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Abstract: In this paper, we consider the time averaged distribution of discrete time
quantum walks on the glued trees. In order to analyze the walks on the glued trees, we
consider a reduction to the walks on path graphs. Using a spectral analysis of the Jacobi
matrices defined by the corresponding random walks on the path graphs, we have a spectral
decomposition of the time evolution operator of the quantum walks. We find significant
contributions of the eigenvalues, ±1, of the Jacobi matrices to the time averaged limit
distribution of the quantum walks. As a consequence, we obtain the lower bounds of the
time averaged distribution.
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1. Introduction

The discrete time quantum walks (DTQWs) as quantum counterparts of the random walks, which
play important roles in various fields, have been attractive research objects in the last decade [1–8].
In the theory of quantum algorithms, quantum walks on various graphs also play important roles, for
example, graph isomorphism testing and network characterization [9–12], search algorithms on the
hypercube [13] or the glued binary tree [14] and an algorithm for element distinctness on the Johnson
graph [15]. In these studies, the algorithms are often reduced to DTQWs on the path graphs. Therefore,
investigations of DTQWs on the path graph corresponding to the original graphs are important.
Rohde et al. [16] studied the periodic properties of entanglement for DTQW on the path determined
by biased Hadamard coins numerically. Godsil [17] studied the time averaged distributions of
continuous-time quantum walks on the path using the average mixing matrix. Ide et al. [18] studied
the time averaged distribution of DTQWs on the path graph, which can be viewed as a quantization
of random walks on the path. In this paper, we consider DTQWs on the path graphs corresponding to
the random walks on the glued trees. We obtain lower bounds of the time averaged distribution of the
DTQWs by using spectral analysis of the corresponding Jacobi matrices.

The rest of this paper is organized as follows. The definition of our DTQW is given in Section 2, and the
main result of this paper is stated in Section 3. The remaining section (Section 4) is devoted to the
proof of our result.

2. Definition of the DTQW

Let Tk(n) be the k-ary tree on
∑n

h=1 k
h−1 vertices (height = n), i.e., the graph which is constructed

inductively as follows: We start with a vertex called the “root” of Tk(n) and set the height of the
root = 1. We add k numbers of vertices and set the height of these vertices = 2. Then, we connect
the root and all the vertices with its height = 2. Similarly, for every vertex with its height = h, we add k
numbers of new vertices and set the height of these vertices = h + 1. Then, we connect the vertex with
its height = h and all the new k vertices with their height = h+ 1. Note that there are kh−1 numbers of
vertices with their height = h. We repeat this procedure, until all the vertices with its height = n − 1

connect with k numbers of new vertices with their height = n. We call each vertex with its height = n

a “leaf”, because the degree of these vertices equals one. Note that the degree of the root equals k; the
degree of the leaves is one, and the degree of all other vertices is k + 1.

In this paper, we consider the glued trees, Gk(2n), consisting of two k-ary trees, T 1
k (n) and T 2

k (n).
The glued tree, Gk(2n), is constructed as follows: Each leaf in T 1

k (n) and T 2
k (n) has k numbers of

“potential edges”. We select a pair of potential edges (ei, ej) at random, where ei is a potential edge of
a vertex, i, in T 1

k (n) and ej is that of j in T 2
k (n). After that, we connect a pair of vertices, i and j, with

an edge and erase the pair of potential edges, ei and ej . We continue this procedure until all the potential
edges disappear. Note that the degree of the vertices in Gk(2n) except for the two roots of T 1

k (n) and
T 2
k (n) are k + 1, and the degree of the roots are equal to k.

In a quantum search algorithm [14], it is known that the algorithms on the glued trees work on the
path graphs. For the Grover walks on the spidernets, it can be shown that there is a subspace that is
isomorphic to a DTQW on the path graph. On this subspace, the Grover walk behaves as the DTQW,
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which is called the Szegedy walk on the path graph (see [19] for more details). Using a similar argument,
we can construct the Szegedy walks on the path graph corresponding to the Grover walks on the glued
tree. Following these observations, we consider a reduction of Gk(2n) on the path graph, P2n, on 2n

numbers of vertices with the vertex set V (P2n) = {1, 2, · · · , 2n} and the edge set E(P2n) = {(i, i+1) :

i = 1, 2, . . . 2n − 1}. The results shown in this paper are restricted to the Szegedy walks on the path
graph. However, the results describe the behaviors of the corresponding Grover walks on the glued tree.
Therefore, it is useful to consider the Szegedy walks on the path graph.

First of all, we identify all the vertices with their height = h in T 1
k (n) and as the vertex, h, in P2n

and all the vertices with their height = h in T 2
k (n) as the vertex 2n − h + 1 in P2n. Figure 1 shows an

example of the glued tree with the k = 2 and n = 3 case. The figure also exhibits the corresponding
path graph.

Figure 1. A glued tree, G2(6), consists of two 2-ary trees with height = 3, T 1
2 (3) and T 2

2 (3).
Each leaf of T 1

2 (3) is connected with two randomly chosen leaves in T 2
2 (3). The glued tree,

G2(6), is reduced to the path graph, P6.

T 1
2 (3) T 2

2 (3)

1 2 3 4 5 6
P6

G2(6)

Recall that the simple random walk on T 1
k (n) and T 2

k (n) has the transition probabilities from a vertex,
i, to a neighboring vertex, j, as:

pi,j =

 k
k+1

, if the height of j equals that of i plus 1
1

k+1
, if the height of j equals that of i minus 1

for the vertices, i, except for the roots and:

pi,j =
1

k
, if the height of j equals 2,

if the vertex, i, is the root. Based on this fact, we consider the following random walk on P2n

corresponding to Gk(2n): let p = 1/(k + 1) and q = k/(k + 1). The transition probabilities of the
random walk is:

pi,i+1 =


1, if i = 1,

q, if i = 2, . . . , n,

p, if i = n+ 1, . . . , 2n− 1
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pi,i−1 =


1, if i = 2n,

q, if i = n+ 1, . . . , 2n− 1

p, if i = 2, . . . , n.

Now, we define corresponding DTQWs, which we call the Szegedy walk [18,20,21] on P2n with the
general settings of transition probabilities p and q with p+q = 1. This is the reduced DTQW on the path
graph from the original Grover walk on the glued tree. Let H2n = span{|0, R⟩, |1, L⟩, |1, R⟩, . . . , |2n−
1, L⟩, |2n − 1, R⟩, |2n, L⟩} be a Hilbert space with |i, J⟩ = |i⟩ ⊗ |J⟩ (i ∈ V (P2n), J ∈ {L,R})
the tensor product of elements of two orthonormal bases {|i⟩ : i ∈ V (P2n)} for the position of the
walker and {|L⟩ = T [1, 0], |R⟩ = T [0, 1]} for the chirality, which means the direction of the motion
of the walker, where TA denotes the transpose of a matrix, A. Then, we consider the time evolution
operator, U (2n), on H2n defined by U (2n) = S(2n)C(2n) with the following coin operator, C(2n), and shift
operator, S(2n):

C(2n) = |0⟩⟨0| ⊗ |R⟩⟨R|

+
n∑
j=1

|j⟩⟨j| ⊗ (2|ϕ1⟩⟨ϕ1| − I2) +
2n∑

j=n+1

|j⟩⟨j| ⊗ (2|ϕ2⟩⟨ϕ2| − I2)

+ |2n⟩⟨2n| ⊗ |L⟩⟨L|

S(2n)|i, J⟩ =

|i+ 1, L⟩ if J = R

|i− 1, R⟩ if J = L

where |ϕ1⟩ =
√
p|L⟩+√

q|R⟩, |ϕ2⟩ =
√
q|L⟩+√

p|R⟩ and In are the n× n identity matrix.
Let X(2n)

t be the position of our quantum walker at time t. The probability that the walker with initial
state |ψ⟩ is found at time t and the position, x, is defined by:

P|ψ⟩(X
(2n)
t = x) =

∥∥∥(|x⟩⟨x| ⊗ I2)
(
U (2n)

)t |ψ⟩∥∥∥2

In this paper, we consider the DTQW starting from a vertex, i ∈ V (P2n), and choose the initial chirality
state with equal probability, i.e., we choose the initial state as |ψ⟩1 = |1⟩⊗|R⟩ for i = 1, |ψ⟩i = |i⟩⊗|L⟩
or |ψ⟩i = |i⟩ ⊗ |R⟩ with probability 1/2 for 2 ≤ i ≤ 2n − 1 or |ψ⟩2n = |2n⟩ ⊗ |L⟩ for i = 2n. For the
sake of simplicity, we write Pi(X(2n)

t = x) for P|ψ⟩i(X
(2n)
t = x). Let the time averaged distribution:

p̄
(2n)
i (x) = lim

T→∞
E

[
1

T

T−1∑
t=0

Pi(X(2n)
t = x)

]

where the expectation takes the choice of the initial chirality state. For the sake of simplicity, we only
consider the i, x ∈ {1, . . . , n} case from now on.
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3. Results

In this section, we show our main result on the time averaged distribution, p̄(2n)i (x). We allow
i, x ∈ {1, . . . , n} to be fixed and diverging in n cases. We have the following properties for p̄(2n)i (x):

Theorem 3.1. The time averaged distribution, p̄(2n)i (x), is symmetric, i.e., p̄(2n)i (x) = p̄
(2n)
2n+1−i(x) and

p̄
(2n)
i (x) = p̄

(2n)
i (2n + 1 − x) for i, x ∈ {1, . . . , n}. The time averaged distribution has the following

lower bounds:

p̄
(2n)
i (x) ≥ (p− q)2(q/p)i−1

2 [δ1(i) + {1− δ1(i)} 2q] {2p− (q/p)n−1}2

[
δ1(x) + {1− δ1(x)}

(q/p)x−1

q

]
This leads to the following result:

(1) If p > q, then,

lim inf
n→∞

p̄
(2n)
i (x) ≥


(q/p)i+x−2

2 [δ1(i) + {1− δ1(i)} 2q] [δ1(x) + {1− δ1(x)} q]

(
1− q/p

2

)2

, if i+ x <∞

0, otherwise.

(2) If p < q, then,

lim inf
n→∞

p̄
(2n)
i (x) ≥

(p/q)k
(
1− p/q

2

)2

, if limn→∞{2n− (i+ x)} = k ≥ 0

0, otherwise.

Note that the p = q = 1/2 case is included in the path graph case [18]. Theorem 3.1 shows that if
the random walker is likely to go to the two roots, then the corresponding quantum walker localizes in
vertices that are finitely close to the two roots. On the other hand, if the random walker is likely to go
to the center of the glued tree, then the quantum walker localizes in vertices that are finitely close to the
leaves in T 1(n) and T 2(n). The proof of Theorem 3.1 is based on [18,21]. In this proof, the eigenvalues
and eigenvectors of the following 2n × 2n finite Jacobi matrix, J2n(p), induced by the random walk on
P2n, the (i, j) component of which is determined by {J2n(p)}i,j =

√
pi,jpj,i, plays an important role:

J2n(p) =



0
√
p

√
p 0

√
pq O

√
pq

. . . . . .

. . . . . . √
pq

√
pq 0 q

q 0
√
pq

√
pq

. . . . . .

. . . . . . √
pq

√
pq 0

√
p

O √
p 0



.
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Indeed, as is shown in Lemma 4.3, the eigenvalues and the eigenvectors of the time evolution operator,
U (2n), are given by that of J2n(p). On the other hand, the time averaged distribution is completely
described by all the eigenvectors of U (2n). Unfortunately, as is shown in Lemma 4.2, we cannot obtain
all of the eigenvalues of J2n(p) explicitly. The lower bounds in Theorem 3.1 are calculated by the
eigenvectors corresponding to ±1 eigenvalues of U (2n).

4. Proof of Theorem 3.1

In order to prove Theorem 3.1, we have the following result for the eigenspace of the Jacobi matrices
at first:

Lemma 4.1 (The determinantal formula for a symmetric Jacobi matrix). Let J2n be the following 2n×2n

finite Jacobi matrix:

J2n =



αn
√
wn−1

√
wn−1

. . . . . . O

. . . . . . √
w1√

w1 α1
√
w0√

w0 α1
√
w1

√
w1

. . . . . .

. . . . . . √
wn−1

O √
wn−1 αn


where αi ∈ R for i = 1, . . . n and wi ∈ (0,∞) for i = 0, . . . n− 1. Then, the characteristic equation of
J2n, i.e., det(λI2n − J2n) = 0, is:

{(λ− α1 −
√
w0) det(E2)− w1 det(E3)} {(λ− α1 +

√
w0) det(E2)− w1 det(E3)} = 0

where Ek is the following (n− k + 1)× (n− k + 1) matrix:

Ek =



λ− αn −√
wn−1

−√
wn−1

. . . . . . O

. . . . . . . . .
. . . . . . −√

wk

O −√
wk λ− αk


In addition:

(1) The eigenvector corresponding to the eigenvalue, λ, with (λ−α1−
√
w0) det(E2)−w1 det(E3) = 0

is:

T

[
1,

det(En)√
wn−1

,
det(En−1)√
wn−2wn−1

, . . . ,
det(E2)√
w1 · · ·wn−1

,
det(E2)√
w1 · · ·wn−1

, . . . ,
det(En−1)√
wn−2wn−1

,
det(En)√
wn−1

, 1

]
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(2) The eigenvector corresponding to the eigenvalue, λ, with (λ−α1+
√
w0) det(E2)−w1 det(E3) = 0

is:

T

[
1,

det(En)√
wn−1

,
det(En−1)√
wn−2wn−1

, . . . ,
det(E2)√
w1 · · ·wn−1

,− det(E2)√
w1 · · ·wn−1

, . . . ,− det(En−1)√
wn−2wn−1

,−det(En)√
wn−1

,−1

]

We should remark that every eigenvalue of J2n is simple (see, e.g., [22]). Therefore, the eigenvectors
are mutually orthogonal.
Proof of Lemma 4.1.

Let:

Ek =



λ− αk −√
wk

−√
wk

. . . . . . O

. . . . . . . . .
. . . . . . −√

wn−1

O −√
wn−1 λ− αn


Note that by exchanging rows and columns, we have det(Ek) = det(Ek).

By expanding det(λI2n − J2n) in the n-th row, we have:

det(λI2n − J2n)

=
√
w1 · det



E3 O
−√

w2 −√
w1

−√
w0 λ− α1 −√

w1

−√
w1 λ− α2 −√

w2

−√
w2

O E3



+ (λ− α1) · det

E2 O
O E1

+
√
w0 · det


E2 −√

w1 O
−√

w0 −√
w1

λ− α2 −√
w2

−√
w2

O E3


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On the other hand, repeating the expansion of the determinants, we obtain:

det



E3 O
−√

w2 −√
w1

−√
w0 λ− α1 −√

w1

−√
w1 λ− α2 −√

w2

−√
w2

O E3



= −
√
w1(λ− α1) · det

E3 O
O E2

+ w1

√
w1 · det

E3 O
O E3


and:

det


E2 −√

w1 O
−√

w0 −√
w1

λ− α2 −√
w2

−√
w2

O E3


= −

√
w0 · det

E2 O
O E2



Therefore, we have:

det(λI2n − J2n)

= −w1(λ− α1)det(E2)det(E3) + w2
1det(E3)

2 + (λ− α1) det(E1) det(E2)− w0det(E2)
2

= (λ− α1)
2det(E2)

2 − 2w1(λ− α1)det(E2)det(E3) + w2
1det(E3)

2 − w0det(E2)
2

= {(λ− α1 −
√
w0) det(E2)− w1 det(E3)} {(λ− α1 +

√
w0) det(E2)− w1 det(E3)}

For the second equality, we use the following relation:

det(Ek) = (λ− αk)det(Ek+1)− wkdet(Ek+2), for k = 2, . . . , n− 1

This completes the first half of the proof.
We can easily check that:

√
wn−1 ×

det(En)√
wn−1

= det(En) = (λ− αn) = (λ− αn)× 1

and:

√
wk−1 ×

det(Ek)√
wk−1 · · ·wn−1

=
1

√
wk · · ·wn−1

× {(λ− αk)det(Ek+1)− wkdet(Ek+2)}

= (λ− αk)×
det(Ek+1)√
wk · · ·wn−1

−
√
wk ×

det(Ek+2)√
wk+1 · · ·wn−1
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for k = 2, . . . , n− 1.
From the condition (λ− α1 −

√
w0) det(E2)− w1 det(E3) = 0, we have:

−
√
w1 ×

det(E3)√
w2 · · ·wn−1

+ (λ− α1)×
det(E2)√
w1 · · ·wn−1

−
√
w0 ×

det(E2)√
w1 · · ·wn−1

= 0

Similarly, from the condition (λ− α1 +
√
w0) det(E2)− w1 det(E3) = 0, we have:

−
√
w1 ×

det(E3)√
w2 · · ·wn−1

+ (λ− α1)×
det(E2)√
w1 · · ·wn−1

−
√
w0 ×

(
− det(E2)√

w1 · · ·wn−1

)
= 0

These conditions imply that the vectors described in the lemma are the corresponding eigenvectors.
Now, we apply Lemma 4.1 with parameters α1 = · · · = αn = 0, w0 = q2, w2 = · · · = wn−2 = pq

and wn−1 = p to the Jacobi matrix, J2n(p). We obtain the following characteristic equation of J2n(p):{
(λ− q) det(E ′

n−1)− pq det(E ′
n−2)

}{
(λ+ q) det(E ′

n−1)− pq det(E ′
n−2)

}
= 0

where E ′
k is the following k × k matrix:

E ′
k =



λ −√
p

−√
p λ −√

pq O
−√

pq
. . . . . .
. . . λ −√

pq

O −√
pq λ


Remark that for k ≥ 2,

det(E ′
k) = λ det(E ′

k−1)− pq det(E ′
k−2) = λ det(Fk−1)− p det(Fk−2)

det(Fk) = λ det(Fk−1)− pq det(Fk−2)

where Fk is the following k × k matrix:

Fk =


λ −√

pq

−√
pq

. . . . . . O

. . . . . . −√
pq

O −√
pq λ


Using these facts, we can calculate:

(λ∓ q) det(E ′
n−1)− pq det(E ′

n−2) = (λ∓ 1) {det(Fn−1)± p det(Fn−2)}

Therefore, the eigenvalues of J2n(p) are λ = ±1 and λ, satisfying det(Fn−1)± p det(Fn−2) = 0.
For the λ = ±1 case, we have:

det(E ′
k) = ± det(Fk−1)− p det(Fk−2)

det(Fk) = ± det(Fk−1)− pq det(Fk−2)
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with det(F1) = ±1 and det(F0) = 1. This implies:

det(E ′
k) = (±1)kqk−1, for k ≥ 1

On the other hand, for the λ ̸= ±1 case, we identify det(Fk) as
√
pqkŨk(λ/

√
pq), where Ũk(x)

is the (monic) Chebyshev polynomial of the second kind, i.e., the series of polynomials satisfying the
following recurrence relation:

Ũ0(x) = 1

Ũ1(x) = x

Ũk(x) = xŨk−1(x)− Ũk−2(x), for k ≥ 2

In this case, we obtain:

det(Fn−1)± p det(Fn−2) =
√
p
√
pqn−2

{√
qŨn−1(λ/

√
pq)±√

pŨn−2(λ/
√
pq)

}
det(E ′

k) =

√
pqk

q

{
qŨk(λ/

√
pq)− pŨk−2(λ/

√
pq)

}
, for k ≥ 1

with Ũ−1(x) = 0. Combining these results with Lemma 4.1, we have the following lemma for the eigen
space of J2n(p):

Lemma 4.2. Let λ be the eigenvalue of J2n(p) and vλ be the corresponding eigenvector. Then, we have
λ = ±1, and the remaining eigenvalues, λ, satisfy

√
qŨn−1(λ/

√
pq)} ± √

pŨn−2(λ/
√
pq) = 0. The i-th

component, vλ(i), of the eigenvectors, vλ, is the following:

(1) For λ = ±1

v±1(i) =


1, if i = 1

(±
√
q/p)i−1/

√
q, if i = 2, . . . , n

±(±
√
q/p)2n−i/

√
q, if i = n+ 1, . . . , 2n− 1

±1, if i = 2n

||v±1||2 =

2(2n− 1), if p = q = 1/2

2
p−q {2p− (q/p)n−1} , if p ̸= q

(2) For λ ̸= ±1

vλ(i) =



1, if i = 1{
qŨi(λ/

√
pq)− pŨi−2(λ/

√
pq)

}
/
√
q, if i = 2, . . . , n

±
{
qŨ2n−i(λ/

√
pq)− pŨ2n−i−2(λ/

√
pq)

}
/
√
q, if i = n+ 1, . . . , 2n− 1

±1, if i = 2n

||vλ||2 =
2(1− λ2)Sn−1

q
, with Sk =

k−1∑
i=0

Ũi(λ/
√
pq)
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The last part of Lemma 4.2, i.e., ||vλ||2, is calculated as follows:

||vλ||2 = 2

[
1 + qŨ2

1 (λ/
√
pq) +

1

q

n−1∑
i=2

{
qŨi(λ/

√
pq)− pŨi−2(λ/

√
pq)

}2
]

= 2

{
1 + qŨ2

1 (λ/
√
pq) +

n−1∑
i=2

Ũ2
i (λ/

√
pq)− λ2

q

n−2∑
i=2

Ũ2
i (λ/

√
pq) +

p

q

n−3∑
i=2

Ũ2
i (λ/

√
pq)

}
Here, we use λ2Ũ2

i−1(λ/
√
pq) = pqŨ2

i (λ/
√
pq) + pqŨ2

i−2(λ/
√
pq) + 2pqŨi(λ/

√
pq)Ũi−2(λ/

√
pq),

obtained from the recurrence relation of the Chebyshev polynomial in the second equality. Using
the recurrence relation of the Chebyshev polynomial, U−1(x) = 0 and the eigenvalue condition, we
finally obtain:

||vλ||2 = 2

{
(1− λ2)Sn

q
+
λ2 − p

q
Ũ2
n−1(λ/

√
pq)− p

q
Ũ2
n−2(λ/

√
pq)

}
= 2

{
(1− λ2)Sn

q
+
λ2 − (p+ q)

q
Ũ2
n−1(λ/

√
pq)

}
=

2(1− λ2)Sn−1

q

The eigen space of the time evolution operator, U (2n), is described by that of J2n(p) (Lemma 2
of [18]) as follows:

Lemma 4.3. Let λk (k = 1, . . . , 2n) be the eigenvalues of J2n(p) and vλk (k = 1, . . . , 2n) be
the corresponding eigenvectors. We set λ1 = 1 and λ2n = −1. Then, the eigenvalues µk (k =

1,±2, . . . ,±(2n− 1), 2n) and corresponding eigenvectors uk (k = 1,±2, . . . ,±(2n− 1), 2n) of U (2n)

are obtained as follows:
Let ṽλ = vλ/||vλ|| and for k = 1, . . . 2n,

aλk = ṽλk(1)|1, R⟩

+
n∑
i=2

ṽλk(i)|i⟩ ⊗ (
√
p|L⟩+√

q|R⟩) +
2n−1∑
i=n+1

ṽλk(i)|i⟩ ⊗ (
√
q|L⟩+√

p|R⟩)

+ ṽλk(2n)|2n, L⟩
bλk = S(2n)aλk

Then, we have:
µ1 = 1, u1 = aλ1 = a1,
µ±k = exp(±iφλk), u±k = aλk − exp(±iφλk)bλk , where cosφλk = λk, for k = 2, . . . , 2n− 1,
µ2n = −1, u2n = aλ2n = a−1.

Now, we estimate the distribution p(2n)i . By the assumption of the choice of the initial state, we have:

p
(2n)
i (x) =



lim
T→∞

1

T

T−1∑
t=0

∥∥∥(|x⟩⟨x| ⊗ I2)
(
U (2n)

)t
(|0⟩ ⊗ |R⟩)

∥∥∥2

, if i = 1

lim
T→∞

1

T

T−1∑
t=0

{
1

2

∑
J=L,R

∥∥∥(|x⟩⟨x| ⊗ I2)
(
U (2n)

)t
(|i⟩ ⊗ |J⟩)

∥∥∥2
}
, if 2 ≤ i ≤ 2n− 1

lim
T→∞

1

T

T−1∑
t=0

∥∥∥(|x⟩⟨x| ⊗ I2)
(
U (2n)

)t
(|n+ 1⟩ ⊗ |L⟩)

∥∥∥2

, if i = 2n
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Using the spectral decomposition
(
U (2n)

)t
=

∑
k µ

t
kuku

†
k and limT→∞(1/T )

∑T−1
t=0 e

iθt =

δ0(θ) (mod 2π), we obtain:

p
(2n)
i (x) =



∑
k

{
(|u(k)x,L|

2 + |u(k)x,R|
2)× |u(k)1,R|

2
}
, if i = 1

1

2

∑
k

{
(|u(k)x,L|

2 + |u(k)x,R|
2)× (|u(k)i,L|

2 + |u(k)i,R|
2)
}
, if 2 ≤ i ≤ 2n− 1∑

k

{
(|u(k)x,L|

2 + |u(k)x,R|
2)× |u(k)2n,L|

2
}
, if i = 2n

with uk =
∑2n

j=1 |j⟩ ⊗
(
u
(k)
x,L|L⟩+ u

(k)
x,R|R⟩

)
, because all eigenvalues of U (2n) are nondegenerate (this

comes from nondegenerateness of J2n(p); see, e.g., [22]). Using this fact and Lemmas 4.2 and 4.3, we
have the symmetric property of the time averaged distribution. Moreover, we also obtain:

|u(1)i,L|
2 + |u(1)i,R|

2 = |u(2n)i,L |2 + |u(2n)i,R |2 = |ṽ±1(i)|2 =
(p− q)[δ1(i) + {1− δ1(i)}/q](q/p)i−1

2{2p− (q/p)n−1}

for i = 1, . . . n. On the other hand, it is obvious that:

p
(2n)
i (x) ≥


∑
k=1,2n

{
(|u(k)x,L|

2 + |u(k)x,R|
2)× |u(k)1,R|

2
}
, if i = 1

1

2

∑
k=1,2n

{
(|u(k)x,L|

2 + |u(k)x,R|
2)× (|u(k)i,L|

2 + |u(k)i,R|
2)
}
, if 2 ≤ i ≤ n

As a consequence, we have the desired lower bound.

p̄
(2n)
i (x) ≥ (p− q)2(q/p)i−1

2 [δ1(i) + {1− δ1(i)} 2q] {2p− (q/p)n−1}2

[
δ1(x) + {1− δ1(x)}

(q/p)x−1

q

]
Taking suitable limits, the remaining parts of Theorem 3.1 are obtained by this lower bound.

The eigenvectors, u±k, with k = 2, . . . , 2n − 1 are not obtained explicitly in the present stage. It is
expected that the remaining part of the time averaged distribution converges to the uniform distribution
after suitable normalization, because the remaining eigenvectors are similar to that of the time evolution
operator of DTQW on the path graphs [18]. It is interesting future work to make clear whether this
conjecture is true or not.
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