierarchies, which are not three-term ones, and of the generalized operator continued fractions; (iv)
generalizations to closed quantum (at least, bosonic) many-particle systems, without external hb’s, which
are far more difficult and, hopefully, could receive some qualitative partial hints from the analysis in the
present paper.
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Appendix

A. εc,n,n−j’s for anyWc,st and forWc,st = Wc,mc

We shall give the nonvanishing εc,n,n−j for low order n = 2, 3, 4, 5 (j even), by using Equations (2)
and (20). After some algebra, one finds:

εc,2,0 = − < y2 > , εc,3,1 = −< y4 >

< y2 >
(73)

εc,4,2 =
< y2 >< y4 > − < y6 >

< y4 > − < y2 >2
, εc,4,0 =

< y2 >< y6 > − < y4 >2

< y4 > − < y2 >2
(74)

εc,5,3 =
< y4 >< y6 > − < y2 >< y8 >

< y2 >< y6 > − < y4 >2
, εc,5,1 =

< y4 >< y8 > − < y6 >2

< y6 >< y2 > − < y4 >2
(75)

< yn >=

∫ +∞
−∞ dyWc,st(x, q)y

n∫ +∞
−∞ dyWc,st(x, q)

(76)

Equations (73)–(76) imply the following identities:

εc,4,0 + εc,2,0(−εc,4,2 + εc,3.1) = 0 (77)

εc,5,1 − εc,4,0 + εc,3,1(−εc,5,3 + εc,4,2) = 0 (78)

−εc,2,0
∂εc,3,1
∂x

+ (3εc,2,0 − εc,3,1)
m

q2
0

∂V

∂x
= 0 (79)

∂εc,4,0
∂x

− εc,3,1
∂εc,4,2
∂x

+ (4εc,3,1 − 2εc,4,2)
m

q2
0

∂V

∂x
= 0 (80)

B. Classical Microcanonical DistributionWc,mc

We consider two possible values for the total energy: E(> 0) and E + ∆(> 0), with E � ∆ > 0.
First, we shall treat an open classical one particle system. The stationary microcanonical distribution
describing equal probability for the particle, provided that E ≤ Hc ≤ E + ∆, is:

Wc,mc =

∫ E+∆

E

dE ′δ(Hc − E ′) = θ(Hc − E)θ(E + ∆−Hc) (81)

δ and θ denote, respectively, the Dirac delta and the step functions. We introduce some fixed
(x-independent) momentum, q0. In order to have a finite weight function, Wc,mc, and a well-defined
family of orthogonal polynomials Hc,n(y) = Hc,mc(y) (in y = q/q0), it is necessary that ∆ 6= 0. The
coefficients, εc,mc,n,n−j , in Equation (20) for Hc,mc(y) are given by the above formulas in Appendix A,
in terms of the corresponding < yn >=< yn >mc evaluated, in turn, with Wc = Wc,mc. One gets:∫ +∞

−∞
dyWc,mc(x, q) =

4(2m)1/2(E − V (x))1/2[(1 + ∆mc)
1/2 − 1]

q0

(82)∫ +∞

−∞
dyWc,mc(x, q)y

n =
4(2m)(n+1)/2(E − V (x))(n+1)/2[(1 + ∆mc)

(n+1)/2 − 1]

(n+ 1)qn+1
0

(83)
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n = 2, 4, 6, ..., with ∆mc = ∆/(E − V (x)). The lowest nontrivial coefficients Cc,n = Cc,,mc,n in the
counterpart of the fundamental recurrence relation Equation (21) for Hc,mc,n(y) are:

Cc,mc,2 =
εc,mc,2,0 − εc,mc,3,1

q2
0

, Cc,mc,3 =
εc,mc,3,1 − εc,mc,4,2

q2
0

, Cc,mc,4 =
εc,mc,4,2 − εc,mc,5,3

q2
0

(84)

The general theorem [26] requires that Cc,,mc,n > 0. This general requirement is warranted, provided
that ∆ > 0. Since ∆ is small, by expanding into powers of ∆mc, one finds, for instance:

εc,mc,2,0 − εc,mc,3,1 = 2m(E − V )
37∆2

mc

48
, εc,mc,3,1 − εc,mc,4,2 = 2m(E − V )(1 +

∆mc

2
) (85)

The first Equation (85) clearly shows that the fundamental recurrence relation and, hence, the very family
ofHc,mc,n(y)’s become ill-defined if ∆ = 0. The non-equilibrium hierarchy for the moments determined
by the family, Hc,mc(y), could face the problems discussed in Section 2.4.

One now turns briefly to N particles. The stationary classical microcanonical distribution and
orthogonal polynomials can be obtained directly, by generalizing Equations (81)–(83), by using the
Hamiltonian, Hc,N , in Section 3. The most interesting situation occurs when the number of degrees
of freedom is very large (in the thermodynamical limit) and the classical microcanonical and canonical
distributions yield the same equilibrium thermodynamics. The (rather delicate) analysis, based upon the
equilibrium partition functions, requires that the system be divided into two subsystems, one being much
smaller than the other (which behaves as a hb); see [48,49]. A study of the equilibrium distributions
themselves (and their orthogonal polynomials) and of the off-equilibrium evolutions, in the transition
from the microcanonical ensemble to the canonical one (under those thermodynamical limit conditions),
lies outside our scope here. Since both ensembles give the same equilibrium thermodynamics, one
pragmatic standpoint could be to concentrate primarily on the off-equilibrium evolution in the canonical
ensemble; that is the point of view adopted here.

C. Behavior ofWeq for Large q

Here, we shall check the behavior of Weq as | q |→, assumed in Section 4.1. A quick decrease of
Weq’s is necessary for constructing the orthogonal polynomials, HQ,n(y)’s. We shall always start from∫ +∞
−∞ dqqnWeq(x, q) for n = 0, 1, 2, 3, ..., and use Equations (39) and (47). First, we shall treat the case

of harmonic/anharmonic oscillators (V ’s in second class), for which all ϕj(y)’s and all [dnϕj(y)/dyn]

are continuous and finite. By exchanging
∫ +∞
−∞ dq and

∫ +∞
−∞ dy and by performing first

∫ +∞
−∞ dq, we get:∫ +∞

−∞
dqqnW (x, q) = [

−i~
2

]n
∑
j

exp[−βEj]
∫ +∞

−∞
dy[ϕj(x− y)ϕj(x+ y)∗][

∂

∂y
]nδ(y) (86)

δ(y) being the Dirac delta function. One can integrate directly by using δ(y):∫ +∞

−∞
dqqnW (x, q) = [

i~
2

]n
∑
j

exp[−βEj][dn(ϕj(x− y)ϕj(x+ y)∗)/dyn]y=0 (87)

∑
j denoting an infinite sum. exp[−βEj] in Equation (87) decreases quickly with j. Then, the infinite

series Equation (87) converges and
∫ +∞
−∞ dqqnWeq(x, q) is finite for any x and any n = 1, 2, 3.... Next, we
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consider V ’s in the first class and study two possibilities: (a) Let V (x) and all dnV (x)/dxn, n = 1, 2, 3...,
be continuous for any x, so that all ϕj(y)’s and all [dnϕj(y)/dyn] are continuous. Then, by operating
like for V ’s in the second class above, we get:∫ +∞

−∞
dqqnW (x, q) = [

i~
2

]n
∑
j

exp[−βEj][dn(ϕj(x− y)ϕj(x+ y)∗)/dyn]y=0 (88)

However, now,
∑

j ≡
∫ +∞
−∞ dj, andEj sweeps the continuous positive real half-line: 0 ≤ Ej < +∞, with

a double degeneracy, associated with two different asymptotic conditions (incoming plane waves) at x→
±∞, with the same energy, Ej . Then, Equation (87) also converges and renders

∫ +∞
−∞ dqqnWeq(x, q)

finite for any x and any n = 1, 2, 3.... (b) Let V and all dnV (x)/dxn, n = 1, 2, 3..., be continuous
for almost any x, except for a finite number of points x = al, l = 1, ..., lmax < ∞, at which V has
finite discontinuities. Then, one also arrives to the same convergent result in Equation (88) for any
n = 1, 2, 3..., provided that x 6= al. The finiteness of

∫ +∞
−∞ dqqnWeq(x, q) for any n = 1, 2, 3... is not

warranted at x = al, due to the discontinuities of V and, hence, of derivatives of ϕj’s (of orders ≥ 2) at
the latter points.

D.Weq for a Finite Repulsive Square Well

We shall consider the finite repulsive square well: V (x) = +V0 > 0, for | x |< a/2 and V (x) = 0,
for | x |> a/2, with V0 < +∞ and 0 < a < +∞. We shall give the eigenfunctions of H , Equation (37).
The first set of eigenfunctions is (j = k1 ≥ 0, Ej = (~k1)2/2m, A = (2π)−1/2):

ϕ+,k1(x) = A[exp ik1x+ A1(k1) exp(−ik1x)], x < −a/2 (89)

ϕ+,k1(x) = A[A2(k1) exp ik2x+ A3(k1) exp(−ik2x)],−a/2 < x < +a/2 (90)

ϕ+,k1(x) = AA4(k1) exp ik1x, x > a/2 (91)

with k2 = k2(E) = [2m(E − V0)]1/2/~. If E − V0 > 0, then k2 > 0, while, if E − V0 < 0, then
k2 = +iκ2, with κ2 > 0. The amplitudes Al = Al(k1), l = 1, ..., 4, are:

A1 =
(k2

2 − k2
1) exp(−ik1a)(exp(ik2a)− exp(−ik2a))

D
(92)

A2 =
2k1(k1 + k2) exp[−i(k1 + k2)(a/2)]

D
,A3 =

2k1(−k1 + k2) exp[i(−k1 + k2)(a/2)]

D
(93)

A4 =
4k1k2 exp(−ik1a)

D
,D = (k1 + k2)2 exp(−ik2a)− (−k1 + k2)2 exp ik2a (94)

The second set of eigenfunctions is (j = −k1 ≤ 0, Ej = (~k1)2/2m:

ϕ−,k1(x) = A[exp(−ik1x) +B1(k1) exp ik1x], x > a/2 (95)

ϕ−,k1(x) = A[B2(k1) exp(−ik2x) +B3(k1) exp ik2x],−a/2 < x < +a/2 (96)

ϕ−,k1(x) = AB4(k1) exp(−ik1x), x < −a/2 (97)

with the same A and the same k2 = k2(E) as for the first set. One gets: Bl(k1) = Al(k1). The
equilibrium Wigner function in Equations (39)–(47) becomes:

Weq(x, q) =
1

π~

∫ +∞

−∞
dy exp[

i2qy

~
]

∫ +∞

0

dk1 exp[−β(~k1)2/2m][ϕ+,k1(x− y)ϕ+,k1(x+ y)∗ +

ϕ−,k1(x− y)ϕ−,k1(x+ y)∗] (98)
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By using Equations (92)–(94) and their counterparts for Bl(k1), one finds important exact cancellations.
It will suffice to display the resulting exact Weq(x, q) for x ≥ 0:

Weq(x, q) =
1

π~

∫ +∞

0

dk1 exp[−β(~k1)2/2m][

∫ (a/2)+2x

−(a/2)−x
dy exp[

i2qy

~
][ϕ+,k1(x− y)ϕ+,k1(x+ y)∗ +

ϕ−,k1(x− y)ϕ−,k1(x+ y)∗] +

∫ −(a/2)−x

−∞
dy exp[

i2qy

~
][B4(k1)∗ exp(2ik1y) + A4(k1) exp(−2ik1y] +∫ +∞

a/2)+2x

dy exp[
i2qy

~
][B4(k1) exp(2ik1y) + A4(k1)∗ exp(−2ik1y]] (99)

In agreement with Appendix C,
∫ +∞
−∞ dqqnWeq(x, q) is finite for any n = 1, 2, 3... and any x 6= ±a/2. Let

us consider the regime of large thermal and de Broglie wavelengths: λth = ~(β/2m)1/2, ql = ~/λth, | q |
a � ~, | q |< ql (λth � a), V0 � β−1 and | x | /a � 1. Let κ2,0 = [2mV0]1/2/~. Then, the dominant
contributions to

∫ +∞
0

dk1 in Equation (99) come from k1λth < 1. We shall start by keeping terms only
up to and including orders a/λth and (βV0)−1/2 and indicate later at which stage they are dropped, so
as to have a record of them and to handle, and at the end, manageable expressions at leading order.
Then: A1 ' −1 + i[k1a + 2(k1/κ2,0) coth(aκ2,0)], while A2 ' (k1/κ2,0)(exp(aκ2,0/2)/ sinh(aκ2,0),
A3 ' (k1/κ2,0)(exp(−aκ2,0/2)/ sinh(aκ2,0) and A4 ' (k1/κ2,0)(2/ sinh(aκ2,0). By starting from
Equation (99): (i) the contributions from A4, A∗4, B4 and B∗4 (second and third integrals over y) are of
order k1/κ2,0, as is that from

∫ (a/2)+2x

(a/2)+x
dy; (ii)

∫ (a/2)+x

−(a/2)−x dy is dominated by
∫ +x

−x dyϕ−,k1ϕ
∗
−,k1 (dropping

terms of order (k1/κ2,0)2 and
∫ −x
−(a/2)−x dy and

∫ (a/2)+x

x
dy); (iii) in

∫ +x

−x dyϕ−,k1ϕ
∗
−,k1 , we discard the

two contributions of orders k1/κ2,0 and k1a and the one quadratic in them (all coming from B1 + 1 and
B∗1 + 1). Then:

Weq(x, q) ' Wl,eq(x, q) '
∫ λ−1

th

0

dk1

π~

× exp[−β(~k1)2

2m
][−2 cos 2k1x

sin 2(q/~)x

q/~
+

sin 2(k1 + q/~)x

k1 + q/~
+

sin 2(−k1 + q/~)x

−k1 + q/~
] (100)

which corresponds to dominant reflection and small transmission of the quantum particle by the
repulsive finite square well, at leading order (orders (a/λth)

0 and ((βV0)−1/2)0). One gets:∫
|q|<ql

dqq2n+1Wl,eq(x, q) = 0, for n = 0, 1, 2, 3, ... These results will be helpful in Section 7 and
Appendix G.

E. First Excited State of Harmonic Oscillator: Orthogonal Polynomials and Hierarchy

First, we shall study whether Wst, given in Equation (55), provides a quasi-definite functional
regarding the y dependence. We have computed the actual µn’s, the (S + 1) × (S + 1) matrices MS

and their determinants: Det[MS]. One finds that Det[MS] bears the structure exp[−(S + 1)(2x2)]dS+1,
where dS+1 is a polynomial in x2 of degree S + 1, which can vanish only at a finite set of x values.
It follows from a theorem in [26] that Wst is a quasi-definite functional regarding the y dependence for
any x, except at a set of x-values having zero measure (formed by all zeroes of all dS+1’s). Consequently,
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except for the latter set, the orthogonal polynomials, HQ,n, exist for the quasi-definite functional, Wst.
We shall give the lowest non-vanishing σn,n−j (j being even) in those HQ,n’s (Equation (51)):

σ2,0 = − 1

x2
, σ3,1 = − 3!

2x2 + 1
(101)

σ4,2 = −x2σ4,0 , σ4,0 = − 4!

4x2 + 4− (1/2x2)
(102)

Consistently with a general theorem in [26], the HQ,n’s fulfill the recurrence relation:

2yHQ,n(y) = HQ,n+1(y) + CnHQ,n−1(y) (103)

for n = 0, 1, 2, . . . , with C0 ≡ 0. Cn are y-independent (but x-dependent). The lowest Cn’s are:

C1 = 2− σ2,0 , C2 = 4 + σ2,0 − σ3,1 (104)

C3 = 6 + σ3,1 − σ4,2 (105)

That general theorem in [26] does not warrant that all Cn’s be positive; in fact, C2 < 0 for small x2.
We now consider the quantum Equation (53) for a non-equilibrium, W , and define its off-equilibrium

moments, Wn, by using the actual counterpart of Equation (56) with the polynomials, HQ,n, constructed
in this Appendix. Through computations similar to those in Section 6.1, one gets the following off-
equilibrium three-term hierarchy for the Wn, for low n’s:

∂W0

∂t
= − 1

23/2

∂W1

∂x
(106)

∂W1

∂t
= − 1

23/2

∂W2

∂x
+

1

23/2

∂

∂x
[(σ2,0 − 2]W0]− 21/22xW0 (107)

∂W2

∂t
= − 1

23/2

∂W3

∂x
+

1

23/2

∂

∂x
[σ3,1 − 4)W1]− σ2,0

23/2

∂W1

∂x
− 21/24xW1 (108)

∂W3

∂t
= − 1

23/2

∂W4

∂x
+

1

23/2

∂

∂x
[(σ4,2 − 6)W2]− σ3,1

23/2

∂W2

∂x
− 21/26xW2 (109)

and so on for Wn, n > 3, with suitable initial conditions Win,n. The computations for n = 3, 4, 5, . . .

become more difficult. The hierarchy in Equations (106)–(109) is satisfied by the t-independent moments
determined by Wst in Equation (55). The actual hierarchy falls into the class given in Equation (27), for
which Mst,n,n+1 is not the adjoint of −Mst,n+1,n. Then, the corresponding operator continued fractions
(counterparts of Equation (28)) are not expected to fulfill Hermiticity and non-negativity properties;
recall Section 2.4.

F. Formal Solution of Equation (65) through Generalized Operator Continued Fractions

The procedure for solving formally the four-term hierarchy Equation (65) (for any n) in terms of
generalized operator continued fractions extends directly to the strategy employed for the three-term
one, at the expense of working with more complicated expressions. For simplicity, we shall assume the
initial condition Win,0 6= 0, Win,0 6= Weq,0 and Win,n = 0 for n 6= 0. We perform the Laplace transform,
which leads from Equation (65) to:

sW̃n(s) = Win,n −Mn,n+1W̃n+1(s)−Mn,n−1W̃n−1(s)−Mn,n−3W̃n−3(s)n−3 (110)
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The solution of Equation (110) is given in terms of products of the s-dependent generalized operator
continued fractions, DQ,4[n; s]. The latter are defined recurrently, for n = 1, 2, ..., through the following
generalization of Equation (9):

DQ,4[n; s] = [sI −Mn,n+1DQ,4[n+ 1; s][Mn+1,n +Mn+1,n+2DQ,4[n+ 2; s]Mn+2,n+3 ×
DQ,4[n+ 3; s]Mn+3,n]]−1 (111)

I is the unit operator. By iteration of Equation (111), DQ,4[n; s] becomes a formal generalized infinite
continued fraction of nonconmuting operators. Omitting calculational details, one gets for n = 1, 2, ...:

W̃n(s) = DQ,4[n; s][[−Mn,n+1DQ,4[n+ 1; s]Mn+1,n+2DQ,4[n+ 2; s]Mn+2,n−1 −Mn,n−1]W̃n−1(s) +

Mn,n+1DQ,4[n+ 1; s]Mn+1,n−2W̃n−2(s)−Mn,n−3W̃n−3(s)] (112)

G. ApproximateWeq(x, q) for Large Thermal and de Broglie Wavelengths

We shall get an approximate representation for Wl,eq(x, q) with V ’s in the first class, to leading order
in the low-T regime characterized by the Conditions (a) and (b) in Section 7. The exact Weq(x, q)

(Equations (39) and (47)) is given, alternatively, by Equation (98), in which ϕ+,k1(x) is now the exact
solution of the following inhomogeneous linear integral equation for one-dimensional scattering in
−∞ < x < +∞, with the incoming plane wave as x→ −∞:

ϕ+,k1(x) = exp ik1x−
mi

~2k1

∫ +a/2

−a/2
dx′ exp ik1 | x− x′ | V (x′)ϕ+,k1(x

′) (113)

In Equation (113) for simplicity, we set firstly V (x′) 6= 0 only in −a/2 < x′ < +a/2 (finite range
potential). We shall study the approximate solution of Equation (113) for −a/2 < x < +a/2 and very
small k1. That approximate solution cannot come from Equation (113) as it stands, due to the explicit
singularity, k−1

1 , in the integral. The problem will be solved by extending to scattering a technique used
in [50] for bound states. For that purpose, we set exp ik1 | x − x′ |= 1 + C(k1 | x − x′ |) (thereby
definingC(k1 | x−x′ |)), multiply the resulting Equation (113) by V (x), integrate in−a/2 < x < +a/2

and solve for
∫ +a/2

−a/2 dxV (x)ϕ+,k1(x). By reshuffling the latter into Equation (113), we get for
−a/2 < x < +a/2:

ϕ+,k1(x) = exp ik1x−
1

(~2k1/im) +
∫ +a/2

−a/2 dx
′′V (x′′)

[

∫ +a/2

−a/2
dx′ exp ik1x

′V (x′)

−
∫ +a/2

−a/2
dx′

miV (x′)

~2k1

×
∫ +a/2

−a/2
dx′′C(k1 | x′ − x′′ |)V (x′′)ϕ+,k1(x

′′)] (114)

−
∫ +a/2

−a/2
dx′

miC(k1 | x− x′ |)
~2k1

V (x′)ϕ+,k1(x
′)

Equation (115) has no singularity at k1 = 0 (since C(k1 | x − x′ |)/k1 is finite as k1 → 0). Even if
the iterations of Equation (115) provide ϕ+,k1(x), the full corrections of order k1 require one to solve a
(singularity-free) linear integral equation, so that we shall limit ourselves to leading order ((k1)0), which
is simpler. We come back to Equation (113) for x < −a/2, set exp(−ik1x

′) ' +1 for−a/2 < x′ <
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+a/2, use the above
∫ +a/2

−a/2 dxV (x)ϕ+,k1(x) and see that the singularity in k−1
1 cancels out, consistently

with the study yielding Equation (115). In the resulting expression, we neglect the terms in V (x′)V (x′′).
For small k1, the leading contribution for x < −a/2 is: ϕ+,k1(x) ' exp ik1x − exp(−ik1x), to order
(k1)0 (the total reflection of the quantum particle by V (x′)). A similar analysis for x > a/2 gives:
ϕ+,k1(x) ' 0, to order (k1)0 (zero transmission). There is a similar analysis for ϕ−,k1(x) with the
incoming plane wave as x→ +∞. The same results hold for V ’s in the first class without finite range.

The above leading order approximations (to order (k1)0) apply in the low-T regime characterized
by the Conditions (a) and (b) in Section 7. Then, through Equation (98), the exact Weq(x, q) can be
approximated like in the derivation of Equation (100) in Appendix D. The resulting expression is given
in Equation (68). The new coefficients, εQ,l,n,n−j , in the polynomials, HQ,l,n, in Equation (49) are
given formally by the right-hand sides of Equations (73)–(76) for low n and j, with the aboveWl,eq(x, q).
Equation (71) employed the new identities εQ,l,6,2 − εQ,l,5,1 + εQ,l,4,2(−εQ,l,6,4 + εQ,l,5.3) = 0, ∂εQ,l,5.3/∂x = 0

and ∂εQ,l,5.1/∂x = 0, which extend Equations (77)–(80).
For very large x, one can approximate Equation (68) by:

Wl,eq(x, q) '
∫ λ−1

th

0

dk1

~
exp[−β(~k1)2/2m][−2 cos 2k1x.~δ(q) + δ(k1 + q/~) +

δ(−k1 + q/~)] = −δ(q)
∫ λ−1

th

0

dk1 exp[−β(~k1)2

2m
] cos 2k1x+

1

~
exp[−βq

2

2m
] (115)

δ being the Dirac delta function. By using Equation (115):∫
|q|<ql

dqWl,eq(x, q) = −
∫ λ−1

th

0

dk1 exp[−β(~k1)2

2m
] cos 2k1x+

∫ λ−1
th

−λ−1
th

dq

~
exp[−βq

2

2m
] > 0 (116)

Then, for very large x and | q |≤ ql (except at q = 0), Weq(x, q) equals roughly a Gaussian minus the
δ(q) contribution. Even if Wl,eq(x, q) in Equation (68) can be < 0 in some region, a glance at it (and
at the approximation for it in Equation (115)) would suggest that, in some sense and for | q |≤ ql and
adequately large x, Wl,eq(x, q) could have properties not radically different from those a Gaussian has
in q (in the same range). We use Equation (115)) below. Certain εQ,l,n,n−j (εQ,l,3,1, εQ,l,5,3, εQ,l,5,1,....)
are x-independent and rather similar to those for the Gaussian case (say, to the classical case): the main
difference is that, in the actual quantum case, one has structures like

∫ λ−1
th

−λ−1
th

(dq/~) exp[−(βq2/2m)],

instead of the classical
∫ +∞
−∞ (dq/~) exp[−(βq2/2m)]. Other εQ,l,n,n−j (εQ,l,2,0, εQ,l,4,2, εQ,l,4,0,....) are

x-dependent: then one finds structures like
∫ λ−1

th

0
dk1 exp[−(βq2/2m)][− cos 2k1x+ 2] > 0, in which the

x-dependent contributions are dominated by constant Gaussian-like ones.
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