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Abstract: We propose new measures of shared information, unique information and
synergistic information that can be used to decompose the mutual information of a pair
of random variables (Y, Z) with a third random variable X . Our measures are motivated
by an operational idea of unique information, which suggests that shared information and
unique information should depend only on the marginal distributions of the pairs (X, Y )

and (X,Z). Although this invariance property has not been studied before, it is satisfied by
other proposed measures of shared information. The invariance property does not uniquely
determine our new measures, but it implies that the functions that we define are bounds to any
other measures satisfying the same invariance property. We study properties of our measures
and compare them to other candidate measures.
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1. Introduction

Consider three random variables X, Y, Z with finite state spaces X ,Y ,Z . Suppose that we are
interested in the value of X , but we can only observe Y or Z. If the tuple (Y, Z) is not independent
of X , then the values of Y or Z or both of them contain information about X . The information about
X contained in the tuple (Y, Z) can be distributed in different ways. For example, it may happen that
Y contains information about X , but Z does not, or vice versa. In this case, it would suffice to observe
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only one of the two variables Y, Z namely the one containing the information. It may also happen that
Y and Z contain different information, so it would be worthwhile to observe both of the variables. If
Y and Z contain the same information about X , we could choose to observe either Y or Z. Finally,
it is possible that neither Y nor Z taken for itself contains any information about X , but together they
contain information about X . This effect is called synergy, and it occurs, for example, if all variables
X, Y, Z are binary, and X = Y XORZ. In general, all effects may be present at the same time. That
is, the information that (Y, Z) has about X is a mixture of shared information SI(X : Y ;Z) (that is,
information contained both in Y and inZ), unique informationUI(X : Y \Z) andUI(X : Z\Y ) (that is,
information that only one of Y and Z has) and synergistic or complementary information CI(X : Y ;Z)

(that is, information that can only be retrieved when considering Y and Z together).
The total information that (Y, Z) has about X can be quantified by the mutual information MI(X :

(Y, Z)). Decomposing MI(X : (Y, Z)) into shared information, unique information and synergistic
information leads to four terms, as:

MI(X : (Y, Z)) = SI(X : Y ;Z) + UI(X : Y \ Z) + UI(X : Z \ Y ) + CI(X : Y ;Z). (1)

The interpretation of the four terms as information quantities demands that they should all be positive.
Furthermore, it suggests that the following identities also hold:

MI(X : Y ) = SI(X : Y ;Z) + UI(X : Y \ Z),

MI(X : Z) = SI(X : Y ;Z) + UI(X : Z \ Y ).
(2)

In the following, when we talk about a bivariate information decomposition, we mean a set of three
functions SI , UI and CI that satisfy (1) and (2).

Combining the three equalities in (1) and (2) and using the chain rule of mutual information:

MI(X : (Y, Z)) = MI(X : Y ) +MI(X : Z|Y )

yields the identity:

CoI(X;Y ;Z) := MI(X : Y )−MI(X : Y |Z)

= MI(X : Y ) +MI(X : Z)−MI(X : (Y, Z)) = SI(X : Y ;Z)− CI(X : Y ;Z), (3)

which identifies the co-information with the difference of shared information and synergistic information
(the co-information was originally called interaction information in [1], albeit with a different sign in the
case of an odd number of variables). It has been known for a long time that a positive co-information is
a sign of redundancy, while a negative co-information expresses synergy [1]. However, although there
have been many attempts, as of currently, there has been no fully satisfactory solution to separate the
redundant and synergistic contributions to the co-information, and also, a fully satisfying definition of
the function UI is still missing. Observe that, since we have three equations ((1) and (2)) relating the
four quantities SI(X : Y ;Z), UI(X : Y \ Z), UI(X : Z \ Y ) and CI(X : Y ;Z), it suffices to specify
one of them to compute the others. When defining a solution for the unique information UI , this leads
to the consistency equation:

MI(X : Z) + UI(X : Y \ Z) = MI(X : Y ) + UI(X : Z \ Y ). (4)
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The value of (4) can be interpreted as the union information, that is, the union of the information
contained in Y and in Z without the synergy.

The problem of separating the contributions of shared information and synergistic information
to the co-information is probably as old as the definition of co-information itself. Nevertheless,
the co-information has been widely used as a measure of synergy in the neurosciences; see, for
example, [2,3] and the references therein. The first general attempt to construct a consistent information
decomposition into terms corresponding to different combinations of shared and synergistic information
is due to Williams and Beer [4]. See also the references in [4] for other approaches to study multivariate
information. While the general approach of [4] is intriguing, the proposed measure of shared information
Imin suffers from serious flaws, which prompted a series of other papers trying to improve these
results [5–7].

In our current contribution, we propose to define the unique information as follows: Let ∆ be the set
of all joint distributions of X , Y and Z. Define:

∆P =
{
Q ∈ ∆ : Q(X = x, Y = y) = P (X = x, Y = y)

and Q(X = x, Z = z) = P (X = x, Z = z) for all x ∈ X , y ∈ Y , z ∈ Z
}

as the set of all joint distributions that have the same marginal distributions on the pairs (X, Y ) and
(X,Z). Then, we define:

ŨI(X : Y \ Z) = min
Q∈∆P

MIQ(X : Y |Z),

where MIQ(X : Y |Z) denotes the conditional mutual information of X and Y given Z, computed with
respect to the joint distribution Q. Observe that:

MI(X : Z) + ŨI(X : Y \ Z) = min
Q∈∆P

(MI(X : Z) +MIQ(X : Y |Z))

= min
Q∈∆P

(MI(X : Y ) +MIQ(X : Z|Y )) = MI(X : Y ) + ŨI(X : Z \ Y ),

where the chain rule of mutual information was used. Hence, ŨI satisfies the consistency Condition (4),
and we can use (2) and (3) to define corresponding functions S̃I and C̃I , such that ŨI , S̃I and C̃I form
a bivariate information decomposition. S̃I and C̃I are given by:

S̃I(X : Y ;Z) = max
Q∈∆P

CoIQ(X;Y ;Z),

C̃I(X : Y ;Z) = MI(X : (Y, Z))− min
Q∈∆P

MIQ(X : (Y, Z)).

In Section 3, we show that ŨI , S̃I and C̃I are non-negative, and we study further properties. In
Appendix A.1, we describe ∆P , in terms of a parametrization.

Our approach is motivated by the idea that unique and shared information should only depend on the
marginal distribution of the pairs (X,Z) and (X, Y ). This idea can be explained from an operational
interpretation of unique information: Namely, if Y has unique information about X (with respect to Z),
then there must be some way to exploit this information. More precisely, there must be a situation in
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which Y can use this information to perform better at predicting the outcome of X . We make this idea
precise in Section 2 and show how it naturally leads to the definitions of ŨI , S̃I and C̃I as given above.
Section 3 contains basic properties of these three functions. In particular, Lemma 5 shows that all three
functions are non-negative. Corollary 7 proves that the interpretation of ŨI as unique information is
consistent with the operational idea put forward in Section 2. In Section 4, we compare our functions
with other proposed information decompositions. Some examples are studied in Section 5. Remaining
open problems are discussed in Section 6. Appendices A.1 to A.3 discuss more technical aspects that
help to compute ŨI , S̃I and C̃I .

After submitting our manuscript, we learned that the authors of [5] had changed their definitions in
Version 5 of their preprint. Using a different motivation, they define a multivariate measure of union
information that leads to the same bivariate information decomposition.

2. Operational Interpretation

Our basic idea to characterize unique information is the following: If Y has unique information
about X with respect to Z, then there must be some way to exploit this information. That is, there must
be a situation in which this unique information is useful. We formalize this idea in terms of decision
problems as follows:

Let X , Y , Z be three random variables; let p be the marginal distribution of X , and let κ ∈ [0, 1]X×Y

and µ ∈ [0, 1]X×Z be (row) stochastic matrices describing the conditional distributions of Y and Z,
respectively, given X . In other words, p, κ and µ satisfy:

P (X = x, Y = y) = p(x)κ(x; y) and P (X = x, Z = z) = p(x)µ(x; z).

Observe that, if p(x) > 0, then κ(x; y) and µ(x; z) are uniquely defined. Otherwise, κ(x; y) and µ(x; z)

can be chosen arbitrarily. In this section, we will assume that the random variable X has full support.
If this is not the case, our discussion will remain valid after replacing X by the support of X . In fact,
the information quantities that we consider later will not depend on those matrix elements κ(x; y) and
µ(x; z) that are not uniquely defined.

Suppose that an agent has a finite set of possible actionsA. After the agent chooses her action a ∈ A,
she receives a reward u(x, a), which not only depends on the chosen action a ∈ A, but also on the
value x ∈ X of the random variable X . The tuple (p,A, u), consisting of the prior distribution p,
the set of possible actions A and the reward function u, is called a decision problem. If the agent can
observe the value x of X before choosing her action, her best strategy is to chose a in such a way that
u(x, a) = maxa′∈A u(x, a′). Suppose now that the agent cannot observe X directly, but the agent knows
the probability distribution p of X . Moreover, the agent observes another random variable Y , with
conditional distribution described by the row-stochastic matrix κ ∈ [0, 1]X×Y . In this context, κ will also
be called a channel from X to Y . When using a channel κ, the agent’s optimal strategy is to choose her
action in such a way that her expected reward:∑

x∈X

P (X = x|Y = y)u(x, a) =

∑
x∈X p(x)κ(x; y)u(x, a)∑

x∈X p(x)κ(x; y)
(5)
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is maximal. Note that, in order to maximize (5), the agent has to know (or estimate) the prior distribution
of X , as well as the channel κ. Often, the agent is allowed to play a stochastic strategy. However, in the
present setting, the agent cannot increase her expected reward by randomizing her actions; and therefore,
we only consider deterministic strategies here.

Let R(κ, p, u, y) be the maximum of (5) (over a ∈ A), and let:

R(κ, p, u) =
∑
y∈Y

P (Y = y)R(κ, p, u, y).

be the maximal expected reward that the agent can achieve by always choosing the optimal action.
In this setting, we make the following definition:

Definition 1. Let X, Y, Z be three random variables; and let p be the marginal distribution of X , and let
κ ∈ [0, 1]X×Y and µ ∈ [0, 1]X×Z be (row) stochastic matrices describing the conditional distributions of
Y and Z, respectively, given X .

• Y has unique information about X (with respect to Z), if there is a set A and a reward function
u ∈ RX×A that satisfy R(κ, p, u) > R(µ, p, u).

• Z has no unique information about X (with respect to Y ), if for any set A and reward function
u ∈ RX×A, the inequalityR(κ, p, u) ≥ R(µ, p, u) holds. In this situation we also say that Y knows
everything that Z knows about X , and we write Y wX Z.

This operational idea allows one to decide when the unique information vanishes, but, unfortunately,
does not allow one to quantify the unique information.

As shown recently in [8], the question whether or not Y wX Z does not depend on the prior
distribution p (but just on the support of p, which we assume to be X ). In fact, if p has full support,
then, in order to check whether Y wX Z, it suffices to know the stochastic matrices κ, µ representing the
conditional distributions of Y and Z, given X .

Consider the case Y = Z and κ = µ ∈ K(X ;Y), i.e., Y and Z use a similar channel. In this case, Y
has no unique information with respect to Z, and Z has no unique information with respect to Y . Hence,
in the decomposition (1), only the shared information and the synergistic information may be larger than
zero. The shared information may be computed from:

SI(X : Y ;Z) = MI(X : Y )− UI(X : Y \ Z) = MI(X : Y ) = MI(X : Z);

and so the synergistic information is:

CI(X : Y ;Z) = MI(X : (Y, Z))− SI(X : Y ;Z) = MI(X : (Y, Z))−MI(X : Y ).

Observe that in this case, the shared information can be computed from the marginal distribution of X
and Y . Only the synergistic information depends on the joint distribution of X , Y and Z.

We argue that this should be the case in general: by what was said above, whether the unique
information UI(X : Y \ Z) is greater than zero only depends on the two channels κ and µ. Even more
is true: the set of those decision problems (p,A, u) that satisfy R(κ, p, u) > R(µ, p, u) only depends on
κ and µ (and the support of p). To quantify the unique information, this set of decision problems must
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be measured in some way. It is reasonable to expect that this quantification can be achieved by taking
into account only the marginal distribution p of X . Therefore, we believe that a sensible measure UI for
unique information should satisfy the following property:

UI(X : Y \ Z) only depends on p, κ and µ. (∗)

Although this condition seems to have not been considered before, many candidate measures of unique
information satisfy this property; for example, those defined in [4,6]. In the following, we explore the
consequences of Assumption (∗).

Lemma 2. Under Assumption (∗), the shared information only depends on p, κ and µ.

Proof. This follows from SI(X : Y ;Z) = MI(X : Y )− UI(X : Y \ Z).

Let ∆ be the set of all joint distributions of X , Y and Z. Fix P ∈ ∆, and assume that the marginal
distribution of X , denoted by p, has full support. Let:

∆P =
{
Q ∈ ∆ : Q(X = x, Y = y) = P (X = x, Y = y)

and Q(X = x, Z = z) = P (X = x, Z = z) for all x ∈ X , y ∈ Y , z ∈ Z
}

be the set of all joint distributions that have the same marginal distributions on the pairs (X, Y ) and
(X,Z), and let:

∆∗P =
{
Q ∈ ∆P : Q(x) > 0 for all x ∈ X

}
be the subset of distributions with full support. Lemma 2 says that, under Assumption (∗), the functions
UI(X : Y \ Z), UI(X : Z \ Y ) and SI(X : Y ;Z) are constant on ∆∗P , and only CI(X : Y ;Z)

depends on the joint distribution Q ∈ ∆∗P . If we further assume continuity, the same statement holds
true for all Q ∈ ∆P . To make clear that we now consider the synergistic information and the mutual
information as a function of the joint distributionQ ∈ ∆ we write CIQ(X : Y ;Z) andMIQ(X : (Y, Z))

in the following; and we omit this subscript, if these information theoretic quantities are computed with
respect to the “true” joint distribution P .

Consider the following functions that we defined in Section 1:

ŨI(X : Y \ Z) = min
Q∈∆P

MIQ(X : Y |Z),

ŨI(X : Z \ Y ) = min
Q∈∆P

MIQ(X : Z|Y ),

S̃I(X : Y ;Z) = max
Q∈∆P

CoIQ(X;Y ;Z),

C̃I(X : Y ;Z) = MI(X : (Y, Z))− min
Q∈∆P

MIQ(X : (Y, Z)).

These minima and maxima are well-defined, since ∆P is compact and since mutual information and
co-information are continuous functions. The next lemma says that, under Assumption (∗), the quantities
ŨI , S̃I and C̃I bound the unique, shared and synergistic information.
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Lemma 3. Let UI(X : Y \ Z), UI(X : Z \ Y ), SI(X : Y ;Z) and CI(X : Y ;Z) be non-negative
continuous functions on ∆ satisfying Equations (1) and (2) and Assumption (∗). Then:

UI(X : Y \ Z) ≤ ŨI(X : Y \ Z),

UI(X : Z \ Y ) ≤ ŨI(X : Z \ Y ),

SI(X : Y ;Z) ≥ S̃I(X : Y ;Z),

CI(X : Y ;Z) ≥ C̃I(X : Y ;Z).

If P ∈ ∆ and if there exists Q ∈ ∆P that satisfies CIQ(X : Y ;Z) = 0, then equality holds in all four
inequalities. Conversely, if equality holds in one of the inequalities for a joint distribution P ∈ ∆, then
there exists Q ∈ ∆P satisfying CIQ(X : Y ;Z) = 0.

Proof. Fix a joint distribution P ∈ ∆. By Lemma 2, Assumption (∗) and continuity, the functions
UIQ(X : Y \ Z), UIQ(X : Z \ Y ) and SIQ(X : Y ;Z) are constant on ∆P , and only CIQ(X : Y ;Z),
depends on Q ∈ ∆P . The decomposition (1) rewrites to:

CIQ(X : Y ;Z) = MIQ(X : (Y, Z))− UI(X : Y \ Z)− UI(X : Z \ Y )− SI(X : Y ;Z). (6)

Using the non-negativity of synergistic information, this implies:

UI(X : Y \ Z) + UI(X : Z \ Y ) + SI(X : Y ;Z) ≤ min
Q∈∆P

MIQ(X : (Y, Z)).

Choosing P in (6) and applying this last inequality shows:

CI(X : Y ;Z) ≥MI(X : (Y, Z))− min
Q∈∆P

MIQ(X : (Y, Z)) = C̃I(X : Y ;Z).

The chain rule of mutual information says:

MIQ(X : (Y, Z)) = MIQ(X : Z) +MIQ(X : Y |Z).

Now, Q ∈ ∆P implies MIQ(X : Z) = MI(X : Z), and therefore,

C̃I(X : Y ;Z) = MI(X : Y |Z)− min
Q∈∆P

MIQ(X : Y |Z).

Moreover,
MIQ(X : Y |Z) = HQ(X|Z)−HQ(X|Y, Z),

where HQ(X|Z) = H(X|Z) for Q ∈ ∆P , and so:

C̃I(X : Y ;Z) = max
Q∈∆P

HQ(X|Y, Z)−H(X|Y, Z).

By (3), the shared information satisfies:

SI(X : Y ;Z) = CI(X : Y ;Z) +MI(X : Y ) +MI(X : Z)−MI(X : (Y, Z))

≥ C̃I(X : Y ;Z) +MI(X : Y ) +MI(X : Z)−MI(X : (Y, Z))

= MI(X : Y ) +MI(X : Z)− min
Q∈∆P

MIQ(X : (Y, Z))

= max
Q∈∆P

(MIQ(X : Y ) +MIQ(X : Z)−MIQ(X : (Y, Z)))

= max
Q∈∆P

CoIQ(X;Y ;Z) = S̃I(X : Y ;Z).
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By (2), the unique information satisfies:

UI(X : Y \ Z) = MI(X : Y )− SI(X : Y ;Z)

≤ min
Q∈∆P

[MIQ(X : (Y, Z))−MI(X : Z))]

= min
Q∈∆P

[MIQ(X : Y |Z)] = ŨI(X : Y \ Z).

The inequality for UI(X : Z \ Y ) follows similarly.
If there exists Q0 ∈ ∆P satisfying CIQ0(X : Y ;Z) = 0, then:

0 = CIQ0(X : Y ;Z) ≥ C̃IQ0(X : Y ;Z) = MI(X : (Y, Z))− min
Q∈∆P

MIQ(X : (Y, Z)) ≥ 0.

Since S̃I, ŨI and C̃I , as well as SI, UI and TI form an information decomposition, it follows from (1)
and (2) that all inequalities are equalities at Q0. By Assumption (∗), they are equalities for all Q ∈ P .
Conversely, assume that one of the inequalities is tight for some P ∈ ∆. Then, by the same reason, all
four inequalities hold with equality. By Assumption (∗), the functions ŨI and S̃I are constant on ∆P .
Therefore, the inequalities are tight for all Q ∈ ∆P . Now, if Q0 ∈ ∆P minimizes MIQ(X : (Y, Z)) over
∆P , then CIQ0(X : Y ;Z) = C̃IQ0(X : Y ;Z) = 0.

The proof of Lemma 3 shows that the optimization problems defining ŨI , S̃I and C̃I are in fact
equivalent; that is, it suffices to solve one of them. Lemma 4 in Section 3 gives yet another formulation
and shows that the optimization problems are convex.

In the following, we interpret ŨI , S̃I and C̃I as measures of unique, shared and complementary
information. Under Assumption (∗), Lemma 3 says that using the information decomposition given
by ŨI , C̃I , S̃I is equivalent to saying that in each set ∆P there exists a probability distribution Q

with vanishing synergistic information CIQ(X : Y ;Z) = 0. In other words, ŨI , S̃I and C̃I are the
only measures of unique, shared and complementary information that satisfy both (∗) and the following
property:

It is not possible to decide whether or not there is synergistic information

when only the marginal distributions of (X, Y ) and (X,Z) are known. (∗∗)

For any other combination of measures different from ŨI , S̃I and C̃I that satisfy Assumption (∗), there
are combinations of (p, µ, κ) for which the existence of non-vanishing complementary information can
be deduced. Since complementary information should capture precisely the information that is carried
by the joint dependencies between X , Y and Z, we find Assumption (∗∗) natural, and we consider this
observation as evidence in favor of our interpretation of ŨI , S̃I and C̃I .

3. Properties

3.1. Characterization and Positivity

The next lemma shows that the optimization problems involved in the definitions of ŨI , S̃I and C̃I
are easy to solve numerically, in the sense that they are convex optimization problems on convex sets.
As always, theory is easier than practice, as discussed in Example 31 in Appendix A.2.
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Lemma 4. Let P ∈ ∆ and QP ∈ ∆P . The following conditions are equivalent:

1. MIQP (X : Y |Z) = minQ∈∆P
MIQ(X : Y |Z).

2. MIQP (X : Z|Y ) = minQ∈∆P
MIQ(X : Z|Y ).

3. MIQP (X; (Y, Z)) = minQ∈∆P
MIQ(X : (Y, Z)).

4. CoIQP (X;Y ;Z) = maxQ∈∆P
CoIQ(X;Y ;Z).

5. HQP (X|Y, Z) = maxQ∈∆P
HQ(X|Y, Z).

Moreover, the functions MIQ(X : Y |Z), MIQ(X : Z|Y ) and MIQ(X : (Y, Z)) are convex on ∆P ;
and CoIQ(X;Y ;Z) and HQ(X|Y, Z) are concave. Therefore, for fixed P ∈ ∆, the set of all QP ∈ ∆P

satisfying any of these conditions is convex.

Proof. The conditional entropy HQ(X|Y, Z) is a concave function on ∆; therefore, the set of maxima
is convex. To show the equivalence of the five optimization problems and the convexity properties, it
suffices to show that the difference of any two minimized functions and the sum of a minimized and a
maximized function is constant on ∆p. Except forHQ(X|Y, Z), this follows from the proof of Lemma 3.
For HQ(X|Y, Z), this follows from the chain rule:

MIQ(X : (Y, Z)) = MIP (X : Y ) +MIQ(X : Z|Y )

= MIP (X : Y ) +HP (X|Y )−HQ(X|Y, Z) = H(X)−HQ(X|Y, Z).

The optimization problems mentioned in Lemma 4 will be studied more closely in the appendices.

Lemma 5 (Non-negativity). ŨI , S̃I and C̃I are non-negative functions.

Proof. C̃I is non-negative by definition. ŨI is non-negative, because it is obtained by minimizing
mutual information, which is non-negative.

Consider the real function:

Q0(X = x, Y = y, Z = z) =


P (X=x,Y=y)P (X=x,Z=z)

P (X=x)
, if P (X = x) > 0,

0, else.

It is easy to check Q0 ∈ ∆P . Moreover, with respect to Q0, the two random variables Y and Z are
conditionally independent given X , that is, MIQ0(Y : Z|X) = 0. This implies:

CoIQ0(X;Y ;Z) = MIQ0(Y : Z)−MIQ0(Y : Z|X) = MIQ0(Y : Z) ≥ 0.

Therefore, S̃I(X : Y ;Z) = maxQ∈∆P
CoIQ(X;Y ;Z) ≥ CoIQ0(X;Y ;Z) ≥ 0, showing that S̃I is a

non-negative function.

In general, the probability distribution Q0 constructed in the proof of Lemma 5 does not satisfy the
conditions of Lemma 4, i.e., it does not minimize MIQ(X : Y |Z) over ∆∗P .
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3.2. Vanishing Shared and Unique Information

In this section, we study when S̃I = 0 and when ŨI = 0. In particular, in Corollary 7, we show that
ŨI conforms with the operational idea put forward in Section 2.

Lemma 6. ŨI(X : Y \Z) vanishes if and only if there exists a row-stochastic matrix λ ∈ [0, 1]Z×Y that
satisfies:

P (X = x, Y = y) =
∑
z∈Z

P (X = x, Z = z)λ(z; y).

Proof. If MIQ(X : Y |Z) = 0 for some Q ∈ ∆P , then X and Y are independent given Z with respect
to Q. Therefore, there exists a stochastic matrix λ ∈ [0, 1]Z×Y satisfying:

P (X = x, Y = y) = Q(X = x, Y = y) =
∑
z∈Z

Q(X = x, Z = z)λ(z; y)

=
∑
z∈Z

P (X = x, Z = z)λ(z; y).

Conversely, if such a matrix λ exists, then the equality:

Q(X = x, Y = y, Z = z) = P (X = x, Z = z)λ(z; y)

defines a probability distribution Q which lies in ∆P . Then:

ŨI(X : Y \ Z) ≤MIQ(X : Y |Z) = 0.

The last result can be translated into the language of our motivational Section 2 and says that ŨI is
consistent with our operational idea of unique information:

Corollary 7. ŨI(X : Z \ Y ) = 0 if and only if Z has no unique information about X with respect to Y
(according to Definition 1).

Proof. We need to show that decision problems can be solved with the channel κ at least as well as with
the channel µ if and only if µ = κλ for some stochastic matrix λ. This result is known as Blackwell’s
theorem [9]; see also [8].

Corollary 8. Suppose that Y = Z and that the marginal distributions of the pairs (X, Y ) and (X,Z)

are identical. Then:

ŨI(X : Y \ Z) = ŨI(X : Z \ Y ) = 0,

S̃I(X : Y ;Z) = MI(X : Y ) = MI(X : Z),

C̃I(X : Y ;Z) = MI(X : Y |Z) = MI(X : Z|Y ).

In particular, under Assumption (∗), there is no unique information in this situation.

Proof. Apply Lemma 6 with the identity matrix in the place of λ.

Lemma 9. S̃I(X : Y ;Z) = 0 if and only if MIQ0(Y : Z) = 0, where Q0 ∈ ∆ is the distribution
constructed in the proof of Lemma 5.
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The proof of the lemma will be given in Appendix A.3, since it relies on some technical results from
Appendix A.2, where ∆P is characterized and the critical equations corresponding to the optimization
problems in Lemma 4 are computed.

Corollary 10. If both Y ⊥⊥ Z |X and Y ⊥⊥ Z , then S̃I(X : Y ;Z) = 0.

Proof. By assumption, P = Q0. Thus, the statement follows from Lemma 9.

There are examples where Y ⊥⊥ Z and S̃I(X : Y ;Z) 6= 0 (see Example 30). Thus, independent
random variables may have shared information. This fact has also been observed in other information
decomposition frameworks; see [5,6].

3.3. The Bivariate PI Axioms

In [4], Williams and Beer proposed axioms that a measure of shared information should satisfy. We
call these axioms the PI axioms after the partial information decomposition framework derived from
these axioms in [4]. In fact, the PI axioms apply to a measure of shared information that is defined for
arbitrarily many random variables, while our function S̃I only measures the shared information of two
random variables (about a third variable). The PI axioms are as follows:

1. The shared information of Y1, . . . , Yn about X is symmetric under permutations of Y1, . . . , Yn.
(symmetry)

2. The shared information of Y1 about X is equal to MI(X : Y1). (self-redundancy)

3. The shared information of Y1, . . . , Yn about X is less than the shared information of Y1, . . . , Yn−1

about X , with equality if Yn−1 is a function of Yn. (monotonicity)

Any measure SI of bivariate shared information that is consistent with the PI axioms must obviously
satisfy the following two properties, which we call the bivariate PI axioms:

(A) SI(X : Y ;Z) = SI(X : Z;Y ). (symmetry)

(B) SI(X : Y ;Z) ≤MI(X : Y ), with equality if Y is a function of Z. (bivariate monotonicity)

We do not claim that any function SI that satisfies (A) and (B) can be extended to a measure of
multivariate shared information satisfying the PI axioms. In fact, such a claim is false, and as discussed
in Section 6, our bivariate function S̃I is not extendable in this way.

The following two lemmas show that S̃I satisfies the bivariate PI axioms, and they show correspond-
ing properties of ŨI and C̃I .

Lemma 11 (Symmetry).

S̃I(X : Y ;Z) = S̃I(X : Z;Y ),

C̃I(X : Y ;Z) = C̃I(X : Z;Y ),

MI(X : Z) + ŨI(X : Y \ Z) = MI(X : Y ) + ŨI(X : Z \ Y ).
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Proof. The first two equalities follow since the definitions of S̃I and C̃I are symmetric in Y and Z. The
third equality is the consistency condition (4), which was proved already in Section 1.

The following lemma is the inequality condition of the monotonicity axiom.

Lemma 12 (Bounds).

S̃I(X : Y ;Z) ≤MI(X : Y ),

C̃I(X : Y ;Z) ≤MI(X : Y |Z),

ŨI(X : Y \ Z) ≥MI(X : Y )−MI(X : Z).

Proof. The first inequality follows from:

S̃I(X : Y ;Z) = max
Q∈∆P

CoIQ(X;Y ;Z) = max
Q∈∆P

(MI(X : Y )−MIQ(X : Y |Z)) ≤MI(X : Y ),

the second from:
C̃I(X : Y ;Z) = MI(X : Y |Z)− min

Q∈∆P

MIQ(X : Y |Z),

using the chain rule again. The last inequality follows from the first inequality, Equality (2) and the
symmetry of Lemma 11.

To finish the study of the bivariate PI axioms, only the equality condition in the monotonicity axiom
is missing. We show that S̃I satisfies S̃I(X : Y ;Z) = MI(X : Y ) not only if Z is a deterministic
function of Y , but also, more generally, when Z is independent of X given Y . In this case, Z can be
interpreted as a stochastic function of Y , independent of X .

Lemma 13. If X is independent of Z given Y , then P solves the optimization problems of Lemma 4. In
particular,

ŨI(X : Y \ Z) = MI(X : Y |Z),

ŨI(X : Z \ Y ) = 0,

S̃I(X : Y ;Z) = MI(X;Z),

C̃I(X : Y ;Z) = 0.

Proof. If X is independent of Z given Y , then:

MI(X : Z|Y ) = 0 ≤ min
Q∈∆P

MIQ(X : Z|Y ),

so P minimizes MIQ(X : Z|Y ) over ∆P .

Remark 14. In fact, Lemma 13 can be generalized as follows: in any bivariate information decomposi-
tion, Equations (1) and (2) and the chain rule imply:

MI(X : Z|Y ) = MI(X : (Y, Z))−MI(X : Y ) = UI(X : Z \ Y ) + CI(X : Y ;Z).

Therefore, if MI(X : Z|Y ) = 0, then UI(X : Z \ Y ) = 0 = CI(X : Y ;Z).
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3.4. Probability Distributions with Structure

In this section, we compute the values of S̃I , C̃I and ŨI for probability distributions with special
structure. If two of the variables are identical, then C̃I = 0 as a consequence of Lemma 13 (see
Corollaries 15 and 16). When X = (Y, Z), then the same is true (Proposition 18). Moreover, in this
case, S̃I((Y, Z) : Y ;Z) = MI(Y : Z). This equation has been postulated as an additional axiom, called
the identity axiom, in [6].

The following two results are corollaries to Lemma 13:

Corollary 15.

C̃I(X : Y ;Y ) = 0,

S̃I(X : Y ;Y ) = CoI(X;Y ;Y ) = MI(X : Y ),

ŨI(X : Y \ Y ) = 0.

Proof. If Y = Z, then X is independent of Z, given Y .

Corollary 16.

C̃I(X : X;Z) = 0,

S̃I(X : X;Z) = CoI(X;X;Z) = MI(X : Z)−MI(X : Z|X) = MI(X : Z),

ŨI(X : X \ Z) = MI(X : X|Z) = H(X|Z),

ŨI(X : Z \X) = MI(X : Z|X) = 0.

Proof. If X = Y , then X is independent of Z, given Y .

Remark 17. Remark 14 implies that Corollaries 15 and 16 hold for any bivariate information decompo-
sition.

Proposition 18 (Identity property). Suppose that X = Y × Z , and X = (Y, Z). Then, P solves the
optimization problems of Lemma 4. In particular,

C̃I((Y, Z) : Y ;Z) = 0,

S̃I((Y, Z) : Y ;Z) = MI(Y : Z),

ŨI((Y, Z) : Y \ Z) = H(Y |Z),

ŨI((Y, Z) : Z \ Y ) = H(Z|Y ).

Proof. If X = (Y, Z), then, by Corollary 28 in the appendix, ∆P = {P}, and therefore:

S̃I((Y, Z) : Y ;Z) = MI((Y, Z) : Y )−MI((Y, Z) : Y |Z) = H(Y )−H(Y |Z) = MI(Y : Z)

and:
ŨI((Y : Z) : Y \ Z) = MI((Y, Z) : Y |Z) = H(Y |Z),

and similarly for ŨI((Y : Z) : Y \ Z).



Entropy 2014, 16 2174

The following Lemma shows that ŨI , S̃I and C̃I are additive when considering systems that can be
decomposed into independent subsystems.

Lemma 19. LetX1, X2, Y1, Y2, Z1, Z2 be random variables, and assume that (X1, Y1, Z1) is independent
of (X2, Y2, Z2). Then:

S̃I((X1, X2) : (Y1, Y2); (Z1, Z2)) = S̃I(X1 : Y1;Z1) + S̃I(X1 : Y1;Z1),

C̃I((X1, X2) : (Y1, Y2); (Z1, Z2)) = C̃I(X1 : Y1;Z1) + C̃I(X1 : Y1;Z1),

ŨI((X1, X2) : (Y1, Y2) \ (Z1, Z2)) = ŨI(X1 : Y1 \ Z1) + ŨI(X1 : Y1 \ Z1),

ŨI((X1, X2) : (Z1, Z2) \ (Y1, Y2)) = ŨI(X1 : Z1 \ Y1) + ŨI(X1 : Z1 \ Y1).

The proof of the last lemma is given in Appendix A.3.

4. Comparison with Other Measures

In this section, we compare our information decomposition using ŨI , S̃I and C̃I with similar
functions proposed in other papers; in particular, the function Imin of [4] and the bivariate redundancy
measure Ired of [6]. We do not repeat their definitions here, since they are rather technical.

The first observation is that both Ired and Imin satisfy Assumption (∗). Therefore, Ired ≥ S̃I and
Imin ≥ S̃I . According to [6], the value of Imin tends to be larger than the value of Ired, but there are some
exceptions.

It is easy to find examples where Imin is unreasonably large [6,7]. It is much more difficult to
distinguish Ired and S̃I . In fact, in many special cases, Ired and S̃I agree, as the following results show.

Theorem 20. Ired(X : Y ;Z) = 0 if and only if S̃I(X : Y ;Z) = 0.

The proof of the theorem builds on the following lemma:

Lemma 21. If both Y ⊥⊥ Z |X and Y ⊥⊥ Z , then Ired(X : Y ;Z) = 0.

The proof of the lemma is deferred to Appendix A.3.

Proof of Theorem 20. By Lemma 3, if Ired(X : Y ;Z) = 0, then S̃I(X : Y ;Z) = 0. Now assume
that S̃I(X : Y ;Z) = 0. Since both S̃I and Ired are constant on ∆P , we may assume that P = Q0; that
is, we may assume that Y ⊥⊥ Z |X . Then, Y ⊥⊥ Z by Lemma 9. Therefore, Lemma 21 implies that
Ired(X : Y ;Z) = 0.

Denote by UIred the unique information defined from Ired and (2). Then:

Theorem 22. UIred(X : Y \ Z) = 0 if and only if ŨI(X : Y \ Z) = 0

Proof. By Lemma 3, if ŨI vanishes, then so does UIred. Conversely, UIred(X : Y \ Z) = 0 if and only
if Ired(X : Y ;Z) = MI(X : Y ). By Equation (20) in [6], this is equivalent to p(x|y) = py↘Z(x) for
all x, y. In this case, p(x|y) =

∑
z∈Z p(x|z)λ(z; y) for some λ(z; y) with

∑
z∈Z λ(z; y) = 1. Hence,

Lemma 6 implies that ŨI(X : Y \ Z) = 0.

Theorem 22 implies that Ired does not contradict our operational ideas introduced in Section 2.
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Corollary 23. Suppose that one of the following conditions is satisfied:

1. X is independent of Y given Z.

2. X is independent of Z given Y .

3. X = Y × Z , and X = (Y, Z).

Then, Ired(X : Y ;Z) = S̃I(X : Y ;Z).

Proof. If X is independent of Z, given Y , then, by Remark 14, for any bivariate information
decomposition, UI(X : Z \ Y ) = 0. In particular, ŨI(X : Z \ Y ) = 0 = UIred(X : Z \ Y )

(compare also Lemma 13 and Theorem 22). Therefore, Ired(X : Y ;Z) = S̃I(X : Y ;Z). If X = Y × Z
and X = (Y, Z), then S̃I(X : Y ;Z) = MI(Y : Z) = Ired(X : Y ;Z) by Proposition 18 and the identity
axiom in [6].

Corollary 24. If the two pairs (X, Y ) and (X,Z) have the same marginal distribution, then Ired(X :

Y ;Z) = S̃I(X : Y ;Z).

Proof. In this case, ŨI(X : Y ;Z) = 0 = UIred(X : Y ;Z).

Although S̃I and Ired often agree, they are different functions. An example where S̃I and Ired have
different values is the dice example given at the end of the next section. In particular, it follows that Ired

does not satisfy Property (∗∗).

5. Examples

Table 1 contains the values of C̃I and S̃I for some paradigmatic examples. The list of examples is
taken from [6]; see also [5]. In all these examples, S̃I agrees with Ired. In particular, in these examples,
the values of S̃I agree with the intuitively plausible values called “expected values” in [6].

Table 1. The value of S̃I in some examples. The note is a short explanation of the example;
see [6] for the details.

Example C̃I S̃I Imin Note
RDN 0 1 1 X = Y = Z uniformly distributed
UNQ 1 0 1 X = (Y, Z), Y, Z i.i.d.
XOR 1 0 0 X = Y XORZ, Y, Z i.i.d.
AND 1/2 0.311 0.311 X = Y ANDZ, Y, Z i.i.d.

RDNXOR 1 1 1 X = (Y1 XORZ1,W ),
Y = (Y1,W ), Z = (Z1,W ), Y1, Z1,W i.i.d.

RDNUNQXOR 1 1 2 X = (Y1 XORZ1, (Y2, Z2),W ), Y = (Y1, Y2,W ),
Z = (Z1, Z2,W ), Y1, Y2, Z1, Z2,W i.i.d.

XORAND 1 1/2 1/2 X = (Y XORZ, Y ANDZ), Y, Z i.i.d.

Copy 0 MI(X : Y ) 1 X = (Y, Z)
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Figure 1. The shared information measures S̃I and Ired in the dice example depending on
the correlation parameter λ. The figure on the right is reproduced from [6] (copyright 2013
by the American Physical Society). In both figures, the summation parameter α varies from
one (uppermost line) to six (lowest line).
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As a more complicated example, we treated the following system with two parameters λ ∈ [0, 1],
α ∈ {1, 2, 3, 4, 5, 6}, also proposed by [6]. Let Y and Z be two dice, and define X = Y + αZ. To
change the degree of dependence of the two dice, assume that they are distributed according to:

P (Y = i, Z = j) =
λ

36
+ (1− λ)

δi,j
6
.

For λ = 0, the two dice are completely correlated, while for λ = 1, they are independent. The values
of S̃I and Ired are shown in Figure 1. In fact, for α = 1, α = 5 and α = 6, the two functions agree.
Moreover, they agree for λ = 0 and λ = 1. In all other cases, S̃I < Ired, in agreement with Lemma 3.
For α = 1 and α = 6 and λ = 0, the fact that Ired = S̃I follows from the results in Section 4; in the other
cases, we do not know a simple reason for this coincidence.

It is interesting to note that for small λ and α > 1, the function S̃I depends only weakly on α. In
contrast, the dependence of Ired on α is stronger. At the moment, we do not have an argument that tells
us which of these two behaviors is more intuitive.

6. Outlook

We defined a decomposition of the mutual information MI(X : (Y, Z)) of a random variable X with
a pair of random variables (Y, Z) into non-negative terms that have an interpretation in terms of shared
information, unique information and synergistic information. We have shown that the quantities S̃I ,
C̃I and ŨI have many properties that such a decomposition should intuitively fulfil; among them, the
PI axioms and the identity axiom. It is a natural question whether the same can be done when further
random variables are added to the system.

The first question in this context is what the decomposition of MI(X : Y1, . . . , Yn) should look like.
How many terms do we need? In the bivariate case n = 2, many people agree that shared, unique and
synergistic information should provide a complete decomposition (but, it may well be worth looking for
other types of decompositions). For n > 2, there is no universal agreement of this kind.
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Williams and Beer proposed a framework that suggests constructing an information decomposition
only in terms of shared information [4]. Their ideas naturally lead to a decomposition according to a
lattice, called the PI lattice. For example, in this framework, MI(X : Y1, Y2, Y3) has to be decomposed
into 18 terms with a well-defined interpretation. The approach is very appealing, since it is only based
on very natural properties of shared information (the PI axioms) and the idea that all information can
be “localized,” in the sense that, in an information decomposition, it suffices to classify information
according to “who knows what,” that is, which information is shared by which subsystems.

Unfortunately, as shown in [10], our function S̃I cannot be generalized to the case n = 3 in the
framework of the PI lattice. The problem is that the identity axiom is incompatible with a non-negative
decomposition according to the PI lattice.

Even though we currently cannot extend our decomposition to n > 2, our bivariate decomposition
can be useful for the analysis of larger systems consisting of more than two parts. For example, the
quantity:

ŨI(X : Yi \ (Y1, . . . , Yi−1, Yi+1, . . . , Yn))

can still be interpreted as the unique information of Yi about X with respect to all other variables, and
it can be used to assess the value of the i-th variable, when synergistic contributions can be ignored.
Furthermore, the measure has the intuitive property that the unique information cannot grow when
additional variables are taken into account:

Lemma 25. ŨI(X : Y \ (Z1, . . . , Zk)) ≥ ŨI(X : Y \ (Z1, . . . , Zk+1)).

Proof. Let P k be the joint distribution of X, Y, Z1, . . . , Zk, and let P k+1 be the joint distribution of
X, Y, Z1, . . . , Zk, Zk+1. By definition, P k is a marginal of P k+1. For any Q ∈ ∆Pk , the distribution Q′

defined by:

Q′(x, y, z1, . . . , zk, zk+1) :=


Q(x,y,z1,...,zk)Pk+1(x,z1,...,zk,zk+1)

Pk(x,z1,...,zk)
, if P k(x, z1, . . . , zk) > 0,

0, else,

lies in ∆Pk+1 . Moreover,Q is the (X, Y, Z1, . . . , Zk)-marginal ofQ′, and Zk+1 is independent of Y given
X,Z1, . . . , Zk. Therefore,

MIQ′(X : Y |Z1, . . . , Zk, Zk+1) ≤MIQ′(X,Zk+1 : Y |Z1, . . . , Zk)

= MIQ′(X : Y |Z1, . . . , Zk) +MIQ′(Zk+1 : Y |X,Z1, . . . , Zk)

≤MIQ′(X : Y |Z1, . . . , Zk) = MIQ(X : Y |Z1, . . . , Zk).

The statement now follows by taking the minimum over Q ∈ ∆Pk .

Thus, we believe that our measure, which is well-motivated in operational terms, can serve as a good
starting point towards a general decomposition of multi-variate information.
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Appendix: Computing ŨI , S̃I and C̃I

A.1. The Optimization Domain ∆P

By Lemma 4, to compute ŨI , S̃I and C̃I , we need to solve a convex optimization problem. In this
section, we study some aspects of this problem.

First, we describe ∆P . For any set S, let ∆(S) be the set of probability distributions on S, and let
A be the map ∆ → ∆(X × Y) × ∆(X × Z) that takes a joint probability distribution of X , Y and Z
and computes the marginal distributions of the pairs (X, Y ) and (X,Z). Then, A is a linear map, and
∆P = (P + kerA)∩∆. In particular, ∆P is the intersection of an affine space and a simplex; hence, ∆P

is a polytope.
The matrix describing A (and denoted by the same symbol in the following) is a well-studied object.

For example, A describes the graphical model associated with the graph Y—X—Z. The columns of A
define a polytope, called the marginal polytope. Moreover, the kernel ofA is known: let δx,y,z ∈ RX×Y×Z

be the characteristic function of the point (x, y, z) ∈ X × Y × Z , and let:

γx;y,y′;z,z′ = δx,y,z + δx,y′,z′ − δx,y′,z − δx,y,z′ .

Lemma 26. The defect of A (that is, the dimension of kerA) is |X |(|Y| − 1)(|Z| − 1).

• The vectors γx;y,y′;z,z′ for all x ∈ X , y, y′ ∈ Y and z, z′ ∈ Z span kerA.

• For any fixed y0 ∈ Y , z0 ∈ Z , the vectors γx;y0,y;z0,z for all x ∈ X , y ∈ Y \ {y0} and z ∈ Z \ {z0}
form a basis of kerA.

Proof. See [11].

The vectors γx;y,y′;z,z′ for different values of x ∈ X have disjoint supports. As the next lemma shows,
this can be used to write ∆P as a Cartesian product of simpler polytopes. Unfortunately, the function
MI(X : (Y, Z)) does not respect this product structures. In fact, the diagonal directions are important
(see Example 31 below).

Lemma 27. Let P ∈ ∆. For all x ∈ X with P (x) > 0 denote by:

∆P,x =
{
Q ∈ ∆(Y × Z) : Q(Y = y) = P (Y = y|X = x) and Q(Z = z) = P (Z = z|X = x)

}
the set of those joint distributions of Y and Z with respect to which the marginal distributions of
Y and Z agree with the conditional distributions of Y and Z, given X = x. Then, the map
πP : ∆P 7→ ×x∈X :P (x)>0 ∆P,x that maps each Q ∈ ∆P to the family (Q(·|X = x))x∈X :P (x)>0 of
conditional distributions of Y and Z given X = x for those x ∈ X with P (X = x) > 0 is a linear
bijection.

Proof. The image of πP is contained in×x∈X :P (x)>0 ∆P,x by definition of ∆P . The relation:

Q(X = x, Y = y, Z = z) = P (X = x)Q(Y = y, Z = z|X = x)

shows that πP is injective and surjective. Since πP is in fact a linear map, the domain and the codomain
of πP are affinely equivalent.
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Each Cartesian factor ∆P,x of ∆P is a fiber polytope of the independence model.

Corollary 28. If X = (Y, Z), then ∆P = {P}.

Proof. By assumption, both conditional probability distributions P (Y |X = x) and P (Z|X = x) are
supported on a single point. Therefore, each factor ∆P,x consists of a single point; namely the conditional
distribution P (Y, Z|X = x) of Y and Z, given X . Hence, ∆P is a singleton.

A.2. The Critical Equations

Lemma 29. The derivative of MIQ(X : (Y, Z)) in the direction γx;y,y′;z,z′ is:

log
Q(x, y, z)Q(x, y′, z′)

Q(x, y′, z)Q(x, y, z′)

Q(y′, z)Q(y, z′)

Q(y, z)Q(y′, z′)
.

Therefore, Q solves the optimization problems of Lemma 4 if and only if:

log
Q(x, y, z)Q(x, y′, z′)

Q(x, y′, z)Q(x, y, z′)

Q(y′, z)Q(y, z′)

Q(y, z)Q(y′, z′)
≥ 0 (7)

for all x, y, y′, z, z′ with Q+ εγx;y,y′;z,z′ ∈ ∆P for ε > 0 small enough.

Proof. The proof is by direct computation.

Example 30 (The AND-example). Consider the binary case X = Y = Z = {0, 1}; assume that Y and Z
are independent and uniformly distributed, and suppose thatX = Y ANDZ. The underlying distribution
P is uniformly distributed on the four states {000, 001, 010, 111}. In this case, ∆P,1 = {δY=1,Z=1} is a
singleton, and ∆P,0 consists of all probability distributions Qα′ of the form:

Qα′(Y = y, Z = z) =



1
3

+ α′, if (y, z) = (0, 0),

1
3
− α′, if (y, z) = (0, 1),

1
3
− α′, if (y, z) = (1, 0),

α′, if (y, z) = (1, 1),

for some 0 ≤ α′ ≤ 1
3
. Therefore, ∆P is a one-dimensional polytope consisting of all probability

distributions of the form:

Qα(X = x, Y = y, Z = z) =



1
4

+ α, if (x, y, z) = (0, 0, 0),

1
4
− α, if (x, y, z) = (0, 0, 1),

1
4
− α, if (x, y, z) = (0, 1, 0),

α, if (x, y, z) = (0, 1, 1),

1
4
, if (x, y, z) = (1, 1, 1),

0, else,
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for some 0 ≤ α ≤ 1
4
. To compute the minimum of MIQα(X : (Y, Z)) over ∆P , we compute the

derivative with respect to α (which equals the directional derivative of MIQ(X : (Y, Z)) in the direction
γ0;0,1;0,1 at Qα) and obtain:

log
(1

4
+ α)α

(1
4
− α)2

(1
4
− α)2

(1
4

+ α)2
= log

α
1
4

+ α
.

Since α
1
4

+α
< 1 for all α > 0, the function MIQα(X : (Y, Z)) has a unique minimum at α = 1

4
.

Therefore,

ŨI(X : Y \ Z) = MIQ1/4
(X : Y |Z) = 0 = ŨI(X : Z \ Y ),

S̃I(X : Y ;Z) = CoIQ1/4
(X;Y ;Z) = MIQ1/4

(X : Y ) =
3

4
log

4

3
,

C̃I(X : Y ;Z) = MI(X : (Y, Z))−MIQ1/4
(X : (Y, Z)) =

1

2
log 2.

In other words, in the AND-example, there is no unique information, but only shared and synergistic
information. This follows, of course, also from Corollary 8.

Example 31. The optimization problems in Lemma 4 can be very ill-conditioned, in the sense that there
are directions in which the function varies fast and other directions in which the function varies slowly.
As an example, let P be the distribution of three i.i.d. uniform binary random variables. In this case, ∆P

is a square. Figure A.1 contains a heat map of CoIQ on ∆P , where ∆P is parametrized by:

Q(a, b) = P + aγ0;0,1;0,1 + bγ1;0,1;0,1, −1

8
≤ a ≤ 1

8
,−1

8
≤ b ≤ 1

8
.

Clearly, the function varies very little along one of the diagonals. In fact, along this diagonal, X is
independent of (Y, Z), corresponding to a very low synergy.

Although, in this case, the optimizing probability distribution is unique, it can be difficult to find. For
example, Mathematica’s function FindMinimum does not always find the true optimum out of the box
(apparently, FindMinimum cannot make use of the convex structure in the presence of constraints) [12].
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Figure A.1. The function CoIQ in Example 31 (figure created with Mathematica [12]).
Darker colors indicate larger values of CoIQ. In this example, ∆P is a square. The uniform
distribution lies at the center of this square and is the maximum of CoIQ. In the two dark
corners, X is independent of Y and Z, and either Y = Z or Y = ¬Z. In the two light
corners, Y and Z are independent, and either X = Y XORZ or X = ¬(Y XORZ).
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A.3. Technical Proofs

Proof of Lemma 9. Since S̃I(X : Y ;Z) ≥ CoIQ0(X;Y ;Z) ≥ 0, if S̃I(X : Y ;Z) = 0, then:

0 = CoIQ0(X;Y ;Z) = MIQ0(Y : Z)−MIQ0(Y : Z|X) = MIQ0(Y : Z).

To show that MIQ0(Y : Z) = 0 is also sufficient, observe that:

Q0(x, y, z)Q0(x, y′, z′) = Q0(x, y, z′)Q0(x, y′, z),

by construction of Q0, and that:

Q0(y, z)Q0(y′, z′) = Q0(y, z′)Q0(y′, z)

by the assumption that MIQ0(Y : Z) = 0. Therefore, by Lemma 29, all partial derivatives vanish at Q0.
Hence, Q0 solves the optimization problems in Lemma 4, and S̃I(X : Y ;Z) = CoIQ0(X;Y ;Z) =

0.

Proof of Lemma 19. Let Q1 and Q2 be solutions of the optimization problems from Lemma 4
for (X1, Y1, Z1) and (X2, Y2, Z2) in the place of (X, Y, Z), respectively. Consider the probability
distribution Q defined by:

Q(x1, x2, y1, y2, z1, z2) = Q1(x1, y1, z1)Q2(x2, y2, z2).
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Since (X1, Y1, Z1) is independent of (X2, Y2, Z2) (under P ), Q ∈ ∆P . We show that Q solves the
optimization problems from Lemma 4 for X = (X1, X2), Y = (Y1, Y2) and Z = (Z1, Z2). We use the
notation from Appendices A.1 and A.2.

If Q+ εγx1x2;y1y2,y′1y
′
2;z1z2,z′1z

′
2
∈ ∆Q, then:

Q1 + εγx1;y1,y′1;z1,z′1
∈ ∆Q1 and Q2 + εγx2;y2,y′2;z2,z′2

∈ ∆Q2 .

Therefore, by Lemma 29,

log
Q(x1x2, y1y2, z1z2)Q(x1x2, y

′
1y
′
2, z
′
1z
′
2)

Q(x1x2, y′1y
′
2, z1z2)Q(x1x2, y1y2, z′1z

′
2)

Q(y′1y
′
2, z1z2)Q(y1y2, z

′
1z
′
2)

Q(y1y2, z1z2)Q(y′1y
′
2, z
′
1z
′
2)

= log
Q(x1, y1, z1)Q(x1, y

′
1, z
′
1)

Q(x1, y′1, z1)Q(x1, y1, z′1)

Q(y′1, z1)Q(y1, z
′
1)

Q(y1, z1)Q(y′1, z
′
1)

+ log
Q(x2, y2, z2)Q(x2, y

′
2, z
′
2)

Q(x2, y′2, z2)Q(x2, y2, z′2)

Q(y′2, z2)Q(y2, z
′
2)

Q(y2, z2)Q(y′2, z
′
2)
≥ 0,

and hence, again by Lemma 29, Q is a critical point and solves the optimization problems.

Proof of Lemma 21. We use the notation from [6]. The information divergence is jointly convex.
Therefore, any critical point of the divergence restricted to a convex set is a global minimizer. Let
y ∈ Y . Then, it suffices to show: If P satisfies the two conditional independence statements, then the
marginal distribution PX of X is a critical point of D(P (·|y)‖Q) for Q restricted to Ccl(〈Z〉X); for if
this statement is true, then Py↘Z = PX ; thus IπX(Y ↘ Z) = 0, and finally, Ired(X : Y ;Z) = 0.

Let z, z′ ∈ Z . The derivative of D(P (·|y)‖Q) at Q = PX in the direction P (X|z)− P (X|z′) is:∑
x∈X

(P (x|z)− P (x|z′))P (x|y)

P (x)
=
∑
x∈X

(
P (x, z)P (x, y)

P (x)P (y)P (z)
− P (x, z′)P (x, y)

P (x)P (y)P (z′)

)
.

Now, Y ⊥⊥ Z |X implies:∑
x∈X

P (x, z)P (x, y)

P (x)
= P (y, z) and

∑
x∈X

P (x, z′)P (x, y)

P (x)
= P (y, z′),

and Y ⊥⊥ Z implies P (y)P (z) = P (y, z) and P (y)P (z′) = P (y, z′). Together, this shows that PX is a
critical point.
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