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Abstract: Recently there has been much effort in the quantum information community
to prove (or disprove) the existence of symmetric informationally complete (SIC) sets of
quantum states in arbitrary finite dimension. This paper strengthens the urgency of this
question by showing that if SIC-sets exist: (1) by a natural measure of orthonormality, they
are as close to being an orthonormal basis for the space of density operators as possible; and
(2) in prime dimensions, the standard construction for complete sets of mutually unbiased
bases and Weyl-Heisenberg covariant SIC-sets are intimately related: The latter represent
minimum uncertainty states for the former in the sense of Wootters and Sussman. Finally,
we contribute to the question of existence by conjecturing a quadratic redundancy in the
equations for Weyl-Heisenberg SIC-sets.
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1. Introduction

Recently, there has been significant interest in the quantum-information community to prove
or disprove the general existence of so-called symmetric informationally complete (SIC) quantum
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measurements [1–10]. The question is simple enough: For a Hilbert space Hd of arbitrary dimension d,
is there always a set of d2 quantum states |ψi〉 such that |〈ψi|ψj〉|2 = constant for all i 6= j? If so, then
the operators Ei = 1

d
|ψi〉〈ψi| can be shown to form the elements of a tomographically complete positive

operator-valued measure, often dubbed a SIC-POVM. Interestingly, despite the elementary feel to this
question—i.e., it seems the sort of thing one might find as an exercise in a linear-algebra textbook—and
the considerable efforts to solve it, the answer remains elusive. One should ask: why is there such
interest in the question in the first place? Unfortunately it is hard to deny the impression that much
of the motivation stems from little more than the mathematical challenge—not really a good physical
reason for months of effort. In this paper, we address the issue of whether there are other, more physical
motivations for seeking an answer to the existence of such states.

Indeed, there are already notable motivations from applied physics—e.g., uses of these states in
quantum cryptography [11–14]. Here, however, we go further by deriving a few previously unobserved
properties that single out SIC-sets as particularly relevant to the elementary structure of Hilbert space.
These properties make no direct use of the original defining symmetry for SICs, and instead imply them.
It is our hope that a better understanding of SIC-sets will lead to new and powerful tool for studying the
structure of quantum mechanics [15–17].

Specifically, the paper is as follows. We first demonstrate a geometric sense in which SIC-sets of
projectors Πi = |ψi〉〈ψi|, if they exist, are as close as possible to being an orthonormal basis on the cone
of nonnegative operators. This complements the frame theoretic version of the same question proved
by Scott [18]. The two results together clinch the idea that SIC-sets are promising candidates for a
stand-in for orthonormal bases on the space of density operators, and we take the opportunity to express
the structure of pure states with respect to these preferred bases. Thereafter, we focus on the case of
Weyl-Heisenberg (WH) covariant SIC-sets in prime dimensions. In prime dimensions, complete sets
of mutually unbiased bases always exist [19] and here we demonstrate a simple expression for them in
terms of the WH unitary operators. We then define a notion of minimum uncertainty state with respect
to the measurement of these bases [20] and find that the Weyl-Heisenberg SIC-sets, whenever they exist,
consist solely of minimum uncertainty states. This provides a strong motivation for considering WH
SIC-sets as a special finite-dimensional analogue of coherent states and stresses the further interest of
writing the quantum mechanical state space in terms of such operator bases. Finally, we conclude with
some general remarks and conjecture a significant reduction in the defining equations for WH SIC-sets.

2. Quasi-Orthonormal Bases and the Space of Density Operators

When equipped with the usual Hilbert-Schmidt inner product 〈A,B〉 = tr(A†B), the set of operators
acting on a d-dimensional complex vector space becomes a d2-dimensional Hilbert space. Suppose
we are given d2 operators Ai normalized so that tr(A†iAi) = 1. Under what conditions can the Ai
be orthogonal to each other? For instance, it is known that one can require the Ai to be Hermitian or
unitary and it is not too restrictive for orthogonality to obtain [21]. However, requiring the operators to
be positive semi-definite is another matter.
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We would like to measure “how orthonormal” a set of positive semi-definite Ai can be. A natural
class of measures for this is

Kt =
∑
i 6=j

|〈A,B〉|t =
∑
i 6=j

(
tr(AiAj)

)t (1)

for any real number t ≥ 1. Clearly, one will have an orthonormal basis if and only if Kt = 0 for this
sum of N = d4 − d2 terms. But for positive semi-definite Ai, as we will prove, it turns out that

Kt ≥
d2(d− 1)

(d+ 1)t−1
(2)

In other words, it is impossible to choose an orthonormal basis all of whose elements lie in the positive
cone of operators. The natural question to ask is, is there a set of d2 Ai for which Kt achieves the lower
bound for t > 1 (for t = 1, any set of Ai/d that forms a POVM would saturate the bound for K1)? If so,
we will refer to such a set as a quasi-orthonormal basis.

Note that the linear independence of theAi does not have to be imposed as a separate requirement. An
orthonormal set of vectors is automatically linearly independent. Similarly with quasi-orthonormal sets:
requiring Kt to achieve its lower bound forces linear independence. This will follow from one condition
for achieving equality—that 〈Ai, Aj〉 = constant when i 6= j [2].

We will first prove Equation (2) for the case t = 1, using a special instance of the Cauchy-Schwarz
inequality: namely, if λr is any set of n real numbers, n

∑
r λ

2
r = (

∑
r 12)(

∑
r λ

2
r) ≥ (

∑
r λr)

2, with
equality if and only if λ1 = · · · = λn. Let G be a positive semi-definite operator defined by G =

∑
iAi,

and note that trAi ≥ 1 because trA2
i = 1. Applying the Schwarz inequality to the eigenvalues of G, we

find trG2 ≥ 1
d

(
trG

)2 ≥ d3, or equivalently, K1 ≥ d3 − d2. Equality is obtained if and only if G = dI

and trAi = 1 for all i, i.e., Ai are all rank-1 projectors.
Next, let f(x) = xt, then f(x) is a strictly convex function for t > 1. By writing

Kt =
∑

i 6=j f
(
tr(AiAj)

)
, and applying Jensen inequality, we complete the proof for Equation (2).

In Jensen inequality, the equality holds if and only if tr(AiAj) is a constant c for all i 6= j. One
can determine this constant c by taking the trace of both sides of the equation (

∑
Ai)

2 = G2 = d2I ,
which comes from the equality condition for the previous Cauchy-Schwarz inequality, to get
c = (d3 −

∑
trA2

i )/(d
4 − d2) = 1/(d+ 1).

Putting all this together, we conclude that the necessary and sufficient conditions for the Ai to
constitute a quasi-orthonormal basis are:

(1) Each Ai is a rank-1 projector.

(2) tr(AiAj) = 1
d+1

for all i 6= j.

These are the same as the conditions for the operators Ai to constitute a SIC-set. In particular they imply∑
iAi = dI and, via [2], that the Ai must be linearly independent.
As an aside, let us point out that this derivation sheds light on the meaning of the “second frame

potential” Φ =
∑

i,j

∣∣〈ψi|ψj〉∣∣4 introduced by Renes et al. [3] to aid in finding SIC-POVMs numerically.
Beforehand its motivation seemed to be only the heuristic of constrained particles distancing themselves
from each other because of an interaction potential—an idea that has its roots in Reference [22]. Now,
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one sees that whenever Ai = |ψi〉〈ψi|, Φ = K2 + d2—i.e., Φ is essentially our own orthonormality
measure in this case. Equation (2) implies that Φ ≥ 2d3/(d + 1), which was proved by different means
in Reference [3].

Returning to the general development, what we have shown is that SIC-sets Πi = |ψi〉〈ψi|,
i = 1, . . . , d2, play a special role in the geometry of the cone of positive operators, and by implication,
the convex set of quantum states in general—i.e., the density operators. For the purpose of foundational
studies—particularly ones of the quantum Bayesian variety [15–17,23–25]—it is worthwhile recording
what this convex set looks like from this perspective.

Imagine introducing Ei = 1
d
Πi as a canonically given quantum measurement. For a quantum state ρ,

the outcomes will occur with probabilities p(i) = tr ρEi. Using the fact that ρ has a unique expansion in
terms of the Πi, one can work out that

ρ =
∑
i

(
(d+ 1)p(i)− 1

d

)
Πi (3)

On the other hand, one might imagine taking the vector of probabilities p(i) as the more basic
specification, and the density operator ρ as a convenient, but derivative, specification of the quantum
state. Requisite to doing this, one must have an understanding of the allowed probabilities p(i)—not
every choice of probabilities in Equation (3) will give rise to positive semi-definite ρ. This can
be done conveniently by taking note of the characterization of pure quantum states demonstrated in
Reference [26]. Remarkably, it is enough to specify that any Hermitian operator M satisfy only two
trace conditions, trM2 = 1 and trM3 = 1, to insure that it be a rank-1 projection operator—i.e., a pure
state. One can show that by letting ri be the real eigenvalues of M and noticing that the first condition
implies |ri| ≤ 1 for all i, and that trM2 − trM3 =

∑
i r

2
i (1 − ri) ≥ 0, with equality if and only if one

of the ri is 1 and the rest are 0. In terms of the p(i) these two conditions become:∑
i

p(i)2 =
2

d(d+ 1)
(4)

∑
i,j,k

cijk p(i)p(j)p(k) =
d+ 7

(d+ 1)3
(5)

where cijk = Re tr
(
ΠiΠjΠk

)
. The full set of quantum states is thus the convex hull of the solutions

to Equations (4) and (5). One nice thing about Equation (5) is that it makes transparent the algebraic
structure lying behind these special probability vectors: For, one can use the coefficients cijk as structure
coefficients in defining the anticommutator on the space of operators.

3. Weyl-Heisenberg SIC-Sets and Minimum Uncertainty States

A particularly important class of SIC-sets are those covariant under the action of the Weyl-Heisenberg
(WH) group. Most of the SIC-sets constructed to date are of this variety [1,3–8,10], and these structures
have many pleasing properties. In this Section, we derive a few new properties of such sets and show a
sense in which their elements can be called minimum uncertainty states when d is prime.

Choose a standard basis |0〉, . . . , |d − 1〉 in Hd. Let Z|j〉 = ωj|j〉 and X|j〉 = |j + 1〉, where
ω = e2πi/d and the addition in |j + 1〉 is modulo d. The WH displacement operators are defined by
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Dr = τ r1r2Xr1Zr2 for r = (r1, r2) and τ = −eiπ/d. A WH covariant SIC-set is constructed by taking
a single normalized vector |ψ〉 and acting on it with the unitaries Dr. As r1, r2 range over the integers
0, . . . , d− 1 this gives d2 vectors |ψr〉 = Dr|ψ〉. If a |ψ〉 exists such that

〈ψ|Dr|ψ〉 =

1 r = 0

eiθr√
d+1

r 6= 0
(6)

the |ψr〉〈ψr| form a SIC-set and we call |ψ〉 fiducial.
We can write Equation (6) in a more convenient form by working things out directly in terms of

components. We have 〈ψ|Dr|ψ〉 = τ r1r2
∑

j ω
jr2ψ∗j+r1ψj where ψj = 〈j|ψ〉. Consequently, taking a

Fourier transform,
1

d

∑
r2

ωkr2 |〈ψ|Dr|ψ〉|2 =
∑
j

ψjψ
∗
j+kψ

∗
j+r1

ψj+k+r1 (7)

Replacing |〈ψ|Dr|ψ〉|2 with (dδr,0 + 1)/(d+ 1) we deduce that |ψ〉 is a fiducial vector if and only if∑
j

ψjψ
∗
j+kψ

∗
j+lψj+k+l =

1

d+ 1
(δk0 + δl0) (8)

In the equations |〈ψ|Dr|ψ〉|2 = (dδr,0 + 1)/(d + 1), the left hand sides are sums of terms quartic in the
components, multiplied by powers of ω. In Equation (8) the powers of ω have disappeared; this makes
them easier to work with. Similarly, note that the frame potential Φ can be written in an ω-free form.
Starting from Equation (7), it follows that

Φ = d3
∑
k,l

∣∣∣∑
j

ψjψ
∗
j+kψ

∗
j+lψj+k+l

∣∣∣2 (9)

Finally, let us note the important case of Equation (8) where l = 0. The only terms appearing are then,
in terms of probabilities pj = |ψj|2 : ∑

j

pjpj+k =
1

d+ 1
(1 + δk0) (10)

Let us now specialize to prime dimension and work toward expressing the fiduciality condition
Equation (8) in terms of probabilities of measurement outcomes for a complete set of d + 1 mutually
unbiased bases (MUBs). Assume d > 2 (the d = 2 case requires special treatment, though our
conclusions continue to hold).

Consider the matrix F =
(
α β
γ δ

)
where α, β, γ, δ are nonnegative integers < d such that

detF = 1 mod d. We will refer to such matrices as symplectic matrices. Let U be the unitary

U =

 1√
d

∑
j,k τ

β−1(αk2−2jk+δj2)|j〉〈k| β 6= 0∑
j τ

αγj2|αj〉〈j| β = 0
(11)

Then it can be shown [4] that
UDrU

† = DFr (12)
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for all r. Moreover, if U ′ is any other unitary with this property, then U ′ = eiφU for some phase eiφ.
In these expressions all arithmetical operations on the indices are mod d. In particular β−1 is the unique
positive integer less than d such that β−1β = 1 mod d.

If β 6= 0, it can be seen that |〈j|U |k〉| = d−1/2 for all j, k. So we can use symplectic transformations
to generate MUBs. For definiteness take V , W to be the unitaries corresponding to

(
1 1
0 1

)
and

(
0 1
−1 0

)
and define

|m, j〉 =

V m|j〉 m = 0, 1, . . . , d− 1

W |j〉 m =∞
(13)

This gives us a full set of d+ 1 MUBs labeled by m.
These bases are essentially the only ones obtainable from the standard basis by symplectic

transformations. To see this let F be an arbitrary symplectic matrix with β 6= 0, and let U be the
corresponding unitary. We have

F =

(
α β

γ δ

)
=



1 1

0 1

βδ−1δ−1 0

γ δ

 δ 6= 0

 0 1

−1 0

β−1 0

α β

 δ = 0

(14)

But, unitaries corresponding to matrices with a 0 in the top right-hand position merely permute and
re-phase the elements of the standard basis. So the basis U |0〉, . . . , U |d − 1〉 coincides with one of the
bases |m, 0〉, . . . |m, (d− 1)〉 up to permutation and re-phasing. We have |j〉〈j| = (1/d)

∑
r ω
−jrD(0,r).

In view of Equations (12) and (13) this means

|m, j〉〈m, j| =

1
d

∑
r ω
−jrD(mr,r) m 6=∞

1
d

∑
r ω
−jrD(r,0) m =∞

(15)

Now consider an arbitrary |ψ〉, and let pm,j = |〈m, j|ψ〉|2. It follows from the above that

∑
j

pm,jpm,j+k =

1
d

∑
r ω

kr
∣∣〈ψ|D(mr,r)|ψ〉

∣∣2 m 6=∞
1
d

∑
r ω

kr
∣∣〈ψ|D(r,0)|ψ〉

∣∣2 m =∞
(16)

from which one sees that |ψ〉 is fiducial if and only if∑
j

pm,jpm,j+k =
1

d+ 1
(1 + δk0) (17)

Thus, instead of imposing all of the Equation (8) on the components in the standard basis, we can impose
just the special case Equation (10) for each MUB separately.

We are now ready to derive the minimum uncertainty property. Consider an arbitrary state |ψ〉
and a measurement of one of the bases m in a complete set of MUBs. This will give rise to
outcomes with a probability distribution pm,j . We will quantify the uncertainty in the outcomes by the
quadratic Rényi entropy [20,27]

Hm = − log2

(∑
j

p2m,j

)
(18)
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This measure and the measure related to it by deleting the logarithm seem to be playing a widening
role in quantum information studies [28]. In particular, it is one of the most important measures for
quantifying an eavesdropper’s information in quantum cryptography [29].

A minimum uncertainty state is one that minimizes the total uncertainty, T =
∑

mHm. To see the
conditions for this, we first appeal to the fact that [28,30]∑

m,j

p2m,j = 2 (19)

for any |ψ〉. From the convexity of the logarithm, it follows that for any sequence of positive numbers
λ1, . . . , λn, (1/n)

∑
j log2 λj ≤ log2

(
(1/n)

∑
j λj

)
with equality if and only if λ1 = · · · = λn. Thus,

in view of Equation (19)

T ≥ (d+ 1) log2

(
d+ 1

2

)
(20)

with equality if and only if
∑

j p
2
m,j = 2/(d+ 1) for all m. Comparing this with Equation (17), one sees

that every WH fiducial vector achieves the lower bound and is therefore a minimum uncertainty state.
Unfortunately, the theorem does not go the other way: it is not always the case that every minimum
uncertainty state is a fiducial state.

4. Discussion

We have argued that the SIC-sets in general dimensions, and more specifically the Weyl-Heisenberg
covariant ones (at least in prime dimensions), are particularly interesting structures in Hilbert space
geometry. Thus they call out for a better understanding, and we hope this paper is an advertisement for
that cause.

There are clearly many more things that can be asked. For instance, are SIC fiducial states also
minimum uncertainty states in prime-power dimensions? In non-prime-power dimensions, we face the
problem that complete sets of MUBs may not even exist. In that case, can one generalize the definition
of a MUB in such a way that SIC fiducial states continue to be minimum uncertainty states? With regard
to the property of quasi-orthonormality, is it possible to find non-Weyl-Heisenberg SIC-sets for which
Equation (5) takes a nicer form? For instance, if the Πi were actually orthogonal, then one would have
tr
(
ΠiΠjΠk

)
= δijδjkδki. How close can one come to a form like this with a SIC-set? Many questions

like this loom.
But most looming is the question of whether SIC-sets exist in arbitrary dimension. In this regard,

let us close with a conjecture. The necessary and sufficient conditions for |ψ〉 to be a Weyl-Heisenberg
fiducial vector are captured in Equation (8), which represents d2 simultaneous equations. However, we
have noted numerically (up to d = 28) that satisfying roughly 3

2
d of these equations is enough to imply

the rest. For instance, it appears to be sufficient to satisfy Equation (8) only for the cases k = 0, 1, 2 with
l = 0, ... d/2. Perhaps this always holds true.
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