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Abstract: This paper considers the four-node relay-eavesdropper channel, where a relay
node helps the source to send secret messages to the destination in the presence of a passive
eavesdropper. For the discrete memoryless case, we propose a hybrid cooperative coding
scheme, which is based on the combination of the partial decode-forward scheme, the
noise-forward scheme and the random binning scheme. The key feature of the proposed
hybrid cooperative scheme is that the relay integrates the explicit cooperation strategy and
the implicit cooperation strategy by forwarding source messages and additional interference
at the same time. The derived achievable secrecy rate shows that some existing works can
be viewed as special cases of the proposed scheme. Then, the achievable secrecy rate is
extended to the Gaussian channel based on Gaussian codebooks, and the optimal power
policy is also identified in the high power region. Both the analysis and numerical results are
provided to demonstrate that the proposed hybrid cooperative coding scheme outperforms
the comparable ones, especially in the high power region.
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1. Introduction

The concept of information theoretic secrecy was first introduced by Shannon in [1], where a key
is used to protect confidential messages over noiseless transmissions. When considering the noisy
transmission, Wyner introduced the wiretap channel in [2], where the received signal at the eavesdropper
was assumed to be a degraded version of the signal at the legitimate receiver. Csiszár and Körner
extended this degraded wiretap channel to a more general broadcast channel with confidential messages
and found the secrecy capacity in [3]. Wyner’s channel has also been extended to the wiretap channel
with side information, where the side information was assumed to be non-casually known to the
transmitter [4,5]. Recently, secrecy problems have been considered in various multi-user setups. For
example, multiple access channels (MACs) were studied in [6–9], where an external eavesdropper was
introduced in [6,7], while each legitimate user in [8,9] acted as an eavesdropper for the messages intended
to the other users. Broadcast channels (BCs) were considered in [10,11], where each user is also an
eavesdropper for the messages intended to the others. Relay channels were studied in [12–17], where
an external eavesdropper was introduced in [12–15], while the relay node in [16,17] was an untrusted
helper, i.e., this untrusted helper also acted as an eavesdropper to the main receiver.

Since user cooperation can potentially enhance the security, many existing works have designed
cooperative secure transmission schemes for multi-user networks. These existing cooperation schemes
can be divided into two different types: the explicit cooperation strategy and the implicit cooperation
strategy. The explicit cooperation strategy means that the helper nodes send messages that are correlated
to the intended messages, such as the decode-forward (DF) scheme [12] or the partial DF [13]
for relay-eavesdropper channels. The implicit cooperation strategy requires helper nodes to send
interference messages that are independent of the intended messages, such as cooperative jamming
(CJ) [6], noise-forward (NF) [12] and the interference-assisted scheme [14].

Different from these works in [6,12–14] that consider these two types of cooperation strategies
separately, this paper aims to design a hybrid cooperative coding scheme that integrates the explicit
cooperation strategy and the implicit cooperation strategy together. Most recently, hybrid cooperative
coding schemes have been considered in [7,15] for the MAC channel with conference and secrecy
constraints. Compared to the works in [7,15], which are based on an assumption that there exist secret
communication links between a source and its helper partner, the proposed hybrid cooperative coding
scheme is applicable to a more practical relay-eavesdropper channel in which the transmissions from the
source to the relay can be overheard by the eavesdropper.

The contributions of the this paper can be summarized as follows. Firstly, we propose a hybrid
cooperative coding scheme for the four-node relay-eavesdropper channel, where a relay node helps
the source to send secret messages to the destination in the presence of a passive eavesdropper. The
basic idea is to combine the partial DF scheme [18] for relay channels, the NF [12] scheme for
relay-eavesdropper channels and random binning [2] for wiretap channels. Note that the NF and random
binning schemes can provide useful randomness to protect the secret messages. The key feature of the
proposed hybrid cooperative scheme is that the relay integrates the explicit cooperation strategy and
the implicit cooperation strategy by forwarding source messages and additional interference at the same
time. The derived achievable secrecy rate shows that the proposed scheme generalizes some existing
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works, such as the DF [12], partial DF [13] and NF [12] schemes for relay-eavesdropper channels.
Secondly, the achievable rate result is extended to the memoryless Gaussian channel based on Gaussian
codebooks. Then, the optimal power policy is developed for the proposed scheme in the high power
region, and the result shows that the secrecy rate achieved by the proposed scheme can be sufficiently
large in the high power region, even if the source-relay link is weak. This is benefited from the fact
that the interference generated at the relay can protect the transmissions from the source to the relay by
confusing the eavesdropper. Finally, we illustrate the proposed scheme through some examples of the
Gaussian network topologies. The numerical results show that our scheme outperforms the comparable
ones, especially when the transmit power is large.

In the following, the details about the differences between the proposed scheme and the existing ones
are provided in order to further highlight the contribution of this paper.

• The channel model and the coding scheme developed in [19] are fundamentally different from
those in this paper. First, the work in [19] considers the relay-eavesdropper channel model with
parallel subchannels, whereas this paper considers the relay-eavesdropper channel model with only
a single communication channel. Second, the coding scheme in [19] uses a subset of channels to
perform the DF scheme and the remaining ones to perform the NF scheme, and the interaction
between these two relaying schemes exists only across different subchannels. In contrary, by
using the superposition coding scheme, the partial DF and NF schemes in the proposed coding
scheme are strongly connected to each other in the same channel.

• The work in [20] combined partial DF, NF and compress-and-forward (CF) schemes for the
discrete memoryless relay-eavesdropper channel. In Section 3.4, we will show that the use of
the CF scheme does not offer any performance gains in terms of the secrecy rate. Compared
to the scheme in [20] that is based on the successive decoding strategy for separately decoding
different messages, the proposed scheme utilizes the backward decoding strategy to jointly decode
the common part (known by both the source and relay) of the source messages. Moreover, the
proposed scheme decodes the interference messages from the relay after decoding the common
part of the source messages, whereas the scheme in [20] decodes these two types of messages in a
reversed order. This results in different secrecy rates achieved by these two coding schemes, and
their performances will be compared in detail in Section 3.4.

The rest of this paper is organized as follows. In Section 2, the notations, the channel model and the
main result are given for the discrete memoryless relay-eavesdropper. Section 3 extends the main result
to the Gaussian case, for which an achievable secrecy rate, a power policy in the high power region and
some numerical results are provided. The achievable secrecy rate associated with the proposed hybrid
coding scheme for the discrete memoryless relay-eavesdropper channel is established in Section 4.
Finally, conclusions are provided in Section 5.
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2. System Model and Achievable Secrecy Rate

2.1. Notations

Throughout this paper, a random variable, its realization and its finite alphabet are denoted with an
upper case letter (e.g.,X), the corresponding lower case letter (e.g., x) and the corresponding calligraphic
letter (e.g., X ), respectively. The probability distribution of the random variable, X , is denoted as
p(x) = pX(x) for simplicity, where x ∈ X . Furthermore, we use Xn to denote a random n-vector
(X1, · · · , Xn) and use xn = (x1, · · · , xn) to denote a specific n-vector value in X n, which is the n-th
Cartesian power of X .

Moreover, let Xi and X(]i[) denote the set {X(j), 1 ≤ j < i} and the set {X(j), 1 ≤ j < i or i <
j ≤ n}, respectively. In addition, [1 : B] = {1, 2, · · · , B}, [x]+ = max{x, 0}, C(x) = 1

2
log(1 + x),

and εk is arbitrarily small positive number for ∀k. Finally,A(n)
ε (X1, X2) denotes the set of jointly typical

n-sequences with respect to p(x1, x2) (more details can be seen in [21]).

2.2. Discrete Memoryless Relay-Eavesdropper Channel

Figure 1. Relay-eavesdropper channel.
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As shown in Figure 1, this paper considers a four-node discrete memoryless channel, where the source
(X1) wishes to send a message W1 ∈ W1 = {1, · · · ,M} to the destination (Y ), while keeping it secret
from an external eavesdropper (Y2), with the help of a full duplex relay node, (X2, Y1). This channel
is first introduced in [12], termed as the relay-eavesdropper channel, which consists of a transition
probability distribution (X1 ×X2, p(y, y1, y2|x1, x2),Y × Y1 × Y2). Here, the finite sets, X1, X2, denote
the input alphabets at the source and the relay, respectively, while the finite sets, Y , Y1, Y2, denote the
output alphabets at the destination, the relay and the eavesdropper, respectively. The (M,n, P n

e ) code of
this system consists of a stochastic encoder, f1, at the source that maps the message,W1, into a codeword,
Xn

1 ∈ X n
1 , a stochastic encoder, f2, at the relay that maps its received signals (Y1,1, · · · , Y1,i−1) before

time i into a channel input,X2,i, and a decoding function φ : Yn → W1. The average error probability is:

P n
e =

1

M

∑
w1∈W1

Pr(φ(Yn) 6= w1|w1 was sent). (1)

The secrecy level is measured by the equivocation rate (1/n)H(W1|Yn
2 ). A prefect secrecy rate, Rs,

is said to be achievable if for any ε > 0, there exists a sequence of codes (M,n, P n
e ), such that:
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M ≥ 2nRs , P n
e ≤ ε

Rs − ε ≤
1

n
H(W1|Yn

2 ). (2)

2.3. Achievable Secrecy Rate

Before the presentation of our main result, we first define some parameters as follows.

Definition 1. Let P denote the set of all the joint distributions of the random variables
(U, V1, X1, X2, Y1, Y2) that factor as:

p(u, v1, x1, x2, y, y1, y2) = p(u)p(x1, v1|u)p(x2|u)p(y, y1, y2|x1, x2). (3)

In this definition, one can observe that (V1, X1) − U − X2 is a Markov chain, where U represents
the common message known by the source and the relay. Conditioned on U , (V1, X1) and X2 can be
generated at the source and the relay, respectively.

Definition 2. For a given p ∈ P , define two rates, R11(p) and R12(p), as:

R11(p) ,I(X1;Y |X2, U, V1) + min{I(X2;Y |U, V1), I(X2;Y2|U,X1)}
−min{I(X2;Y |U, V1), I(X2;Y2|U, V1)} − I(X1;Y2|U, V1, X2), (4)

R12(p) ,min{I(U, V1;Y ), I(V1;Y1|X2, U)} − I(U, V1;Y2). (5)

Note that R11(p) is the rate of the private secret message at the source that is not known by the relay,
while R12(p) is the rate of the common secret message that is known by the source and the relay.

Based on the above definitions, the following theorem gives an achievable secrecy rate for the discrete
memoryless relay-eavesdropper channel.

Theorem 1. For the considered relay-eavesdropper channel, the following secrecy rate is achievable.

Rs = max
p∈P

R11(p) +R12(p). (6)

Figure 2. The encoder structure in Block b, 2 ≤ b ≤ B, where the common message
w0b = (w12b−1, w

x
12b−1), which is transmitted by the source in the previous block, and “SP”

is the abbreviation of the word “superposition”.
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Proof. The proposed achievable scheme is based on the careful combination of the partial DF [18]
scheme for relay channels, the NF scheme [12] for relay-eavesdropper channels and random binning for
wiretap channels [2]. Specifically, the proposed coding scheme integrates some essential techniques,
such as rate splitting, superposition Markov block encoding [18] (Theorem 7), random binning [2],
backward decoding and interference injecting [12], etc. In the following, we will outline the proposed
hybrid cooperative coding scheme, and the details of the complete proof will be provided in Section 4.
(Note that in the next paragraph, a message is said to be a common message if it has been known by both
the source and the relay in a certain block, such as w0b in Block b. Otherwise, it is said to be a private
message, such as w11b and w2b, which are only known by the source and the relay, respectively.)

Briefly speaking, for a given joint distribution, p ∈ P , the whole transmission duration is formed byB
Markov blocks, in which B− 1 secret messages will be sent. At Block b, the new secret message, w1b, is
first split into two parts: one part needs to be transmitted directly from the source to the destination (w11b);
and the other part needs to be decoded by the relay (w12b). Here w11b and w12b are mixed with dummy
messages wx11b and wx12b, respectively. In the encoding process, the random variable, U , in Theorem 1
represents the common message w0b = (w12b−1, w

x
12b−1). Note that w0b was decoded by the relay at the

end of the previous block, i.e., Block b−1, and becomes the common message in this block. The random
variable, V1, represents the superposition code in which the new message (w12b, w

x
12b) is superimposed

on the common message, w0b, where (w12b, w
x
12b) needs to be decoded by the relay at the end of Block b

and will become the common message, w0b+1, in Block b+ 1. In this sense, V1 also carries the common
part of the source message, but for the next block. The channel input, X1, represents the superposition
code in which the private message (w11b, w

x
11b) is superimposed on w0b and (w12b, w

x
12b). At the same

block, noise injection is realized at the relay via sending the so-called “interference message”, w2b, i.e.,
the relay randomly generates a private interference message, w2b, in order to confuse the eavesdropper.
The channel input, X2, represents the superposition code in which the interference message, w2b, is
superimposed on the common message, w0b, where w0b has been decoded by the relay at the end of the
previous block. The encoder structure of the proposed cooperative coding scheme is briefly illustrated
in Figure 2.

Remark 1. Since the relay simultaneously forwards the common part of the source messages and private
interference, the proposed scheme can be viewed as a hybrid cooperative scheme that combines the
explicit and implicit cooperation strategies. The key feature of such a hybrid cooperative scheme is that
it can improve the signal strength through the main channel and suppress the eavesdropping capability
at the same time.

Remark 2. The use of the channel prefixing technique (e.g., Appendices B and C in [12]) may further
increase the secrecy rate. However, we do not consider this technique in this paper to avoid the
intractability of its evaluation, which simplifies the achievable result in Theorem 1.

The achievable secrecy rate in Theorem 1 generalizes some existing coding schemes for the relay
eavesdropper channels.

Remark 3. If we set X1 = V1 and X2 = U in Equations (4) and (5), Theorem 1 reduces to:

Rs = max
p(x1,x2)

min{I(X1, X2;Y ), I(X1;Y1|X2)} − I(X1, X2;Y2), (7)
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which is consistent with the secrecy rate achieved by the DF scheme in [12] (Theorem 2).

Remark 4. If we set U = V1 = ∅ in Equations (4) and (5), Theorem 1 reduces to:

Rs = max
p(x1)p(x2)

I(X1;Y |X2) + min{I(X2;Y ), I(X2;Y2|X1)}

−min{I(X2;Y ), I(X2;Y2)} − I(X1;Y2|X2), (8)

which is consistent with the secrecy rate achieved by the NF scheme in [12] (Theorem 3).

Remark 5. If we set and U = X2, Theorem 1 reduces to:

Rs = max
p(v1,x1,x2)

min{I(X1, X2;Y ), I(X1;Y |X2, V1) + I(V1;Y1|X2)} − I(X1, X2;Y2), (9)

which is consistent with the secrecy rate achieved by the partial DF scheme in [13] (Theorem 8).

3. Gaussian Relay-Eavesdropper Channel

In this section, the memoryless Gaussian relay-eavesdropper channel is considered, where the
received symbols at the relay (Y1), the destination (Y ) and the eavesdropper (Y2) are:

Y1 = hsrX1 +N1,

Y = hsdX1 + hrdX2 +N,

Y2 = hseX1 + hreX2 +N2. (10)

Here, N1, N,N2 ∼ N (0, 1), which are the Gaussian adaptive noises; hαβ denotes the channel coefficient
between node α ∈ {s, r} and node β ∈ {r, d, e}, α 6= β. The average power constraints at the source
and the relay are P1 and P2, respectively.

3.1. Achievable Secrecy Rate

In this subsection, we use a joint Gaussian distribution to get an achievable secrecy rate.
We let U, V1,0, X1,0, X2,0 ∼ N (0, 1), and they are independent of each other. Then ,the variables, V1,

X1 and X2, are set to be:

V1 =
√
P u

1 U +
√
P v0

1 V1,0, (11)

X1 = V1 +
√
P x0

1 X1,0, (12)

X2 = r
√
P u

2 U +
√
P x0

2 X2,0, (13)

where r ∈ {−1, 1}, which is used to determine the covariance of the channel inputs, X1 and X2, to
be positive or negative. In these relationships, U represents the common message shared by both the
source and the relay in a certain block; V1,0 represents the new source message that needs to be decoded
by the relay and will become the common message in the next block; X1,0 represents the private source
message; X2,0 represents the private interference message at the relay.
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To satisfy the power constraints, we require the power tuple A = (P u
1 , P

v0
1 , P x0

1 , P u
2 , P

x0
2 ) in

Equations (11)–(13) to lie in A, where A denotes the power allocation set that is given by:

A = {(P u
1 , P

v0
1 , P x0

1 , P u
2 , P

x0
2 )|P u

1 , P
v0
1 , P x0

1 , P u
2 , P

x0
2 ≥ 0

P u
1 + P v0

1 + P x0
1 ≤ P1, P

u
2 + P x0

2 ≤ P2}. (14)

Now, based on Theorem 1 and the above definitions, an achievable secrecy rate is given in the
following lemma.

Lemma 1. For the Gaussian relay-eavesdropper channel, the following secrecy rate is achievable:

RG
s = max

r=±1,A∈A
RG

11(r,A) +RG
12(r,A), (15)

where RG
11(r,A) and RG

12(r,A) are defined as:

RG
11(r,A) =C(|hsd|2P x0

1 ) + min

{
C

(
|hrd|2P x0

2

1+|hsd|2P x0
1

)
, C
(
|hre|2P x0

2

)}

−min

{
C

(
|hrd|2P x0

2

1+|hsd|2P x0
1

)
, C

(
|hre|2P x0

2

1 + |hse|2P x0
1

)}
− C(|hse|2P x0

1 ), (16)

RG
12(r,A) = min

{
C

(
|hsd
√
P u

1 + rhrd
√
P u

2 |2 + |hsd|2P v0
1

1 + |hsd|2P x0
1 + |hrd|2P x0

2

)
, C

(
|hsr|2P v0

1

1 + |hsr|2P x0
1

)}

− C

(
|hse
√
P u

1 + rhre
√
P u

2 |2 + |hse|2P v0
1

1 + |hse|2P x0
1 + |hre|2P x0

2

)
. (17)

Proof. We calculate each piece of mutual information in Equations (4) and (5) using the variables defined
in Equations (11)–(13), and this lemma can be proven.

3.2. Power Policy in the High Power Region

According to the achievable secrecy rate in Lemma 1, the following lemma takes an example to
illustrate how to allocate the transmit powers at the source and the relay in the high power region.

Lemma 2. Let a = |hse|2
|hsd|2

, b = |hrd|2
|hre|2 , c = |hsr|2

|hsd|2
, and assume P1 = P2 = P for simplicity. When P →∞,

c > 0 and b 6= 1
a
, the optimal power allocation for Equation (15) satisfies:

(P u
1 , P

v0
1 , P x0

1 , P u
2 , P

x0
2 )

.
= (P 1, P

1
2 , P 0, P 1, P

1
2 ), (18)

where f(x)
.
= xy denotes that f(x) is exponentially equal to xy, i.e., limx→∞

log f(x)
log x

= y (≤̇ and ≥̇ are
defined similarly).

Proof. Refer to Appendix A.

According to this power policy and the derivations in Appendix A, the achievable secrecy rate in
Lemma 1 satisfies:

lim
P→∞

RG
s

logP
=

1

4
. (19)

The above relationship reflects that the achievable secrecy rate, RG
s , is arbitrarily large as P →∞.
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Remark 6. Since we have only required the source-relay channel gain to be positive (i.e., c > 0) in
Lemma 2, it shows that the proposed hybrid cooperative scheme can achieve a sufficiently large secrecy
rate even for a weak source-relay channel (i.e., c is small). This is because the interference at the
relay with the power, P x0

2 , can protect the transmissions from the source to the relay by confusing the
eavesdropper. In this case, the bottleneck of the source-relay channel (i.e., hsr) suffered by the DF
scheme ([12]) and partial DF scheme ([13]) can be greatly mitigated by introducing the interference at
the relay node, and the proposed hybrid cooperative scheme can efficiently overcome the bottleneck of
the source-relay channel.

Figure 3. The considered Gaussian network topology.
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3.3. Numerical Results

In this subsection, we will provide some numerical results to demonstrate the performance of the
proposed hybrid cooperative scheme. Specifically, in the Gaussian relay-eavesdropper channel (10), the
channel gain between node α ∈ {s, r} and node β ∈ {r, d, e} (α 6= β) is hαβ = d

−γ/2
αβ . Here, dαβ

is the distance between α and β and γ is the path loss exponent, which is set as γ = 2. Based on
these definitions, we use the network geometry shown in Figure 3, where the source, the destination and
the eavesdropper are located at (0,0), (1,0) and (0,1), respectively. In addition, the relay is located at
(
√

3
2
z, 1

2
z) in Track 1 and (1

2
z,
√

3
2
z) in Track 2, where z > 0. When the relay is in Track 1, it is nearer

to the destination than to the eavesdropper; when the relay is in Track 2, it is nearer to the eavesdropper
than to the destination. To show the performance of the proposed coding scheme, the DF scheme in [12],
the partial DF scheme in [13], the NF scheme in [12] and the CJ scheme in [6] are taken to be the
comparable ones. Note that when considering the network geometry in Figure 3, one will see that
the DF scheme [12] achieves exactly the same secrecy rate as that of the partial DF scheme [13]. In
computing the upper bound, following the same parameter setting in [12], we have used the upper bound
in [12] (Theorem 1) using Gaussian inputs for the ease of computation. As discussed in [12], Gaussian
inputs are not necessarily optimal for the upper bound.
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Figure 4. Achievable secrecy rates of various coding schemes versus the location of the
relay (i.e., the value of z), where the relay is in Track 1.
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Figure 5. Achievable secrecy rates of various coding schemes versus the location of the
relay (i.e., the value of z), where the relay is in Track 2.
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Figure 4 shows that achievable secrecy rates achieved the proposed scheme and the comparable ones
for the case that the relay is in Track 1. In the first sub-figure, i.e., Figure 4a, we consider the moderate
transmit power pair (P1, P2) = (10, 20). From this sub-figure, one can see that the DF scheme [12] (or
the partial DF scheme [13]) can only perform well when the relay is very near to the source (i.e., z is
small). However, the proposed hybrid cooperative scheme with artificial interference can still perform
well when the relay is not near the source (i.e., z is large). When 0 < z < 1.3, the proposed scheme
can achieve an exactly larger secrecy rate in comparison with the NF scheme [12]. Interestingly, the
proposed scheme can still outperform the NF scheme when 1 < z < 1.3, which means that partially
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decoding the source message at the relay is useful, even if hsr < hse. This is because the interference at
the relay can protect the transmissions from the source to the relay by confusing the eavesdropper. When
z > 1.3, the proposed scheme reduces to the NF scheme, and the relay should not decode any source
message in this case. In the second sub-figure, i.e., Figure 4b, we consider the high transmit power
pair (P1, P2) = (100, 200). From this sub-figure, one can see that the performance gain between the
proposed scheme and each comparable one is enlarged. This is because the performance of the proposed
scheme can be greatly enhanced when the transmit powers at the source and the relay increase, as shown
in Lemma 2 and Remark 6.

Figure 5 shows the achievable secrecy rates achieved by the proposed scheme and the comparable
ones for the case that the relay is in Track 2. Figure 5a,b also considers the moderate power pair
(P1, P2) = (10, 20) and the high power pair (P1, P2) = (100, 200), respectively. Since the relay is
nearer the eavesdropper in Track 2, the NF scheme is invalid. In this case, the CJ scheme [6] can
achieve a positive secrecy rate, since the artificial noise at the relay harms the eavesdropper more than it
harms the destination. However, the achievable secrecy rate of the CJ scheme is bounded even at high
transmit power, as shown in [14]. To the contrary, the achievable secrecy rate of the proposed scheme
is unbounded at high transmit power, as shown in Equation (19) and Remark 6. This is mainly because
the interference at the relay can protect the transmissions from the source to the relay by confusing the
eavesdropper, as discussed in Remark 6. As a result, the proposed scheme outperforms the CJ scheme
and the comparable ones, especially in the high power region, as shown in Figure 5a,b.

3.4. Comparison with the Secrecy Rate in [20]

Since it is intractable to compare the two secrecy rates achieved by the proposed scheme and the one
in [20] in theory, in this subsection, some numerical examples will be illustrated to compare these two
achievable secrecy rates. We will first prove that the CF relaying strategy is useless when considering the
perfect secrecy rate. Since the random variables (V, U) in [20] have the same meaning as that of (U, V1)

in this paper, (V, U) in [20] are replaced by (U, V1), respectively, for coherence. When considering the
perfect secrecy rate, R1 = Re in Equation (17) in [20] and Re can be upper bounded as:

Re

(a)

≤min{I(X2;Y |U), I(X2;Y2|U,X1)} − I(Y1; Ŷ1|X2, V1) + I(X1; Ŷ1|Y,X2, V1)

+I(X1;Y |X2, V1)+min{I(V1;Y1|U,X2), I(U ;Y )+I(V1;Y |U,X2)}−I(X1, X2;Y2)

(b)

≤min{I(X2;Y |U), I(X2;Y2|U,X1)}+I(X1;Y |X2, V1)

+ min{I(V1;Y1|U,X2), I(U ;Y )+I(V1;Y |U,X2)}−I(X1, X2;Y2) (20)

for some distribution p(u, v1, x1, x2, ŷ1, y, y1, y2) = p(u)p(v1|u)p(x1|v1)p(x2|u)p(ŷ1|y1, v1, x2)

p(y, y1, y2|x1, x2), where (a) is due to Equation (18) in [20]; (b) is due to the Markov chain (Y,X1) →
(Y1, X2, V1)→ Ŷ1, which leads to the fact that:
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I(X1; Ŷ1|Y,X2, V1) = H(Ŷ1|Y,X2, V1)−H(Ŷ1|Y,X1, X2, V1)

≤ H(Ŷ1|X2, V1)−H(Ŷ1|Y1, Y,X1, X2, V1)

= H(Ŷ1|X2, V1)−H(Ŷ1|Y1, X2, V1)

= I(Y1; Ŷ1|X2, V1). (21)

From Equation (20), obviously we should set Ŷ1 = ∅, and the CF relaying strategy is useless. Now,
the network geometry of Track 1 in Figure 3 is taken as an example to compare the proposed scheme and
the one in [20]. To be fair, the random variables (U, V1, X1, X2) in Equation (20) are also set according to
Equations (11)–(13).

As shown in Figure 6a,b, the scheme in [20] outperforms the proposed scheme when the source-relay
channel is strong (i.e., z is small), but the proposed scheme outperforms the scheme in [20] when the
source-relay channel is weak (i.e., z is large). In other words, each of the two coding schemes has its
own advantages, depending on the choices of z. This is mainly because different decoding strategies are
utilized in this paper and [20]. Specifically, the scheme in [20] decodes the common part of the source
messages (V1) after decoding the interference messages (X2) from the relay, which is beneficial for the
receiver to decode the common part of the source message. When the source-relay channel is strong,
such a scheme performs well, since most source messages should be allocated to the common part. To
the contrary, the proposed scheme decodes these two messages in a reversed order, which is beneficial
for the receiver to decode the the interference message. This implies that the proposed scheme can set
the rate of the interference message larger to confuse the eavesdropper and, hence, performs better than
the comparable one for a weak source-relay channel.

Figure 6. Achievable secrecy rates of two coding schemes versus the location of the relay
(i.e., the value of z), where the relay is in Track 1 in Figure 3.
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4. Proof of Theorem 1

4.1. Preliminary Results

In the following, we first give a useful lemma with respect to the equivalency of two mutual
information.

Lemma 3. For a given joint distribution, p ∈ P , I(X2;Y2|U,X1) = I(X2;Y2|U, V1, X1).

Proof. Refer to Appendix B

Moreover, we define some parameters as follows:

Rx
12 , I(U, V1;Y2)− ε1, (22)

R2 , min{I(X2;Y |U, V1), I(X2;Y2|U,X1)} − ε1, (23)

Rx
11 , min{I(X1, X2;Y2|U, V1)−R2, I(X1;Y2|U, V1, X2) + ε1} − 2ε1. (24)

Based on Lemma 3, Rx
11 in Equation (24) can be rewritten as:

Rx
11 = I(X1;Y2|U, V1, X2) + min{I(X2;Y |U, V1), I(X2;Y2|U, V1)}

−min{I(X2;Y |U, V1), I(X2;Y2|U,X1)} − ε1. (25)

The proof of the above equality will be provided in Appendix C.

4.2. Proof of Theorem 1

The proposed achievable scheme is based on the careful combination of the partial DF [18] scheme
for the relay channel, the NF scheme [12] for the relay-eavesdropper channel and the random binning
for the wiretap channel [2]. We first consider the random code generation as follows.

Codebook Generation:

• For a given distribution, p ∈ P , generate at random 2n(R12+Rx
12) independent and identically

distributed (i.i.d.) n-sequences, each according to p(un) =
∏n

i=1 p(ui). Then, randomly group
these codewords into 2nR12 bins, each with 2nR

x
12 codewords, and index them as un(wc,1, w

x
c,1),

where wc,1 ∈ {1, · · · , 2nR12}, wxc,1 ∈ {1, · · · , 2nR
x
12}. For simplicity, let

w0 = (wc,1, w
x
c,1).

• For each un(w0), the relay generates at random 2nR2 i.i.d. n-sequences, each according to
p(xn2 |un) =

∏n
i=1 p(x2,i|ui). Index them as xn2 (w0, w2), where w2 ∈ {1, · · · , 2nR2}.

• For each un(w0), generate at random 2n(R12+Rx
12) i.i.d. n-sequences, each according to

p(vn1 |un) =
∏n

i=1 p(v1,i|ui). Then, randomly group these codewords into 2nR12 bins, each with
2nR

x
12 codewords, and index them as vn1 (w0, w12, w

x
12), where w12 ∈ {1, · · · , 2nR12}, wx12 ∈

{1, · · · , 2nRx
12}.
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• For each tuple (un(w0),vn1 (w0, w12, w
x
12)), generate at random 2n(R11+Rx

11) i.i.d. n-sequences each
according to p(xn1 |vn1 ,un) =

∏n
i=1 p(x1,i|v1,i, ui). Then, randomly group these codewords into

2nR11 bins, each with 2nR
x
11 codewords, and index them as xn1 (w0, w12, w

x
12, w11, w

x
11), where w11 ∈

{1, · · · , 2nR11}, wx11 ∈ {1, · · · , 2nR
x
11}.

Encoding: The encoder structure of the proposed scheme is roughly illustrated in Figure 2.
At Block 1, the source sends xn1 (w01, w121, w

x
121, w111, w

x
111) and the relay sends xn2 (w01, w21), where

w01 = (1, 1).
At Block b (2 ≤ b ≤ B − 1), the source wishes to send the new confidential message w1b ∈ W1 =

{1, · · · , 2nR1}. It first splits this message into two independent sub-messages, i.e., w1b = (w12b, w11b),
where w12b ∈ {1, · · · , 2nR12}, w11b ∈ {1, · · · , 2nR11} and R1 = R12 + R11. Then, randomly
choose some dummy messages, wx12b ∈ {1, · · · , 2nR

x
12} and wx11b ∈ {1, · · · , 2nR

x
11}, to be mixed

with them, respectively, and the source sends the codeword, xn1 (w0b, w12b, w
x
12b, w11b, w

x
11b), where

w0b = (w12b−1, w
x
12b−1). For the relay node, it is assumed to already have a correct estimation of

w0,b = (w12b−1, w
x
12b−1) at the end of Block b− 1 (refer to the decoding part), then it randomly selects a

dummy message, w2b ∈ {1, · · · , 2nR2}, and sends xn2 (w0b, w2b).
At Block B, the source sends xn1 (w0B, 1, 1, 1, 1), and the relay sends xn2 (w0B, 1), where w0B =

(w12B−1, w
x
12B−1).

Decoding: At the end of Block b, assume that the relay has already decoded w0b = (w12b−1, w
x
12b−1),

which was transmitted at Block b− 1. Then, it will find a unique pair (ŵ12b, ŵ
x
12b), such that

(un(w0b),v
n
1 (w0b, ŵ12b, ŵ

x
12b),x

n
2 (w0b, w2b),y

n
1 (b)) ∈ A(n)

ε (U, V1, X2, Y1).

If there exist more than one or none such pairs, an error occurs. It is not difficult to prove that the error
probability goes to zero, if the rates, R12 and Rx

12, satisfy:

R12 +Rx
12 < I(V1;Y1|U,X2). (26)

The destination performs backward decoding. At the end of Block b (2 ≤ b ≤ B − 1), assume that
the destination has already correctly decoded w0b+1 = (w12b, w

x
12b) at the end of Block b + 1. Then, the

destination will perform separated decoding to decode w0b, w2b and (w11b, w
x
11b), respectively. First, it

finds a unique ŵ0b, such that

(un(ŵ0b),v
n
1 (ŵ0b, w12b, w

x
12b),y

n(b)) ∈ A(n)
ε (U, V1, Y ).

The error probability goes to zeros if:

R12 +Rx
12 < I(U, V1;Y ) (27)

Second, knowing w0b, the destination finds a unique ŵ2b, such that

(un(w0b),v
n
1 (w0b, w12b, w

x
12b),x

n
2 (w0b, ŵ2b),y

n(b)) ∈ A(n)
ε (U, V1, X2, Y ).

The error probability goes to zero, since we have fixed R2 to satisfy R2 < I(X2;Y |U, V1) in
Equation (23).
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Third, knowing w0b and w2b, the destination finds a unique pair (ŵ11b, ŵ
x
11b), such that:

(un(w0b),v
n
1 (w0b,w12b,w

x
12b),x

n
1 (w0b,w12b,w

x
12b,ŵ11b,ŵ

x
11b),x

n
2 (w0b,w2b),y

n(b)) ∈ A(n)
ε (U,V1,X1,X2,Y ).

The error probability goes to zeros if:

R11 +Rx
11 < I(X1;Y |U, V1, X2). (28)

Equivocation Computation: We let XBn denote the set, {Xn(1),Xn(2), · · · ,Xn(B)}. Xbn and
Xn(]b[) denote the set, {Xn(i), 1 ≤ i ≤ b}, and the set, {Xn(i), 1 ≤ i < b or b < i ≤ B}, respectively.
The equivocation over the total B Markov blocks can be bounded as:

H(WB−1
1 |YBn

2 ) = H(WB−1
1 ,YBn

2 )−H(YBn
2 )

= H(WB−1
1 ,YBn

2 ,UBn,VBn
1 ,XBn

1 ,XBn
2 )

−H(UBn,VBn
1 ,XBn

1 ,XBn
2 |WB−1

1 ,YBn
2 )−H(YBn

2 )

= H(UBn,VBn
1 ,XBn

1 ,XBn
2 ) +H(WB−1

1 ,YBn
2 |UBn,VBn

1 ,XBn
1 ,XBn

2 )

−H(UBn,VBn
1 ,XBn

1 ,XBn
2 |WB−1

1 ,YBn
2 )−H(YBn

2 )

= H(UBn,VBn
1 ,XBn

1 ,XBn
2 )− I(UBn,VBn

1 ,XBn
1 ,XBn

2 ;YBn
2 )

−H(UBn,VBn
1 ,XBn

1 ,XBn
2 |WB−1

1 ,YBn
2 ). (29)

The first term in Equation (29) is:

H(UBn,VBn
1 ,XBn

1 ,XBn
2 ) = n(B − 1)(R12 +Rx

12 +R11 +Rx
11 +R2). (30)

The second term can be bounded as:

I(UBn,VBn
1 ,XBn

1 ,XBn
2 ;YBn

2 ) =
B∑
b=1

I
(
UBn,VBn

1 ,XBn
1 ,XBn

2 ;Yn
2 (b)|Y(b−1)n

2

)
(a)

≤
B∑
b=1

[
H (Yn

2 (b))−H
(
Yn

2 (b)|UBn,VBn
1 ,XBn

1 ,XBn
2 ,Y

(b−1)n
2

)]
(b)
=

B∑
b=1

[H (Yn
2 (b))−H (Yn

2 (b)|Un(b),Vn
1 (b),Xn

1 (b),Xn
2 (b))]

=
B∑
b=1

I (Un(b),Vn
1 (b),Xn

1 (b),Xn
2 (b);Yn

2 (b)) (31)

where (a) follows by the fact that conditioning does not increase entropy. (b) follows from the
fact that Yn

2 (b) − (Un(b),Vn
1 (b),Xn

1 (b),Xn
2 (b)) −

(
Un(]b[),Vn

1 (]b[),Xn
1 (]b[),Xn

2 (]b[),Y
(b−1)n
2

)
is a

Markov chain. Such a Markov chain is due to the memoryless channel and can be observed
from encoding process in which Yn

2 (b) depends on
(
Un(]b[),Vn

1 (]b[),Xn
1 (]b[),Xn

2 (]b[),Y
(b−1)n
2

)
only

through (Un(b),Vn
1 (b),Xn

1 (b),Xn
2 (b)).
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Furthermore, for ∀b ∈ [1 : B], we have:

I (Un(b),Vn
1 (b),Xn

1 (b),Xn
2 (b);Yn

2 (b))

(c)

≤ n[I(U, V1, X1, X2;Y2) + ε2]

= n[I(U, V1;Y2) + I(X1, X2;Y2|U, V1) + ε2], (32)

and: I (Un(b),Vn
1 (b),Xn

1 (b),Xn
2 (b);Yn

2 (b))

= I (Un(b),Vn
1 (b);Yn

2 (b)) + I (Xn
1 (b),Xn

2 (b);Yn
2 (b)|Un(b),Vn

1 (b))

(d)

≤ n[I(U, V1;Y2) + ε1] + I(Xn
1 (b);Yn

2 (b)|Un(b),Vn
1 (b),Xn

2 (b))

+ I(Xn
2 (b);Yn

2 (b)|Un(b),Vn
1 (b))

(e)

≤ n[I(U, V1;Y2) + I(X1;Y2|U, V1, X2) + ε1 + ε2] +H(Xn
2 (b)|Un(b))

= n[I(U, V1;Y2) + I(X1;Y2|U, V1, X2) +R2 + ε1 + ε2], (33)

where (c), (d) and (e) can be obtained using the same approach in [10] (Lemma 3). According to the
above two inequalities, I(UBn,VBn

1 ,XBn
1 ,XBn

2 ;YBn
2 ) in Equation (31) can be bounded as:

I(UBn,VBn
1 ,XBn

1 ,XBn
2 ;YBn

2 ) ≤ nB[I(U, V1;Y2)+

min{I(X1, X2;Y2|U, V1), I(X1;Y2|U, V1, X2) +R2 + ε1}+ ε2]. (34)

To bound the third term, H(UBn,VBn
1 ,XBn

1 ,XBn
2 |WB−1

1 ,YBn
2 ), we will prove that the eaves-

dropper can correctly decode (UBn,VBn
1 ,XBn

1 ,XBn
2 ) with the side information, WB−1

1 . Note that
(UBn,VBn

1 ,XBn
1 ,XBn

2 ) is determined by the message tuple (w12b, w
x
12b, w11b, w

x
11b, w2b) for ∀b ∈ [1 : B].

Thus, with the knowledge of W1(b) = w1b = (w12b, w11b) for ∀b ∈ [1 : B], the eavesdropper only needs
to utilize backward decoding to decode (wx12b−1, w2b, w

x
11b) at the end of Block b. Then, the eavesdropper

can determine the message tuple (w12b, w
x
12b, w11b, w

x
11b, w2b) for ∀b ∈ [1 : B]. Let λ(wB−1

1 ) denote
the average error probability of decoding (wx12b−1, w2b, w

x
11b) for ∀b ∈ [1 : B] at the eavesdropper. The

following lemma shows that λ(wB−1
1 ) is arbitrarily small.

Lemma 4. λ(wB−1
1 ) ≤ ε0 for sufficiently large n.

Proof. Refer to Appendix D.

Then, based on Fano’s inequality, it can be easily obtained that:

1

nB
H(UnB,VnB

1 ,XnB
1 ,XnB

2 |WB−1
1 = wB−1

1 ,YnB
2 )

≤ 1

nB

[
1 + λ(wB−1

1 ) log
(
|Wx

12|B−1 × |Wx
11|B−1 × |W2|B−1

)]
≤ 1

nB
[1 + n(B − 1)ε0(Rx

12 +Rx
11 +R2)]

,ε3.
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Hence, the third term in Equation (29) can be bounded as:

1

nB
H(UnB,VnB

1 ,XnB
1 ,XnB

2 |WB−1
1 ,YnB

2 )

=
∑
wB−1

1

p(wB−1
1 )

1

nB
H(UnB,VnB

1 ,XnB
1 ,XnB

2 |WB−1
1 = wB−1

1 ,YnB
2 )

≤ε3. (35)

Now, according to the definitions in Equations (22)–(24) and by combining Equation (29) with
Equations (30), (34) and (35), we have:

1

nB
H(WB−1

1 |YnB
2 ) ≥ B − 1

B
(R12 +R11)− 1

B
(Rx

12 +Rx
11 +R2)− 3ε1 − ε2 − ε3. (36)

Let B → ∞; the secret constraint is satisfied. Furthermore, according to Equations (26), (27) and (28),
one can verify that the secrecy rate, R11(p) +R12(p) (defined in Equations (4) and (5)), is achievable by
using the conversion of Rx

11 in Equation (25).

5. Conclusions

In this paper, we have proposed a hybrid cooperative coding scheme, which enables the relay to
integrate the explicit cooperation strategy and the implicit cooperation strategy by forwarding source
messages and additional interference at the same time. The basic idea is to combine the partial DF
scheme [18], the NF [12] scheme and random binning [2]. The derived achievable secrecy rate shows
that the proposed scheme outperforms some existing works. Then, the achievable secrecy rate is extended
to the memoryless Gaussian channel using Gaussian codebooks, and a power policy is developed in the
high power region. The result shows that the secrecy rate achieved by the proposed scheme is sufficiently
large in the high power region, even if the source-relay link is weak. This is benefited from the fact that
the transmissions from the source to the relay can be protected by the interference generated at the
relay. Finally, some numerical results have been carried out to demonstrate that the proposed scheme
outperforms the comparable ones, especially in the high power region.

Due to the advantages of the hybrid cooperative coding schemes, a future direction of interest is
to study the hybrid cooperative coding schemes for more complicated scenarios with more than one
confidential message. One can also design more excellent coding schemes, such as combing the channel
prefixing techniques [3] and utilizing a more general joint decoding approaches. For simplicity, the
proposed scheme uses a separated decoding approach to decode the interference messages, as shown in
Section 4, but it is worth pointing out that coding schemes associated with joint decoding may further
enhance the security level.
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Appendix

A. Proof of Lemma 2

A.1. Simplified Expression of the Secrecy Rate

Here, we will simplify the expression of the secrecy rate in Equation (15). Specifically, let: P̄1 =

|hsd|2P1, P̄ u
1 = |hsd|2P u

1 , P̄ v0
1 = |hsd|2P v0

1 , P̄ x0
1 = |hsd|2P x0

1 and P̄2 = |hre|2P2, P̄ u
2 = |hre|2P u

2 ,
P̄ x0

2 = |hre|2P x0
2 . Then, the power allocation set in Equation (14) becomes:

Ā = {(P̄ u
1 , P̄

v0
1 , P̄ x0

1 , P̄ u
2 , P̄

x0
2 )|P̄ u

1 , P̄
v0
1 , P̄ x0

1 , P̄ u
2 , P̄

x0
2 ≥ 0

P̄ u
1 + P̄ v0

1 + P̄ x0
1 ≤ P̄1, P̄

u
2 + P̄ x0

2 ≤ P̄2}. (37)

Using the above conversions and the definitions of a, b, c in Lemma 2, for a Ā ∈ Ā, RG
11 and RG

12 in
Equations (16) and (17) can be rewritten as:

RG
11(r, Ā) =C(P̄ x0

1 ) + min

{
C

(
bP̄ x0

2

1+P̄ x0
1

)
, C
(
P̄ x0

2

)}

−min

{
C

(
bP̄ x0

2

1+P̄ x0
1

)
, C

(
P̄ x0

2

1 + aP̄ x0
1

)}
−C(aP̄ x0

1 ), (38)

RG
12(r, Ā) = min

{
C

(
|
√
P̄ u

1 + r
√
bP̄ u

2 |2 + P̄ v0
1

1 + P̄ x0
1 + bP̄ x0

2

)
, C

(
cP̄ v0

1

1 + cP̄ x0
1

)}

− C

(
|
√
aP̄ u

1 + r
√
P̄ u

2 |2 + aP̄ v0
1

1 + aP̄ x0
1 + P̄ x0

2

)
. (39)

A.2. Proof of Lemma 2

From Equation (39), obviously, we have:

RG
12(r, Ā) ≤ min

{
C

(
|
√
P̄ u

1 +r
√
bP̄ u

2 |2+P̄ v0
1

1 + P̄ x0
1 + bP̄ x0

2

)
, C

(
cP̄ v0

1

1 + cP̄ x0
1

)}
− C

(
aP̄ v0

1

1+aP̄ x0
1 +P̄ x0

2

)
(40)
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When P1 = P2 = P → ∞, let P̄ v0
1

.
= P β , P̄ x0

2
.
= P γ and P̄ x0

1
.
= P η with 0 ≤ β, γ, η ≤ 1. Then, the

three terms at the right-hand of Equation (40) can be upper bounded as:

lim
P→∞

1

logP
C

(
|
√
P̄ u

1 +r
√
bP̄ u

2 |2+P̄ v0
1

1 + P̄ x0
1 + bP̄ x0

2

)
≤ 1

2
(1−max{γ, η}) (41)

lim
P→∞

1

logP
C

(
cP̄ v0

1

1 + cP̄ x0
1

)
=

1

2
[β − η]+ (42)

lim
P→∞

1

logP
C

(
aP̄ v0

1

1+aP̄ x0
1 +P̄ x0

2

)
=

1

2
[β −max{γ, η}]+ (43)

where Equation (41) holds, since it is maximized by P̄ u
1
.
= P 1 and P̄ u

2
.
= P 1.

Now, for r = ±1 and ∀Ā ∈ Ā, combining Equation (40) with the above three relationships, we have:

lim
P→∞

RG
12(r, Ā)

logP
≤ 1

2

(
min

{
1−max{γ, η}, [β − η]+

}
− [β −max{γ, η}]+

)
(44)

=
1

2
min

{
1−max{γ, η} − [β−max{γ, η}]+, [β − η]+ − [β−max{γ, η}]+

}
(45)

≤ 1

2
min{1− γ − [β − γ]+, β − [β − γ]+} (46)

≤ 1

4
, (47)

where Equation (46) holds, since η = 0 maximizes Equation (45); Equation (47) holds, since β = γ = 1
2

maximizes Equation (46). This can be seen from the following proof steps.
If 0 ≤ γ ≤ β ≤ 1, we have:

min{1− γ − [β − γ]+, β − [β − γ]+} = min{1− β, γ}
(a)

≤ min{1− β, β}
(b)

≤ 1

2
, (48)

where “≤” in both (a) and (b) can be replaced by “=” by choosing β = γ = 1
2

in this case.
On the other hand, if 0 ≤ β ≤ γ ≤ 1, we have:

min{1− γ − [β − γ]+, β − [β − γ]+} = min{1− γ, β}
(c)

≤ min{1− γ, γ}
(d)

≤ 1

2
, (49)

where “≤” in both (c) and (d) can be replaced by “=” by choosing β = γ = 1
2

in this case.
In addition, according to Equation (38) and [14] (Lemma 2), maxĀR

G
11 becomes a constant when

P →∞, i.e., limP→∞
maxĀRG

11

logP
= 0. Therefore, the achievable secrecy rate in Equation (15) satisfies

lim
P→∞

RG
s

logP
=

maxr,ĀR
G
12

logP
≤ 1

4
.
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On the other hand, one can verify that limP→∞
RG

12

logP
= 1

4
can be achieved by setting r = −1, P̄ u

2 = aP̄ u
1

and (P u
1 , P

v0
1 , P x0

1 , P u
2 , P

x0
2 )

.
= (P 1, P

1
2 , P 0, P 1, P

1
2 ). Thus, the power policy in Lemma 2 is optimal,

and this lemma has been proven.

B. Proof of Lemma 3

Before the proof of the equivalency, we first prove that V1 − (U,X1) − Y2 forms a Markov chain for
a joint distribution, p ∈ P (defined in Definition 1). Specifically,

p(y2|v1, u, x1) =
∑
x2∈X2

p(x2, y2|u, v1, x1)

=
∑
x2∈X2

p(x2|u, v1, x1)p(y2|u, v1, x1, x2)

(a)
=
∑
x2∈X2

p(x2|u)p(y2|x1, x2)

(b)
=
∑
x2∈X2

p(x2|u, x1)p(y2|u, x1, x2)

= p(y2|u, x1), (50)

where (a) is due to the two Markov chains: (V1, X1)− U −X2 and (U, V1)− (X1, X2)− Y2, as shown
in Definition 1; (b) is due to the two Markov chains: X1 − U −X2 and U − (X1, X2)− Y2.

Based on such a Markov chain, we have:

I(X2;Y2|U, V1, X1) = H(Y2|U, V1, X1)−H(Y2|U, V1, X1, X2)

= H(Y2|U,X1)−H(Y2|X1, X2)

= H(Y2|U,X1)−H(Y2|U,X1, X2)

= I(X2;Y2|U,X1). (51)

C. Proof of Equation (25)

Before the proof steps, for a given p ∈ P , we first show that I(X2;Y2|U,X1) ≥ I(X2;Y2|U, V1)

as follows:

I(X2;Y2|U,X1)
(a)
= I(X2;Y2|U, V1, X1)

(b)
= H(X2|U)−H(X2|Y2, U, V1, X1)

(c)
= H(X2|U, V1)−H(X2|Y2, U, V1, X1)

≥ H(X2|U, V1)−H(X2|Y2, U, V1)

= I(X2;Y2|U, V1), (52)

where (a) is due to Lemma 3; (b) is due to the Markov chain: (V1, X1) − U − X2; (c) is due to the
Markov chain: V1 − U −X2.

Now, from Equation (24), we can rewrite Rx
11 as:

Rx
11 = I(X1;Y2|U, V1, X2) + min{I(X2;Y2|U, V1)−R2 − ε1, 0} − ε1. (53)
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According to the definition of R2 in Equation (23) and the relationship I(X2;Y2|U,X1) ≥
I(X2;Y2|U, V1) in Equation (52), Rx

11 can be further expressed as:

Rx
11 =

{
I(X1;Y2|U, V1, X2)− ε1, if I(X2;Y2|U, V1) > I(X2;Y |U, V1)

I(X1;Y2|U, V1, X2) + I(X2;Y2|U, V1)−R2 − 2ε1, if I(X2;Y2|U, V1) ≤ I(X2;Y |U, V1)

= I(X1;Y2|U, V1, X2) + min{I(X2;Y |U, V1), I(X2;Y2|U, V1)}
−min{I(X2;Y |U, V1), I(X2;Y2|U,X1)} − ε1. (54)

D. Proof of Lemma 4

With the knowledge of W1(b) = w1b = (w12b, w11b) for ∀b ∈ [1 : B − 1], the eavesdropper utilizes
backward decoding to decode (wx12b−1, w2b, w

x
11b) at the end of Block b. Assume that the eavesdropper

has correctly decoded w0b+1 = (w12b, w
x
12b) at the end of Block b + 1; then, it first finds a unique

ŵ0b = (w12b−1, ŵ
x
12b−1), such that:

(un(ŵ0b),v
n
1 (ŵ0b, w0b+1),yn2 (b)) ∈ A(n)

ε (U, V1, Y2). (55)

Since the eavesdropper knows w12b−1, it only needs to find a unique ŵx12b−1.
After decoding w0b, the eavesdropper finds a unique pair (ŵ2b, ŵ

x
11b), such that:

(un(w0b),v
n
1 (w0b, w0b+1),xn1 (w0b, w0b+1, w11b, ŵ

x
11b),x

n
2 (w0b, ŵ2b),y

n
2 (b))

∈ A(n)
ε (U, V1, X1, X2, Y2). (56)

Analysis of error probability: With out loss of generality, assume that the transmitted message
tuple is (wx12b−1, w2b, w

x
11b) = (1, 1, 1) at Block b. The decoding process discussed above contains the

following error events:
E1: wx12b−1 = 1 does not satisfy Equation (55) or wx12b−1 6= 1 satisfies Equation (55);
E2: (w2b, w

x
11b) = (1, 1) does not satisfy Equation (56);

E31: (w2b, w
x
11b) = (i, 1) satisfies Equation (56), where i 6= 1.

E32: (w2b, w
x
11b) = (1, j) satisfies Equation (56), where j 6= 1.

E33: (w2b, w
x
11b) = (i, j) satisfies Equation (56), where i, j 6= 1.

Then, the average error probability at Block b can be upper bounded as:

P
(n)
E = P{E1 ∪ E2 ∪ (∪3

k=1E3k)}
= P{E1}+ P

{
Ec

1 ∩
(
E2 ∪ (∪3

k=1E3k)
)}

= P{E1}+ P
{

(Ec
1 ∩ E2) ∪

(
∪3
k=1(Ec

1 ∩ E3k)
)}

≤ P{E1}+ P{Ec
1 ∩ E2}+

3∑
k=1

P{Ec
1 ∩ E3k}

≤ P{E1}+ P{E21|Ec
1}+

3∑
k=1

P{E3k|Ec
1}

(57)
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Now, we will calculate each term in the Equation (57). According to Equation (22), since Rx
12 <

I(U, V1;Y2), it is not difficult to prove that P{E1} ≤ ε1 for sufficiently large n. When Ec
1 occurs,

the eavesdropper can correctly decode wx12b−1 = 1. In this case, it is obvious that P{E21|Ec
1} ≤ ε1,

according to the asymptotic equipartition property (AEP) [21]. Next, we will calculate P{E3k|Ec
1} for

k = 1, 2, 3 according to the properties of the joint typicality [21].

P{E31|Ec
1} = P

{
(un(w0b),v

n
1 (w0b, w0b+1),xn1 (w0b, w0b+1, w11b, 1),xn2 (w0b, i),y

n
2 (b))

∈ A(n)
ε , ∀i 6= 1

}
≤ 2nR2

∑
(un,vn1 ,x

n
1 ,x

n
2 ,y

n
2 ) ∈ A

(n)
ε

p(un)p(vn1 ,x
n
1 |un)p(xn2 |un)p(yn2 |xn1 ,vn1 ,un)

≤ 2nR22n(H(U,V1,X1,X2,Y2)+ε)2−n(H(U)−ε)2−n(H(V1,X1|U)−ε)

× 2−n(H(X2|U)−ε)2−n(H(Y2|U,V1,X1)−ε)

= 2−n(I(X2;Y2,V1,X1|U)−R2−5ε)

= 2−n(I(X2;Y2|U,V1,X1)−R2−5ε)

= 2−n(I(X2;Y2|U,X1)−R2−5ε) (58)

where the last relationship is due to Lemma 3. Similarly, we have:

P{E32|Ec
1} ≤ 2−n(I(X1;Y2|U,V1,X2)−Rx

11−5ε) (59)

and:

P{E33|Ec
1} ≤ 2−n(I(X1,X2;Y2|U,V1)−R2−Rx

11−5ε) (60)

Since we have set the rate pair (R2, R
x
11) in Equations (23) and (24) to satisfy:

R2 < I(X2;Y2|U,X1)

Rx
11 < I(X1;Y2|U, V1, X2)

R2 +Rx
11 < I(X1, X2;Y2|U, V1)

,

the probability of P (E3k|Ec
1) is arbitrarily small for ∀k ∈ {1, 2, 3}, as long as n is sufficiently large.

Thus, P (n)
E in Equation (57) satisfies P (n)

E ≤ ε2 for sufficiently large n. Consequently, λ(wB−1
1 ) in

Lemma 4 can be arbitrarily small, and this lemma has been proven.
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