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Abstract: Repeats or Transposable Elements (TEs) are highly repeated sequence stretches, 
present in virtually all eukaryotic genomes. We explore the distribution of representative 
TEs from all major classes in entire chromosomes across various organisms. We employ 
two complementary approaches, the scaling of block entropy and box-counting. Both 
converge to the conclusion that well-developed fractality is typical of small genomes while 
in large genomes it appears sporadically and in some cases is rudimentary. The human 
genome is particularly prone to develop this pattern, as TE chromosomal distributions 
therein are often highly clustered and inhomogeneous. Comparing with previous works, 
where occurrence of power-law-like size distributions in inter-repeat distances is studied, 
we conclude that fractality in entire chromosomes is a more stringent (thus less often 
encountered) condition. We have formulated a simple evolutionary scenario for the genomic 
dynamics of TEs, which may account for their fractal distribution in real genomes. The 
observed fractality and long-range properties of TE genomic distributions have probably 
contributed to the formation of the “fractal globule”, a model for the confined chromatin 
organization of the eukaryotic nucleus proposed on the basis of experimental evidence. 

Keywords: fractality; block-entropy; Shannon entropy; entropic scaling; box-counting; 
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1. Introduction 

In information theory, the notion of entropy was conceived by Shannon [1] to estimate the amount 

of information that is carried in a transmitted message. During the last decades, scale invariance and 

fractality have been found in time series from signal transmission in electronic engineering, earthquakes, 

economy, social sciences and many other fields. Very often, such studies have been carried out using 

the standard box-counting technique and in several cases of systems characterized by long range 

correlations Shannon entropy has been used. 

In a previous work [2] we studied the scaling properties of the block entropy of the distribution of 

genes in eukaryotic genomes through a coarse-graining reduction of the DNA sequence into a symbol 

sequence. The convention that we followed was that zeros “0” in the symbol sequence stood for  

non-protein-coding nucleotides and ones “1” for nucleotides belonging to protein coding segments 

(exons). Several studies have shown that a linear scaling of the Shannon-like (or block) entropy H(n) 

with the length n of the word (called hereafter n-word) in semi-logarithmic plots is a clear indication of 

long-range order and fractality, as we are going to discuss in the next section [3–6]. We verified this 

conjecture numerically in the case of finite Cantor-like symbol sequences [2]. Then, we showed that 

the genomic distribution of protein coding segments often exhibits this particular scaling. 

Transposable Elements (TEs), also termed (interspersed) repeats, are sequence segments which  

are present in virtually all eukaryotic genomes in many (often several thousands) copies per 

chromosome [7–9]. Two major types of TEs have been distinguished on the basis of their means of 

genomic proliferation [8]. Retrostransposons proliferate through the intermediate of a messenger RNA 

sequence, which is subsequently reverse transcribed to a DNA copy, this last being randomly integrated 

back into the host genome. The other major class of TEs, DNA transposons, do not go through RNA 

intermediates during their self-replication. In previous works [10,11] we have shown, by studying the 

size distribution of inter-repeat distances, that the spatial arrangement of all principal classes of TEs in 

14 representative genomes from phylogenetically distant organisms exhibit long-range correlations. Often, 

these distributions are power-law-like, with their linear region in double logarithmic scale extending up to 

three orders of magnitude. 

We here study the distribution of several specific types of repeats in the following way: Nucleotides 

of the chromosome are replaced by zeros, if they do not belong to the repeat type under consideration 

and by ones if they belong to it. Thus, the juxtaposition of short islands formed by ones interrupting 

the continuum of zeros reflects the pattern of the spatial chromosomal arrangement of this specific 

repeat type. Then we proceed with the generated binary symbol sequence as follows: (i) The scaling of 

the block entropy H(n) vs. n in this symbol sequence is examined and quantified by means of the 

extent of linearity in semi-logarithmic plots; and (ii) A box-counting method is applied and the 

similarity dimension is computed along with the extent of linearity in double logarithmic scale. 

The content of this article is organised as follows: in the Methods section we describe the block 

entropy scaling and box-counting methodology. We then list the sources of the genomic data used and 

describe the Insertion-Elimination model. In the Results section, the two methods described previously 

are applied to the genomic coordinates of selected repeat (TE) populations. In the Discussion section 

we elaborate on the compatibility of these results with the proposed model and, more generally, on 
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their significance and implications for genomic evolution. In the final section the main conclusions of 

this work are briefly recapitulated. 

2. Methods 

2.1. Block Entropy Scaling 

Let us suppose a symbol sequence of length N, with symbols taken from a binary alphabet {0, 1} 

and let pn(A1,..., An) be the probability to find the block or n-word (A1,..., An) in this sequence. The 

Shannon-like entropy for n-words, or block entropy, is defined as [12]:  

)A,,(Ap)A,,(Ap=H(n) nnnn ...ln... 11  (1)

H(n) can be interpreted as a measure of the mean uncertainty of the prediction of an n-word. A 

standard treatment and description of the essential properties of block entropy and of other related 

quantities may be found in [3–5]. Here we briefly summarize only some essential results with 

immediate relevance to the purposes of the present study, while further analysis and more details can 

be found in [2]. 

In the literature one can meet two ways of reading the symbol sequence and extracting  

the probability distribution of n-words; by “gliding” and by “lumping”. Throughout this work,  

symbol-sequences are read by “lumping”. This means that, instead of exhaustively reading all possible 

words of length n (gliding), only n-words sampled with a constant step equal to n are considered. 

Equivalently, we can say that after reading the initial n-word of the sequence, the next counted n-word 

is the one starting at n + 1 and so on up to the end of the sequence. Thus, each letter of the sequence 

belongs only to one counted n-word. 

The scaling properties of the block entropy have been used as a measure for the classification of the 

symbol sequences. Crucial scaling features of H(n) have been investigated by several authors. Ebeling 

and Nicolis [4] have conjectured the following specific form for the scaling of H(n): 

nh+n)(gn+e=H(n)
μ0μ 1ln  (2)

for symbolic sequences generated by non-linear dynamics including language-like processes [4–6]. More 

specifically, in the case of the Feigenbaum attractor of the logistic map and for n = 2k (k = 2, 3, 4 …), 

Grassberger [3], see also [12,13], has shown that for reading the sequence by gliding, the following 

scaling holds:  

)(=H(n) 2/3nlog2  (3)

In this system linearity in semi-logarithmic plot holds (see [14] and references given therein), which 
in terms of Equation (2) corresponds to: 0g , 0=h , 00 =μ , 01 >μ  [15]. This type of scaling is 

conjectured to hold for a large class of symbol-sequences with fractal properties. Thus the H(n) – logn 

linearity is related to the scale-free structure of such sequences entailing the existence of long-range 

correlations. We have previously verified this conjecture for both deterministic Cantor-like  

symbol-sequences and probabilistic ones, which present features closer to genomic sequences [2]. 

For all genomic and simulated data sets we generated surrogate random sequences with the same 

0/1 composition and lacking, by construction, any internal structure. Specifically, we reconstructed a 
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sequence with the same length as the genomic one by spreading the biological functional units 

(repeats) in random positions. The curves showing the entropic scaling (H(n) vs. n) of the original 

sequence and of its surrogate are presented in the same plot. 

We quantify the fractality of a considered sequence by the extent of linearity in the semi-logaritmic 

scale E and the corresponding slope S. When more than one linear segment exists, we denote with E* 

the sum of their lengths. One additional quantity we introduce here and use heuristically as an 

estimator of the degree of organization of a sequence is the ratio R of the entropy value of the 

surrogate sequence over the entropy value of the studied (genomic or simulated) sequence. This ratio is 

always calculated for the value of n where the surrogate sequence presents its maximum entropy value, 

before the finite size effect completely distorts its shape. High values of R denote a high degree of 

order – and possible fractality – of the studied sequence. 

We introduce a shrinkage factor (s.f.) allowing a compression of the genomic sequence. For s.f. 

equal to e.g., ten symbols, we start from the beginning of the chromosome and we substitute every ten 

“0” by one “0” and every ten “1” by one “1”. When we meet a 10-letter string of mixed composition 

we substitute it by a single “1”. We choose to present our results for s.f. = 10, while in Section 1 of the 

supplementary material,  the entropy scaling for various s.f. values along with the case of no shrinkage 

are presented. We have verified that shrinkage does not alter our results. Further details on the use of 

s.f. and on the inclusion in the presented plots of n-words with large values of n can be found in [2]. 

2.2. Box-Counting Method for Estimating the Extent of Fractality and Fractal Dimension 

Box-counting is a classical method for estimating the fractal characteristics in a set of data [16,17]. 

We use a simple one-dimension implementation covering the chromosomal length by one dimensional 

“boxes” of length δ. The number of such boxes overlapping (fully or partially) at least one repeat copy is 

considered to represent the chromosomal length L(δ) occupied by TEs. When fractality holds, the 

measured length shows no sign of reaching a fixed value as δ decreases [17]. The measured length scales 

as, L(δ) ~ δD, with the exponent D being the negative fractal dimension Df of the studied object. The 

plots included herein, which show how L(δ) scales as a function of δ, are presented in a double 

logarithmic scale. We are interested in both the slope of the linear part of the curve and the extent of the 

linearity. Here fractality is considered to hold if Df takes values lower that 0.9 for a linear extent (F) 

exceeding one order of magnitude. The values at the limits of the linear region determine the lower and 

upper cutoffs, between which the studied spatial pattern is, statistically, self-similar. We compute L(δ) 

ten times, for each value of δ, with a frame shift equal to 1/40 of the total sequence length and then, we 

average in order to obtain results independent of the choice of the starting point of the measurement.  

Notice that for a genomic TE distribution two linearity regions are observed in most cases: one in 

the low-length region related to the length of the studied TEs and one in the high-length region. The 

latter is the only one for which the slope is found to significantly deviate from −1 (in the cases 

showing fractality). 
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2.3. Genomic Sequences Retrieval and Repeat-Coordinates Extraction 

Our analysis requires a large sample of TEs for each distribution, thus in this study we have 

included only TE populations with relatively large copy number per chromosome. We have selected 

chromosomes from several taxonomically distant species.  

The genomic coordinates of TEs were extracted from RepeatMasker output files downloaded from 

the University of California Santa Cruz (UCSC) genome browser [18], with the exception of  

C. elegans for which the assembled chromosomes (release on 9 November 1998) were downloaded 

from the National Center for Biotechnology Information (NCBI) Genomic Biology [19]. 

In all cases the repeat annotation was performed by a standard program that screens DNA 

sequences for interspersed repeats and low complexity DNA sequences (RepeatMasker) [20] with  

the –s (sensitive) setting, using libraries from the most commonly used database of repetitive DNA 

elements (RepBase) [21] and the Washington University Basic Local Alignment Search Tool  

WU-BLAST [22], which finds regions of sequence similarity, as search engine.  

The data for the repeat populations of the studied genomes were extracted after a suitable parsing of 

the standard RepeatMasker output. A maximum divergence (Divmax) is set as an upper limit throughout 

our main collection of repeats studied in this work (see Table 1) in order to select a repeat  

sub-population with limited dissimilarity with the family consensus. Thus, only the nucleotides of these 

repeat-copies are replaced by ones, while the rest of the nucleotides of a studied chromosome are 

denoted by zeros. We use the divergence computed by the RepeatMasker, defined as: “% substitutions in 

matching region compared to the consensus” [20]. For transposable elements with a strong tendency to 

generate severely truncated copies (e.g., L1s) a minimum length (Lenmin) limit has been used 

analogously. Additionally, some cases of full repeat populations are also presented, in order to show the 

effect of heavily deteriorated TE copies on the observed fractal pattern. The reasons for a maximum 

divergence (or minimum length) dependent treatment is presented in detail in [10,11] and discussed 

herein, later on, in relation to the proposed model. The 33 cases of eukaryotic chromosomes we chose to 

study, exhibit power-law-like distributions of the inter-repeat distances (data from references [10,11]). 

When chromosomes lacking this feature are examined, box-counting and entropic scaling invariably fail 

to identify any indication of fractality (figures not shown).  

2.4. The “Insertion-Elimination Model” 

In previous works we formulated an evolutionary model describing genomic dynamics relevant to 

TE evolution [10,11]. We here briefly describe the structure of the model and refer the reader to these 

previous works for a detailed description of the biological background. The insertion-elimination model for 

TE genomic dynamics builds upon models for the explanation of fractality in aggregation patterns in 

physicochemical systems [23]. Our model takes into account the one-dimensional topology of DNA 

and includes molecular events known to occur in genome dynamics over the course of evolutionary time. 

We here summarize the most essential types of genomic phenomena which are necessary for the 

emergence of fractality. Let us consider a sequence where a population of markers (representing the 

members of a TE population) is randomly distributed. We assume the following molecular events, 

each with an assigned probability of occurrence: 
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(a) Elimination of a marker (repeat) of the initial population, which occurs either by recombinational 

excision [7], or due to progressive decomposition by nucleotide substitutions and/or indel events. This 

leads to the aggregation of the spacers initially separated by the eliminated repeat. 

(b) Incorporation into existing spacers of “Subsequently Inserted genomic Material” (SIM) such as: 

repeats of more recent TE families, viral or other exogenous DNA etc. Each genomic locus has the same 

probability of SIM incorporation, i.e., larger spacers have higher probability of SIM incorporation.  

(c) In some simulations we further include transposition events of parts of the sequence, which are 

randomly cut from their original position and inserted randomly in a new position. These latter 

phenomena do not represent integral part of the model and are studied because they could lead  

to destruction of fractality due to ongoing randomization. Such events are known to happen in 

genomes over the course of evolutionary time and represent a naturally occurring “shuffling” of the 

genomic structure. 

The plots, as well as the presented regression analyses were performed using Grace-5.1.14, which is 

a free-code plotting tool for X Windows Systems [24]. Programs in FORTRAN and C and scripts in 

Perl are available upon request. 

3. Results 

In the present study chromosomes are treated as symbol-sequences by replacing nucleotides 

belonging to a considered TE type with 1s while replacing with 0s the rest of the nucleotides. This is 

performed either in all repeat copies or excluding the most deteriorated and/or truncated ones (for 

details see the Methods). This treatment is suggested by the finding that, always, the most extended 

power-laws in inter-repeat distances’ size distributions are found excluding the most deteriorated 

and/or truncated copies. As we discuss later on, this property is in accordance with the model we 

propose for the generation of fractality and long-rangeness in genomes (see following sections and 

references [10,11]). 

3.1. Scaling Properties of Block Entropy in TE Genomic Distributions 

In Figure 1, we present examples of H(n) plotted versus n for chromosomes from different 

organisms. The full list of examined cases is given in Table 1. Most cases of well-shaped fractality are 

found in small genomes (A. thaliana. C. elegans, D. melanogaster, O. sativa). However, small 

genomes have relatively low populations of repeats, usually of the order of tenths per chromosome for 

every repeat type. Thus repeat populations suitable for our analysis are scarce in small genomes. All 

these cases (relatively few, see Table 1) present a well-shaped linear region and high values of R 

indicating an entropic scaling compatible with fractality in the chromosomal distribution of repeats. 

On the other hand, in large genomes (the large majority of eukaryotic ones) the occurrence of 

important linearity in the entropic scaling is scarce, and is relatively frequent only in the human 

genome, which is well known for large populations of highly inhomogeneously distributed repeats, 

often following clustering at several length scales [7,10]. 

The quantification of the results of the application of the entropic scaling in the genomic distribution 

of repeats is not entirely straightforward. The related literature [3–6,12–15] and our earlier results [2] 

applying the entropic scaling on by-construction fractal symbol sequences and on the chromosomal 
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distribution of protein-coding segments show that linearity in semilogarithmic scale is nearly equivalent 

to fractality and to the existence of long-range order. Moreover, another indication that the genomic 

repeat distribution forms an ordered structure is provided by low entropy values of chromosomes vs. the 

entropy value for same word length n of the corresponding surrogate sequence presented in all of our 

entropy scaling plots. So, in Table 1, the results of entropic scaling are quantified by three measures: (a) 

The extent of linearity in semi-logarithmic scale (E); (b) The corresponding slope (S); (c) The ratio (R), 

as defined in the Methods, with high values of R indicating fractality.  

Figure 1. Examples of whole chromosome block entropy H(n) plots from different 

genomes. In all cases shrinkage factor s.f. equals 10. Random surrogates are also included. 

Genomic sequence is in black and red is the random surrogate. Dashed linear segments are 

parallel to the linear regression green line. The full-scale plot corresponding to (d) is 

included in the supplementary material.  
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Six out of the thirty-three examined cases present a sizable linear region on the plot (one and a half 

order of magnitude or higher), while another ten exhibit a smaller but clearly distinctive linear segment. All 

the plots corresponding to the rows of Table 1 are included in the supplementary material. In all of these 

plots, the entropic scaling curve for the corresponding surrogate data (artificial chromosome with randomly 

positioned repeats, see Methods) is included. Note that while linearity in semi-logarithmic scale does 

not represent a general rule (only 16 out of 33 cases), in all examined chromosomes the entropy values for 

the genomic sequence are clearly lower than the ones of the surrogate data (for same values of word 

length n). Thus, genomic sequences have strongly reduced entropies compared to their random 

counterparts, indicating an important degree of internal structure. 

3.2. Fractality in Repeat Genomic Distributions, as Measured by a Box-Counting Method 

In Figure 2 are presented the eight box-counting plots for the same chromosomes shown in Figure 1. 

In the supplementary material, the full collection of plots is included. In all plots, we observe two linear 

segments, in the low and the high value regions of the box size. The slopes for the low-length segments 

always are between −0.9 and −1. In the high-length region the extent and the slope of the linear segment 

vary considerably, and it is in this region where we expect fractality. Extent of linearity (F1 and F2) and 

the fractal (similarity) dimension measured by the corresponding slopes of the two linear segments (D1 

and D2) are given in Table 1. In 15 out of the 33 examined eukaryotic chromosomes (from 13 organisms) 

the slope D2 has an absolute value (corresponding to Df) lower than 0.9. In 11 cases Df does not exceed 

the value 0.7, while the extent of linearity may reach or exceed three orders of magnitude. In eight cases 

we have an extent larger than two orders of magnitude, while the fractal dimension is 0.7 or lower, thus 

indicated a well-shaped fractal structure. Seven out of eight such cases are met in small genomes  

(A. thaliana, C. elegans, D. melanogaster, O. sativa) and the last one in a H. sapiens chromosome. In the 

full set of 15 cases showing fractality, again small genomes are overrepresented, while the human 

genome represents a maximum for the large eukaryotic genomes.  

In the first ten full chromosomes included in Table 1, out of the complete set of 33 examined cases, 

we did the following modifications in our methodology in order to further elaborate on the distinct 

features of the box-counting curves: 

(a) Shuffling (random rearrangement) of the repeat population inside the initial chromosome. 

In the box-counting curves the linear segment corresponding to the high-length region acquires, 

invariably, a slope close to −1, as expected (fractality disappears).  

(b) Replacement of each repeat by a single “1” symbol. 

When repeats are replaced by a single “1” symbol, the box-counting curves lose their low-length 

linear segment. 

(c) Replacement of each repeat by a single “1” symbol followed by shuffling (random 

rearrangement) of the repeat population inside the initial chromosome. 
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Figure 2. Box-counting plots for chromosomes shown in Figure 1. Linear segments are 

generated by linear regression. Solid and dashed lines stand for presence and absence of 

fractality respectively.  
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Due to the combination of both interventions (a) and (b), box-counting curves lose their  

low-length-region linear part and the large length linear region gets a slope close to −1.  

The related quantitative information for these manipulated (surrogate) genomic sequences is given 

in Table 2. In Figure 3 the three plots for the chromosomal distribution of the DNA transposon CELE14B 

in chromosome 5 of C. elegans (row 6 in Table 2) are depicted. The full set of the plots corresponding 

to the manipulations above is given in the supplementary material. The inclusion in our study of the 

box-counting analysis based on the surrogate data sets (a), (b) and (c) leads to the conclusion that the 

linear segment in log-log plots, always found in the low-length region, relies on the size distribution of 

the repeats themselves. As this size distribution is short ranged (all repeats being more or less 

truncated copies of the same ancestral sequence, see e.g., [8]) it lacks any trace of fractality, as shown 

by the corresponding absolute slopes (see the D1 values in Table 1), which are always near-unity. 

3.3. Study of Chromosomal Regions from Chromosomes without Indications of Fractality when 

Studied in Their Entirety  

We apply the block entropy scaling and box-counting methodology to four chromosomal regions 

from chromosomes which, as a whole, do not present indications of fractality. The criterion for 

selecting the chromosomal regions was a relatively high percentage of repeat insertions which 

occurred after the proliferation of the examined TE population. In all four cases both methods of 

entropic scaling and box-counting show well developed fractality. The plots of these chromosomal 

regions are given in the supplementary material while one such case is presented in Figure 4.  

Figure 3. Box-counting plots for: (a) Shuffling of the repeat population; (b) Replacement 

of each repeat by a single “1” symbol; (c) Replacement of each repeat by a single “1” 

symbol followed by shuffling of the repeat population for the chromosomal distribution of 

the DNA transposon CELE14B in chromosome 5 of C. elegans.  
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Figure 4. Entropic scaling (a, b) and box-counting (c, d) plots for the distribution of the 

B3 – SINE/B2 retroelement in chr.2 of Mus musculus where no fractality is found vs. a 

chromosomal region with high percentage of subsequently (to the studied TE) inserted 

sequence material (SIM). The SIM distribution in this chromosome with demarcation of 

the studied region (A) is shown in (e). In (f) a magnification of plot (b) allowing to see the 

details of the linear region is depicted. 

 

3.4. Entropic Scaling and Box-Counting for Whole TE Populations without Excluding the Heavily 

Deteriorated or Truncated Repeat Copies 

The repeat populations (of several TE types) per chromosome studied and listed in Table 1 are the 

ones where heavily deteriorated or truncated repeat copies are excluded, as explained in the Methods. 

Preliminary tests have shown that the adoption of threshold values for Divmax or Lenmin, which are 

found to optimize the extent of linearity in log-log scale in the inter-repeat distance distributions [10,11], 

is also efficient for the study presented herein. In order to assess the impact of such thresholds in our 

study, we analyse the entropic scaling and box-counting in four cases from Table 1. In Figure 5 we 

present plots for the whole TE populations, and in Table 3 quantitative results are shown along with 

the corresponding quantities when thresholds excluding deteriorated and truncated copies are imposed 
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Figure 5. Four cases of entropic scaling and box-counting plots of whole repeat 

populations, representative of the major TE classes. The corresponding plots for repeat 

population where the most deteriorated or truncated copies are not considered are shown in 

the plots (a), (b), (g) and (h) of Figures 1 and 2. For the corresponding analysis, see in the 

Discussion and quantitative details in Table 3. 
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Table 1. Quantities characterizing entropic scaling and box-counting for the thirty-three full chromosomes that we analyzed. Bold is used in 

cases where fractality is exhibited. The abbreviations for the examined species are: Arabidopsis thaliana (Ath); Boss taurus (Bta); 

Caenorhabditis elegans (Cel); Canis familiaris (Cfa); Drosophila melanogaster (Dme); Danio rerio (Dre); Gallus gallus (Gga); Monodelphis 

domestica (Mdo); Mus musculus (Mmu); Oryza sativa (Osa); Pan troglodytes (Ptr); Rattus norvegicus (Rno); Homo sapiens (Hsa). 

No Organism Chromosome Repeat Name Family Name Divmax or Lenmin E S R F1 D1 F2 D2 
1 Ath Chr01 ATREP18 DNA Divmax = 21% 1,00 0,26 2,58 1,2 −0,95 3,7 −0,65 
2 Ath Chr01 COLAR12 Satellite/Centr Divmax = 25% 2,73 0,27 3,9 1,2 −0,96 3,6 −0,68 
3 Bta Chr12 L2c LINE/L2 Lenmin = 0 0  1,14 1,2 −0,94 2,1 −0,94 
4 Bta Chr25 Bov-tA2 SINE/BovA Divmax = 20% 0  1,09 1,2 −0,95 3 −0,95 
5 Cel Chr01 CERP3 Unknown Divmax = 26% 0,87 1,22 1,7 1,5 −0,94 2,1 −0,7 
6 Cel Chr05 CELE14B DNA Divmax = 8% 1,37 0,701 2,08 1,5 −0,91 2 −0,6 
7 Cfa Chr01 MER20 DNA/MER1_type Divmax = 26% 0  1,18 1,2 −0,94 1,5 −0,92 
8 Cfa Chr01 L3 LINE/CR1 Lenmin = 0 0  1,15 1,2 −0,95 2,1 −0,92 
9 Cfa Chr20 L1_Canis1 LINE/L1 Lenmin = 600 0,85 1,46 1,53 2,1 −0,98 0 - 
10 Cfa ChrX L1MC4 LINE/L1 Lenmin = 200 0  1,31 1,8 −0,95 1,8 −0,85 
11 Dme Chr2L DNAREP1_DM Helitron Lenmin = 300 2,1 0,498 3,34 1,5 −0,97 2,7 −0,51 
12 Dme Chr3R DNAREP1_DM Helitron Lenmin = 200 1,46 0,588 3,07 1,5 −0,95 3 −0,35 
13 Dre Chr01 TC1DR3 DNA/Tc1 Divmax = 11% 0  1,19 1,5 −0,97 1,8 −0,92 
14 Gga Chr08 Mariner1b_GG DNA/Mariner Lenmin = 50 0,93 1,39 1,39 1,8 −0,94 1,8 −0,7 
15 Gga Chr13 Mariner1_GG DNA/Mariner Lenmin = 200 1,25 0,709 1,8 1,5 −0,97 0 - 
16 Mdo Chr06 MAR1a_Mdo SINE/MIR Divmax = 18% 0  1,2 1,2 −0,95 3 −0,94 
17 Mdo ChrX L3_Mars LINE/CR1 Lenmin = 100 0  1,22 1,5 −0,96 2,1 −0,95 
18 Mmu Chr09 B4A SINE/B4 Divmax = 30% 0  1,27 1,2 −0,95 2,4 −0,93 
19 Mmu Chr12 B3 SINE/B2 Divmax = 25% 0  1,34 1,2 −0,94 2,4 −0,92 
20 Osa Chr01 RIRE3A_LTR LTR/Gypsy Divmax = 7% 0,8 0,732 2,47 2,1 −0,98 3,3 −0,31 
21 Osa Chr11 SEVERIN-2 DNA Lenmin = 100 0,95 1,74 1,41 1,5 −0,92 1,2 −0,86 
22 Ptr Chr03 L1P* LINE/L1 Lmin = 800 0  1,25 2,1 −0,98 2,1 −0,96 
23 Ptr Chr14 AluJo SINE/Alu Divmax = 17% 0  1,49 1,2 −0,96 2,1 −0,9 
24 Rno Chr01 B3 SINE/B2 Divmax = 23% 0  1,43 1,2 −0,94 2,7 −0,92 
25 Rno Chr01 L2 LINE/L2 Lenmin = 50 0  1,29 1,2 −0,94 2,7 −0,92 
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Table 1. Cont. 

No Organism Chromosome Repeat Name Family Name Divmax or Lenmin E S R F1 D1 F2 D2 
26 Hsa Chr19 AluJb SINE/Alu Divmax = 20% 0  1,17 1,2 −0,96 2,4 −0,95 
27 Hsa Chr09 AluJo SINE/Alu Divmax = 15% 0,62 1,66 1,53 1,5 −0,94 1,8 −0,81 
28 Has ChrY AluSx SINE/Alu Divmax = 10% 1,96 0,419 3,39 1,5 −0,95 2,7 −0,52 
29 Hsa Chr05 AluSx SINE/Alu Divmax = 9% 0  1,32 1,5 −0,95 1,8 −0,84 
30 Hsa Chr07 L1P* LINE/L1 Lenmin = 1000 0  1,28 2,1 −0,99 2,4 −0,91 
31 Hsa Chr17 L1P* LINE/L1 Lenmin = 700 1,2 1,27 1,61 2,1 −0,98 1,2 −0,9 
32 Hsa ChrY L1M* LINE/L1 Lenmin = 1300 1,6 0,854 1,96 2,1 −0,98 2,1 −0,62 
33 Hsa Chr22 L1M* LINE/L1 Lenmin = 1400 1,3 1,1 1,53 2,1 −0,98 1,5 −0,48 

Table 2. Quantities characterizing entropic scaling and box-counting for the first ten cases in Table 1 after the modifications (a), (b), (c) as 

described in the Results, sub-Section 3.2. Bold is used in cases where fractality is exhibited. 
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Ath Chr01 ATREP18 DNA Divmax = 21% 1,2 −0,95 1,2 −0,93 2,1 −0,67 1,2 −0,93 
Ath Chr01 COLAR12 Satellite/Centr Divmax = 25% 1,5 −0,94 1,5 −0,93 3 −0,6 1,5 −0,93 
Bta Chr12 L2c LINE/L2 Lenmin=0 1,2 −0,94 2,1 −0,96 2,1 −0,94 2,1 −0,96 
Bta Chr25 Bov-tA2 SINE/BovA Divmax=20% 1,2 −0,95 2,4 −0,97 3 −0,94 2,7 0,97 
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Cel Chr01 CERP3 Unknown Divmax = 26% 1,2 -0,96 1,5 −0,92 1,8 −0,74 1,5 −0,93 
Cel Chr05 CELE14B DNA Divmax = 8% 1,2 -0,94 0,9 −0,92 2,1 −0,6 1,2 −0,9 
Cfa Chr01 MER20 DNA/MER1_type Divmax = 26% 1,2 -0,95 1,5 −0,95 1,5 −0,92 1,5 −0,95 
Cfa Chr01 L3 LINE/CR1 Lenmin = 0 1,2 -0,95 1,8 −0,97 1,8 −0,95 1,8 −0,97 
Cfa Chr20 L1_Canis1 LINE/L1 Lenmin = 600 1,8 -0,99 1,2 −0,94 0 0 1,2 −0,94 
Cfa ChrX L1MC4 LINE/L1 Lenmin = 200 1,5 -0,97 1,5 −0,95 1,8 −0,85 1,5 −0,95 

Table 3. Quantities characterizing entropic scaling and box-counting, in four cases of repeat type per chromosome, for: A. Application of 

thresholds excluding highly deteriorated or truncated copies (cf. Figures 1 and 2); B. Complete TE population (cf. Figure 5). For details, see in 

the Discussion. Bold is used in cases where fractality is exhibited. 

Cace No 
Organi, 
Chr/me 

Repeat & Family 
Name 

Divmax or 
Lenmin 

Tresholds (Dmax or Lmin) applied  
(cf. Figures 1&2) A 

Whole repeat populations studied  
(cf. Figure 5) B 

E R F2 D2 E R F2 D2 
1 Ath, Chr01 ATREP18, DNA Divmax = 21% 1.00 2.,58 3.7 −0.65 0.9 2.98 2.1 −0,78 
2 Cel, Chr05 CELE14B, DNA Divmax = 8% 1.37 2.08 2 −0.6 0.80 1.73 1.8 −0,77 
3 Hsa, ChrY AluSx, SINE/Alu Divmax = 10% 1.96 3.,39 2.7 −0.52 - 1.22 2.4 −0,90 
4 Hsa, ChrY L1M, LINE/L1 Lenmin = 1300 1.,6 1.96 2.1 −0.62 - 1.37 2.4 −0,94 
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3.5. Entropic Scaling and Box-Counting for Sequences Produced Using the  

“Insertion-Elimination Model” 

In Figure 6, results from two simulations in which the initial sequence comprises a random 

distribution of TEs are presented. They correspond to the first two rows of plots (a–b, c–d) where the 

entropic and box-counting plots of the final product of the application of the model are included. The 

second numerical experiments differ from the first only in the amount of the genomic material (SIM) 

inserted during the simulation (two-fold increase), while the initial and final number of markers are set 

to be equal. It is clear that increase of SIM entails more pronounced fractality (for details of the 

simulations see in the supplementary material). Increases of the obtained fractality may be also attained 

when further eliminations of repeats belonging to the initial set are allowed. Thus, a higher influx of 

subsequently inserted sequences, more intense elimination rates, or longer maturation in time of a 

repeat (TE) population, all should contribute to the formation of a more extended fractal structure. The 

inversion of this procedure, leading finally to the destruction of any fractal pattern is attained when a 

sufficient number of transposition events (genomic shuffling) are simulated, as shown in the third row 

(e–f). These plots correspond to a sequence obtained after 2000 random transpositions of sequence-

segments, where the product of the second numerical experiment (c–d) is used as an initial “artificial 

chromosome”. While this amount of genomic shuffling suffices to destroy fractality as shown in plots 

e and f, lower numbers of transposition events result into a reduced extent of fractality before reaching 

its complete destruction (figures not shown). In the entropic scaling plots of Figure 6, curves 

corresponding to surrogate random sequence are also included. 

4. Discussion 

4.1. Understanding the Entropic Scaling and Fractality of TE Chromosomal Distribution—Are the 

Shown Results Compatible with the Proposed Model? 

By calculating the block - Shannon entropy we can determine the scaling that is hidden within  

any kind of symbol-sequence, which reflects a complex process entailing scale invariance and  

fractality [25]. Thus, during the last decades, the entropic analysis has been used in time series from 

signal transmission in electronic engineering, in earthquakes [26,27], in economy [28] and in many 

other fields from physics and physiology [29] and to social sciences [30]. More specifically, in block 

entropy studies traditionally the entropy values are computed using a constant block (word) length 

comparing different segments of time series or symbol sequences in order to estimate the information 

content per block, see e.g., [27]. Alternatively, as we implemented in our study, entropic values are 

computed with variable block length windows and fractality and self-similarity are estimated by the 

whole time series. For another application of entropic scaling where a long memory has been observed 

in time series analysis see [30] in the context of a sociology study. Box-counting is a standard 

technique that has been used to find and measure fractality in patterns that show scale-free geometries 

such as geographical landscapes materials, surfaces and biological systems like the lung and the blood 

circulatory system [16,17,31]. 
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Figure 6. Entropic scaling (a, c) and box-counting plots (b, d) for two simulations of the 

proposed “Insertion-Elimination” model. In the second a fractal-like distribution is fully 

developed. In the following two plots (e, f) we depicted the destruction of fractality due to 

2000 intra-chromosomal transpositions, modelling the naturally occurring genomic shuffling.  

 

In the presented results, we see that linearity in semi-logarithmic scale in entropic scaling plots and 

linearity in double-logarithmic scale in box-counting plots with the absolute slope considerably 

diverging from unity are present in several cases of complete chromosomes (see Table 1 and Figures 1 

and 2). This observation raises several questions, such as about the causes of the differences found 

between genomes and about the causes of the systematically higher incidence of fractality in small 

genomes (and consequently in small chromosomes). Additionally, in cases where fractality is observed, the 

intensity and resolution of this pattern (as measured by E and R) is unevenly distributed between 

different genomes. Another result of the present study is the relative scarcity of fractality studied herein 

compared to observations of long-ranged order in studies at the whole-chromosome level of inter-repeat 
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distances [10,11]. Occurrence of power-law-like distributions is much more frequent than fractality. 

Another interesting observation is that often, although a fractal pattern is observed in regions of large 

chromosomes, it is not seen when the whole chromosome is considered. In the present section we try 

to investigate the complete picture that emerges when we combine the information gathered from all 

the setups examined herein and to assess the ability of the proposed “insertion-elimination model” to 

reproduce the observed fractal or fractal-like patterns. 

Recapitulating the essence of the proposed model, the necessary and sufficient conditions for the 

emergence of box-counting fractality and for the observed entropic scaling are the concurrent occurrence 

of (a) repeat eliminations and (b) inflation of the sequence, at least for some periods of the genomic 

evolution. Sequence length increase may be due to subsequent insertions of repeats belonging to more 

recent TE families or other molecular events, such as: viral sequences incorporated into the host genome, 

segmental duplications [32,33], sporadic occurrence of whole genome duplications [34,35] and local 

growth of the sequence due to microsatellite proliferation [36]. 

Fractality in a chromosomal region combined with absence of fractality in the whole chromosome 

is shown in Figure 4 and in three other similar cases presented in the supplementary material. This 

finding advocates in favor of the importance of high insertion rates of more recent TE families for the 

formation of a well-shaped fractal structure in the distribution of older TE families. Moreover, other 

sources of sequence insertion may also have contributed toward this direction. Another aspect of this 

finding is revealed if we take into account that, while the entire chromosome in all four cases lacks any 

trace of fractality, when studied from the point of view of the existence and extent of a power-law in 

the inter-repeat spacers sizes, the difference between chromosomal regions and whole chromosomes is 

milder, although pointing towards the same direction [11]. i.e., in all four cases, the extent of linearity 

in double-log scale is larger in the insertion-rich regions than in the entirety of the chromosome, but 

complete chromosomes are still characterized by power-laws in the inter-repeat size distributions. The 

absence of fractality in these four complete chromosomes and the reported overall scarceness of the 

fractal pattern in large chromosomes has to be contrasted with the more frequent occurrence of fractal 

geometry in small genomes. These observations lead us to the conjecture that large chromosomal size 

drastically undermines fractality, but does not hinder the development of power-laws in the inter-repeat 

size distributions. Note that the size of chromosomes in small genomes (e.g., Caenorhabditis elegans 

and Arabidopsis thaliana) is of the same order of magnitude as the chromosomal regions studied 

herein (a few tenths of millions of nucleotides), while entire chromosomes of large (e.g., mammalian) 

genomes are larger by one order of magnitude. We have to emphasize however, that chromosomes of 

small genomes are not equivalent with chromosomal regions of large genomes. Large genomes are 

well known to be subjected to intense shuffling during their evolution due to frequent intra- and  

inter-chromosomal rearrangements and translocations. Thus, they might preserve fractality in chromosomal 

regions while tend to destroy the whole-chromosome fractal pattern. On the other hand, in species with 

small genomes and high effective population sizes, purifying selection prevents extensive intra- and 

inter-chromosomal rearrangements, thus preserving an emerging fractal-like pattern. Moreover, a high 

rate of repeat loss driven by natural selection has been reported for the D. melanogaster genome [37] 

and a similar trend is observed in other genomes too, which have been subjected to size reduction 

recently. These characteristics of small genomes in combination with frequent incidence of fractality 

therein corroborate the proposed model. Note that the appearance of power-laws in inter-repeat 
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spacers’ size distributions is expected to be less affected by rearrangements: each rearrangement event 

may affect the size of only one inter-repeat spacer, while it seriously perturbs the whole fractal pattern 

estimated by means of box-counting. 

In Figure 5 one can see the entropic scaling and the box-counting plots for four repeat populations, 

where, unlike cases included in Table 1 and Figures 1 and 2, no thresholds of maximum divergence or 

minimum length are applied. Here, whole repeat (TE) populations of each chromosome are studied, 

not excluding the more truncated or deteriorated copies. Data for the quantitative comparison of whole 

and threshold-limited cases are provided in Table 3. Fractality is quantified by the box-counting slope 

D2 and the corresponding linearity F2; and by the extent of the linear segment E and the ratio R in 

entropic scaling plots. In cases of DNA Transposable Elements (lines 1, 2 in Table 3) filtering of 

deteriorated TE copies reinforces fractality, while the whole repeat populations still exhibit fractality. 

When we examine retroelements, like case 3 (AluSx belonging to the Short INterspersed Elements, 

SINEs) and case 4 (L1M belonging to the Long INterspersed Elements, LINEs) in Table 3, the 

contrast is higher: the filtered repeat populations exhibit well-shaped fractality as assessed by the 

above criteria, while whole chromosomal populations fail to form any fractal pattern. The conclusion 

drawn above is corroborated by several other cases of comparison between whole and threshold-limited TE 

populations not included herein. The observed difference between whole and filtered TE populations is 

compatible with the hypothesis underling the proposed model; i.e., that the formation of the fractal 

structure depends positively on the elimination rate of the studied TE population. The reason for the 

dependence and the impact of the different modes of repeat eliminations on the different classes of TEs 

in view of the “insertion-elimination model” are detailed in [11], while they may briefly explained here 

as follows: one important mechanism in the elimination of repeats over the course of evolutionary time 

is the recombinational excisions of members of the same TE population when they are located close to 

one another at opposite orientations (inverted pairs). Such molecular events are facilitated by  

close resemblance in the primary structure (nucleotide sequence) of the “mutually annihilated” TE  

copies [7,38]. Several other recombinational interactions between TE copies of the same population 

contributing to repeat eliminations always rely on sequence integrity and similarity between the repeats 

interacting through recombination. Differences between DNA-TEs and retroelements in their response 

towards the inclusion in the studied population of truncated and deteriorated copies can be explained 

on the basis of the high dependence of the retroelements’ eliminations of recombination events and the 

clearly lower incidence of recombination driven eliminations of DNA TEs, see the supplementary file 4 

Section 6 “DNA transposons in mammalian genomes” in [11]. For a more detailed study of the 

dynamics of DNA TEs in the human genome, the reader may refer to page 880 of reference [36]. As a 

consequence of these differences, the corresponding disparity in the propensity for the formation of 

fractal structures as shown in Table 3 between whole and filtered TE populations is compatible with 

the insertion-elimination model proposed herein. 

4.2. The “Fractal Globule” Model for the Eukaryotic Nucleus—Possible Role of the Chromosomal 

Distribution of Transposable Elements 

The fractal globule model for the folding of chromatin in the eukaryotic nucleus predicts a  

power-law distribution of the genomic distance and contact probability which has been observed 

experimentally [39]. A fractal structure of the genome has been theoretically predicted a long time  
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ago [40,41] and seems to offer important benefits to cellular functioning. Such a knot-free structure 

makes possible the repetitive winding and unwinding of the genome during consecutive cell-cycles [42]. 

The predicted scaling features of the fractal globule have been quantitatively verified by a combination 

of molecular biology and computational techniques [39,43]. Recently, the 3D clustering of repeats 

belonging to the same family due to repeat pair interactions has led to the suggestions that such repeats 

coordinate and maintain the chromatin higher structure [44]. Presumably, fractality and long-rangeness 

initially developed through neutral genome dynamics such as the ones related to repeat proliferation 

we discussed, and subsequently were preserved by selective forces, as this structure is intertwined with 

multiple genomic functions. The long-ranged distribution of populations of highly similar sequence 

segments, such as TEs, could help the initial shaping and maintenance of the fractal globule state, by 

means of recombinational DNA-DNA “kissing interactions” [45]. Ancient TE populations could have 

participated in the fractal globule formation, while subsequent repeat families might continue to contribute 

to its reshaping. We have seen that there is no universal exponent (slope in double logarithmic scale) 

across all species and TEs classes studied herein, this finding indicating that the observed exponents 

reflect the combined result of both, adaptive and neutral molecular dynamic processes. 

5. Conclusions 

We conducted a study of the genomic distribution of transposable element in whole chromosomes 

using entropic scaling analysis and box-counting. Repeat populations from all the main TE classes are 

considered within several genomes from taxonomically distant organisms, and employ two different 

methodologies, box-counting and entropic scaling. Box-counting is a standard tool for the identification 

of fractality and for its quantification through values of the absolute value of the slope (fractal dimension) 

and extent of linearity in double logarithmic scale [16,17]. Entropic scaling as described in the cited 

literature (see e.g., [3,4,14,15]) also represents an indication of the emergence of self-similarity and is 

tightly correlated with fractality. 

This study expands findings of previous works of our group where the positioning of TEs in whole 

genomic sequences was analysed by studying the distributional patters of the lengths of inter-repeat 

distances [10,11]. There, power-law-like distributions were often observed. However, power-law-like 

distributions, linear entropic scaling curves in semi-logarithmic scale and linearity in log-log scale 

with a fractal dimension substantially lower than unity are not equivalent, but form a nested hierarchy 

with the power-law-like pattern in the inter-repeat distances being relatively more frequent and fractality 

derived using box-counting being the more scarce. We find a connection between the frequency of 

fully developed fractality and the genome size, smaller genomes being the more prone to develop fractality 

along with some of the large ones, like the human genome. Also, we suggest that fractality in the 

repeat distribution might have contributed to the shaping of the recently found fractal globule geometry of 

the chromatin folding within the eukaryotic nucleus. 
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